
INTRODUCTION

Axonal regeneration can occur spontaneously after peripheral 
nerve injury as a result of favorable environmental and intrinsic 
factors. However, axonal regeneration following spinal cord injury 
(SCI) is nonspontaneous and often inhibited by the resulting glial 
scar. Evidently, environmental and intrinsic differences between 
regenerative responses of nerves in the PNS versus CNS play a 
major role in axonal regeneration following neural injury. 

Following peripheral nerve injury, the distal stump degenerates 
while Schwann cells dedifferentiate and proliferate to create 
a permissive environment for axonal regeneration [1]. The 
formation of Bünger bands via proliferating Schwann cells acts 
as a conduit and facilitates axonal regeneration [2]. In addition 
to permissive environments, when peripheral nerves are injured, 

these axons are more likely to regenerate due to their intrinsic 
growth capabilities [3]. However, regenerative responses after 
SCI are dramatically different as damaged axons of the CNS 
are incapable of such spontaneous regeneration. Here, injured 
axons are unable to regenerate past the lesion site often due to 
glial scar formation. The glial scar primarily consists of reactive 
astrocytes and proteoglycans, which are recognized as physical 
barriers through which axons cannot further elongate [4]. In 
addition, myelin-associated molecules, which are produced by 
oligodendrocytes, exert inhibitory actions on axonal growth as 
they interact with their axonal membrane receptors.

In this review, we consider the differences in regenerative 
responses of PNS and CNS axons and closely examine the 
roles of Schwann cells and astrocytes. Both Schwann cells and 
astrocytes are macroglial cells derived from neural stem cells, the 
common undifferentiated progenitor cell. Various factors trigger 
these progenitor cells to differentiate. Schwann cell development 
occurs through a series of transitional embryonic and postnatal 
phases regulated by several signals such as neuregulin and Notch 
signaling pathways [5]. Meanwhile, astrocyte development 
involves the interplay of extrinsic signals, cell-cell interactions, 
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and transcription factors that direct specific cell fates [6]. For 
example, basic helix-loop-helix transcription factors are crucial 
for diversifying differentiation of neural stem cells in order to 
form and specify astrocytes [6, 7]. Thus, while major differences 
exist, certain commonalities between these two glial cells also 
exist, which suggests dual functionality of astrocytes resulting in 
beneficial and detrimental effects for axonal regeneration. Such 
insight on the roles of glial cells in axonal regeneration is critical 
for improving functional recovery following neural injury. 

There have been significant advances on understanding the 
role of molecular factors from oligodendrocytes, such as myelin-
associated glycoprotein (MAG), Nogo-66, oligodendrocyte-myelin 
glycoprotein, and their receptor complexes consisting of NgR1, 
p75, TROY, and LINGO, which has been reviewed elsewhere [8, 9] 
and is not examined in this paper.

FUNCTION OF SCHWANN CELLS FOLLOWING PERIPHERAL 
NERVE INJURY

Injured axons of peripheral nerves regenerate spontaneously over 
long distances, and various factors contribute to this regenerative 
ability. Following peripheral nerve injury, distal axons degenerate 
while dedifferentiated Schwann cells and macrophages remove 
debris via phagocytosis. Dedifferentiation refers to the state in 
which Schwann cells revert to immature states capable of re-
entering the cell cycle to proliferate and assist in nerve regeneration 
[10]. Schwann cells also aid in the process of remyelination, which 
is necessary for axon protection and action potential conduction 
[11]. Extracellular matrix proteins such as laminin and fibronectin 
[12, 13], neurotrophic factors such as nerve growth factor 
(NGF) and brain-derived neurotrophic factor (BDNF) [14], and 
hormones such as progesterone and erythropoietin [15, 16] are 
also important factors that regulate Schwann cells.

During peripheral nerve regeneration, ECM components are 
crucial for guidance, elongation, trophic support, and axonal 
remyelination [17, 18]. Laminin is an ECM glycoprotein and 
component of the Schwann cell basal lamina. It is expressed in 
intact nerves and upregulated in injured nerves as it stimulates 
neurite outgrowth and helps ensheath and remyelinate 
regenerating axons [19-21]. In an experiment where laminin γ1 
gene expression is stopped, all other known laminin chains are also 
disrupted in Schwann cells [12]. As a result, axonal regeneration is 
poor because of partial myelination and improper ensheathment 
[22, 23]. It is clear that Schwann cell dedifferentiation, prolifer
ation, and even survival are severely impaired when laminin 
is disrupted. In addition, when laminin is absent, cell polarity 
signaling pathways fail to induce axonal growth [20]. Thus, 

this ECM glycoprotein plays a critical role in contributing to 
successful axonal regeneration following peripheral nerve injury 
by indirectly supporting Schwann cells or acting as a substrate for 
axonal regeneration [1]. 

