ELSEVIER

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Relative abundances of benthic foraminifera in response to total organic carbon in sediments: Data from European intertidal areas and transitional waters



Vincent M.P. Bouchet<sup>a,\*</sup>, Fabrizio Frontalini<sup>b</sup>, Fabio Francescangeli<sup>c</sup>, Pierre-Guy Sauriau<sup>d</sup>, Emmanuelle Geslin<sup>e</sup>,

Maria Virginia Alves Martins<sup>f,g</sup>, Ahuva Almogi-Labin<sup>h</sup>, Simona Avnaim-Katav<sup>i</sup>, Letizia Di Bella<sup>j</sup>, Alejandro Cearreta<sup>k</sup>, Rodolfo Coccioni<sup>b</sup>, Ashleigh Costelloe<sup>1</sup>, Margarita D. Dimiza<sup>m</sup>, Luciana Ferraro<sup>n</sup>, Kristin Haynert<sup>o</sup>, Michael Martínez-Colón<sup>p,q</sup>, Romana Melis<sup>r</sup>, Magali Schweizer<sup>e</sup>, Maria V. Triantaphyllou<sup>m</sup>, Akira Tsujimoto<sup>s</sup>, Brent Wilson<sup>t</sup>, Eric Armynot du Châtelet<sup>u</sup>

<sup>b</sup> University Urbino Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino "Carlo Bo", Campus Scientifico Enrico Mattei, Località Crocicchia, 61029, Urbino, Italy

- <sup>c</sup> University of Hamburg, Institute for Geology, Centre for Earth System Research and Sustainability, Bundesstraße, 5520146 Hamburg, Germany
- <sup>d</sup> La Rochelle Université, CNRS, Littoral Environnement et Sociétés, UMR 7266 LIENSs, 2 rue Olympe de Gouges, 17000 La Rochelle, France
- <sup>e</sup> UMR CNRS 6112 LPG-BIAF, University of Angers, 2 Bd Lavoisier, Angers Cedex 1, 49045, France

<sup>f</sup>Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524 - Lab 1006 - Maracanã, Rio de Janeiro 20550-900, Brazil

- <sup>g</sup> Aveiro University, Department of Geosciences, GeoBioTec, Campus de Santiago, 3810-197 Aveiro, Portugal
- <sup>h</sup> Geological Survey of Israel, Yesha'yahu Leibowitz 32, Jerusalem 9692100, Israel
- <sup>i</sup> Israel Oceanographic and Limnological Research, Haifa, 3108001, Israel
- <sup>j</sup>Dipartimento di Scienze Della Terra, Sapienza Università di Roma, Italy

<sup>k</sup> Departamento de Geología, Universidad del País Vasco UPV/EHU, Apartado 644, 48080 Bilbao, Spain

<sup>1</sup>BioStratigraphic Associates (Trinidad) Limited, 113 Frederick Settlement, Old Southern Main Rd., Caroni, Trinidad and Tobago

<sup>m</sup>National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Panepistimioupolis, 15784, Athens, Greece

<sup>n</sup> CNR, Institute of Marine Sciences, National Research Council of Italy, Calata Porta di Massa, Naples, Italy

DOI of original article: 10.1016/j.marpolbul.2021.112071

\* Corresponding author.

E-mail address: vincent.bouchet@univ-lille.fr (V.M.P. Bouchet).

https://doi.org/10.1016/j.dib.2021.106920

<sup>&</sup>lt;sup>a</sup> University Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F 59000, Lille, France

<sup>2352-3409/© 2021</sup> The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

<sup>o</sup> University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Göttingen

<sup>p</sup> Florida A&M University, School of the Environment, FL, USA

<sup>9</sup>FSH Science Research Center, RM306B, 1515 South MLK Blvd, Tallahassee, FL 32307, USA

<sup>r</sup> Department of Mathematics and Geosciences, 34127 Trieste, Italy

<sup>s</sup> Faculty of Education, Shimane University, 1060 Nishikawatsucho, Matsue, Shimane 690-8504, Japan

<sup>t</sup>Cedar Lodge, Maenygroes, Cei Newydd, Ceredigion, Wales SA45 9RL, UK

<sup>u</sup> University Lille, CNRS, University Littoral Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 59000, Lille, France

#### ARTICLE INFO

Article history: Received 21 January 2021 Revised 24 February 2021 Accepted 25 February 2021 Available online 27 February 2021

#### Keywords:

Living Benthic foraminifera Relative abundances Total organic carbon Intertidal areas Transitional waters English channel European atlantic coast Mediterranean sea

### ABSTRACT

We gathered total organic carbon (%) and relative abundances of benthic foraminifera in intertidal areas and transitional waters from the English Channel/European Atlantic Coast (587 samples) and the Mediterranean Sea (301 samples) regions from published and unpublished datasets. This database allowed to calculate total organic carbon optimum and tolerance range of benthic foraminifera in order to assign them to ecological groups of sensitivity. Optima and tolerance range were obtained by mean of the weightedaveraging method. The data are related to the research article titled "Indicative value of benthic foraminifera for biomonitoring: assignment to ecological groups of sensitivity to total organic carbon of species from European intertidal areas and transitional waters" [1].

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

### Specifications Table

| Subject                        | Ecology                                                                          |
|--------------------------------|