Without laminin, Schwann cells cannot differentiate into myeli
nating phenotypes. Moreover, the resulting poor myelination 
and regeneration between phenotypes in mice with a Schwann 
cell defect in β1 integrin, a component of laminin receptors, 
and laminin γ1 indicate that integrin plays an important role in 
laminin signaling [22, 24]. In response to signals from laminin-
activated integrin receptors, it has been shown that growth cones 
integrate myosin II-dependent contraction for rapid, coordinated 
turning at borders of laminin stripes, indicating that laminin acts 
as a stimulator and guide for axonal regeneration [25]. 

The important role that Schwann cell responses play in 
successful PNS axon regeneration can be seen in the effects of 
fibrinogen following peripheral nerve injury. Fibrinogen first 
infiltrates extracellular space of injured peripheral nerves and 
then converts into fibrin, which inhibits Schwann cell migration 
and remyelination during regeneration [26]. Here, fibrin triggers 
ERK1/2 phosphorylation and p75 NGF receptor production, 
which downregulates gene expression involved with myelin 
production. This eventually inhibits Schwann cell differentiation 
because cells are held in a predifferentiation state. Yet in normal 
pathophysiological situations, fibrolytic plasminogen activator 
(PA) is induced in peripheral nerves after injury, where it converts 
plasminogen to plasmin that degrades ECM proteins including 
fibrin and assists in axonal regeneration [27, 28]. 

Furthermore, different types of neurotrophins are upregulated 
in Schwann cells following peripheral nerve injury [29, 30]. 
Induction of neurotrophin receptors occurs in both axons and 
Schwann cells and mediates axonal regeneration [31, 32]. Binding 
of neurotrophic factors to their selective receptors initiates 
entrapping of activated receptors in the axon terminal. Activated 
receptors are then retrogradely transported into the nucleus of 
cell body, where target gene expression is induced and protein 
factors for axonal regrowth are transported back to the growth 
cone [33]. In Schwann cells, while neurotrophins such as BDNF 
typically aid in myelination, certain in vitro and in vivo systems 
have also shown neurotrophins such as NT3 to act as inhibitors of 
myelination [31, 34]. Thus, BDNF serves as a positive modulator 
of myelination and motor neuron regeneration [35], while NT3 
serves as a negative modulator of peripheral nerve myelination. 

After peripheral nerve damage, Schwann cells and macrophages 
remove cell debris and inhibitory molecules in the injury area. 
Here, it deserves mention that the role of Schwann cells in 
removing myelin-associated inhibitory molecules is an important 
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environmental aspect to axonal regeneration of injured peripheral 
nerves. The removal of myelin sheaths with myelin-associated 
glycoprotein following neural injury creates a permissive 
environment for regeneration [36, 37]. The presence of laminin, 
a Schwann cell basal lamina component, demonstrated that 
effects of inhibitory molecules such as MAG may be overcome 
by neurite outgrowth-promoting molecules [38]. Evidently, 
the removal and downregulation of inhibitory molecules such 
as MAG from Schwann cells during Wallerian degeneration is 
critical to optimizing axonal regeneration following peripheral 
nerve injury [37]. This notion of removing myelin-associated 
inhibitory molecules was also supported in previous experiments 
as transgenic mice overexpressing Nogo-A resulted in poor 
regeneration [39].

FUNCTION OF ASTROCYTES FOLLOWING SPINAL CORD INJURY

In intact nerves of the CNS, astrocytes are principal macroglial 
cells that provide critical support including regulation of blood 
flow and energy metabolism [40, 41]. Moreover, astrocytes 
respond to any degree of CNS injury and disease via reactive 
astrogliosis, where astrocytes become hypertrophic, change in 
molecular expression and morphology, and result frequently 
in glial scar formation [42, 43]. Further, phagocytes produce 
interleukin-1, which initiates inflammatory responses in astrocytes 
[44]. Reactive gliosis is comprised of changes in gene expression 
and cellular changes regulated via inter- and intracellular signaling 
[45, 46]. However, because reactive astrogliosis varies in response 
to severity of CNS injury and disease, reactive astrocytes may also 
exert beneficial effects. Changes experienced by reactive astrocytes 
are regulated based on context via specific cascade signaling events 
and can result in astrocytes gaining or losing functions, which 
translates into beneficial or detrimental effects [46]. Various signals 
including cytokines, growth factors, and adhesion molecules 
exerted by reactive astrocytes and injured neurons play critical 
roles in response to CNS injury.

Astrocytes respond to CNS injury at varied degrees as eviden
ced by different categories of reactive astrocytes that exist as 
biochemically heterogeneous [42, 47]. In mild-to-moderate 
reactive astrogliosis, astrocytes occupy non-overlapping domains 
in a similar manner to non-injured tissue [48, 49]. In response to 
extensive CNS injury, reactive gliosis results in newly proliferated 
astrocytes and glial scar formation. Interestingly, these astrocytes 
occupy overlapping domains as opposed to non-overlapping 
domains as seen in non-injured tissues [50, 51]. Moreover, 
structural changes as a result of glial scar formation persist over 
long periods of time and lead to failed CNS axon regeneration [46]. 

Various factors induce glial scar formation. Transforming 
growth factor (TGF) β1, TGFβ2, and interleukin-1 are recognized 
as mediators of macrophage-induced glial scarring. Cytokine 
interactions between interferon-γ and fibroblast growth factor 
2 (FGF2) have also been linked to glial scar induction [4, 52]. 
Additionally, FGF2 also increases astrocyte proliferation, leading 
to glial scar formation [8]. 

Glial scar formation presents major obstacles for successful 
axonal regeneration as microglia, oligodendrocytes, meningeal 
cells, and astrocytes are recruited to the injury site via glial 
reaction [53]. Astrocytes, which mainly compose the glial scar, 
become hypertrophic and release inhibitory ECM molecules 
called proteoglycans that largely contribute to poor CNS axon 
regeneration [54]. The four classes of proteoglycans produced 
by astrocytes include: heparan sulfate proteoglycan (HSPG), 
dermatan sulfate proteoglycan (DSPG), keratan sulfate 
proteoglycan (KSPG) and chondroitin sulfate proteoglycan 
(CSPG) [55]. Highly sulfated glycosaminoglycan (GAG) chains 
characterize proteoglycan molecules [56] and are known to be 
critical in mediating inhibitory action of axonal growth [54, 57]. 
Following SCI, reactive astrocytes upregulate CSPG expression, 
which is then excreted extracellularly [58, 59]. A CSPG gradient 
is formed along the injury site, with the highest concentration of 
inhibitory molecules at the center of the injury site and decreasing 
concentrations outwards [60, 61]. CSPGs inhibit neurite 
outgrowth of different neuronal populations at varied degrees. As 
such, growth cones can extend along a proteoglycan gradient until 
a threshold is reached, where the gradient is no longer tolerable 
for growth cone extension [62]. Regenerating axons eventually 
become dystrophic and fail to regenerate near the lesion epicenter 
as a result of extremely inhibitory and non-growth conducive 
environments [4, 63]. GAG chains were identified as a critical 
component of CSPGs responsible for inhibiting axonal growth as 
the potent inhibitory effects no longer persist following treatment 
with chondroitinase ABC (ChABC) enzymes, which remove GAG 
chains [64, 65].

BENEFICIAL FUNCTIONS OF REACTIVE ASTROCYTES

Recent studies suggested that, in certain circumstances, reactive 
astrocytes recruited to the injury site may have a permissive role 
for axonal regeneration and functional recovery [46, 66]. Some 
evidence also demonstrates the ability to regulate inflammation or 
even minimize cellular degeneration [53, 67]. In vivo and in vitro 
evidence exists in which reactive astrocytes protect the CNS via 
uptake of excitotoxic glutamate [68], protection from oxidative 
stress [69, 70] or NH4+ toxicity [71], protection via adenosine 
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Table 1. Title title

Antagonists**

WAY-100635
SB-224289,
GR-127935

Ketanserin,
M100907

Mesulergine,
SB-200907

Ondansetron,
Tropisetron

GR-113808, 
SB-204070

−

SB-399885

Amisulpiride, 
SB-269970

*A, B; C, D. **E.
aA; bB; cC.

release [72] or degradation of amyloid β peptides [73], and 
stabilization of extracellular fluid and ion balance [74].

In several experiments, ablation of proliferating reactive 
astrocytes disrupted scar formation. This led to intensified 
inflammatory responses, failed repairing of the blood-brain 
barrier, greater tissue damage and lesion site, increased neuronal 
loss and demyelination, and impaired functional recovery [50, 
58, 75-77]. In addition, genetic depletion of Stat3 and SOC3 in 
astrocytes resulted in reduced migration of reactive astrocytes 
into the injury cavity, widespread infiltration of inflammatory 
cells, and failed compaction of the injury area as demarcated by 
glial scar formation; all of which were related to inhibition of 
axonal regeneration after SCI [51, 78]. The difference between 
permissive and non-permissive gliosis may be partly determined 
by expression of particular recognition molecules [45]. Astrocytes 
produce intercellular effector molecules or alter molecular 
expression with regards to cell structure, energy metabolism, 
intracellular signaling, and membrane transporters and pumps [42, 
79-81]. These changes may dramatically influence surrounding 
neural cells and eventually affect axonal regeneration in a positive 
or negative manner. 

COMMONALITIES BETWEEN SCHWANN CELLS AND ASTRO­
CYTES

Despite differences that exist between Schwann cells and 
astrocytes, these two cell types share some common features 
in mediating regenerative responsiveness after nerve injury. 
As mentioned above, both Schwann cells and astrocytes have 
scavenger functions that remove cell debris following neural 
injury in normal physiological and pathological conditions. They 
proliferate rapidly after nerve injury, migrate into the injury area, 
and regulate axonal regeneration. Migration of Schwann cells 
toward the leading edge of regenerating peripheral axons functions 
to guide axonal regeneration [2, 82, 83]. Migratory responses of 
astrocytes after SCI restrict inflammation and preserve tissue 
function, and thus contributing to successful axonal regeneration 
as myelinated fibers are spared [78, 84]. Moreover, recent studies 
suggest that both astrocytes and Schwann cells are involved in 
synapse formation [85, 86].

We found that Cdc2, a prototypical cell cycle protein kinase, 
was strongly but transiently induced from Schwann cells and that 
phosphorylation of caldesmone by Cdc2 was linked to Schwann 
cell migration and axonal regeneration in the sciatic nerve [83]. 
Furthermore, vimentin phosphorylation by Cdc2 in Schwann 
cells was involved in axonal regeneration [87]. Interestingly, 
induction of Cdc2 and vimentin phosphorylation was similarly 

found in primary astrocytes, which were prepared from spinal 
cord tissue given injury and subjected to long-term culture (LTC) 
for a week [88]. These LTC astrocytes, but not short-term cultured 
astrocytes, appeared to facilitate neurite outgrowth of co-cultured 
DRG neurons, suggesting that the Cdc2 pathway may play an 
important role in determining phenotypic expression of astrocytes 
such that astrocytes provide permissive environments for axonal 
regeneration following SCI. 

Our studies further show that the Cdc2-vimentin pathway is 
linked to integrin activation. Schwann cells prepared from pre-
injured sciatic nerve and LTC astrocytes revealed induction 
of integrin protein (β1 integrin in Schwann cells versus β3 in 
astrocytes), and integrin activation in these cells were related to 
enhanced neurite outgrowth of co-cultured neurons [88]. Since 
integrin receptors interact with extracellular proteins such as 
laminin and fibronectin [89], Cdc2 activity may play a part in 
mediating intercellular communication between glial cells and 
axons undergoing regeneration (Fig. 1). 

It should, however, be noted that our studies on Cdc2 activity 
mentioned above used in vitro cultured cells. In regenerating 
peripheral nerves, the endoneurium wraps around radial surfaces 
of Schwann cells through the interaction between integrin 
and laminin [24]. In the early stages of PNS axon regeneration, 
Schwann cells interact with regenerating axons at the leading edge, 
but whether the interaction between Schwann cells and growth 
cones involves integrin signaling remains to be explored. Unlike 
Schwann cells in the injured peripheral nerve, reactive astrocytes 
after SCI do not form basal lamina structures. Integrin function 
of astrocytes has been shown in polarized interaction with ECM 
proteins during the wound healing process [90, 91] and cerebral 
microvasculature [92]. Interestingly, loss of β1 integrin in reactive 
astrocytes facilitates astrocyte migration and contributes to glial 
scar compaction [84]. It is uncertain at this moment whether LTC 
astrocytes may provide a permissive environment for spinal axon 
regeneration after lesion. A pattern of interaction of LTC astrocytes 
with spinal axons may be examined after the implantation of LTC 
astrocytes into the injury cavity. 

CONCLUSION

A clear understanding of the role of glial cells, specifically 
Schwann cells of the PNS and astrocytes of the CNS, in axonal 
regeneration is critical for establishing a baseline intervention 
toward improving functional recovery following neural injury. For 
instance, successful PNS axon regeneration is largely attributed 
to Schwann cell response via proliferation, migration, and 
remyelination. Further, reactive astrocytes are the most abundant 
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cell type found in the CNS after injury and have been regarded as 
detrimental toward successful CNS axon regeneration. However, 
emerging evidence implicates its dual role in regulation of axonal 
regeneration. Considering the heterogeneity of astrocyte cell types 
and varied biochemical and pathophysiological properties [45, 
47], the diverse responsiveness of different types of astrocytes is 
not surprising. In our recent study, reactive astrocytes revealed 
phenotypic expression in terms of increased phosphorylation by 
Cdc2 and integrin activation, which are positively associated with 
facilitated neurite outgrowth of co-cultured neurons. Evidently, 
further studies to better understand the roles of astrocytes and 
compare the common features shared with Schwann cells may 
provide insight on how to overcome regenerative response 
obstacles that contribute to poor functional recovery.
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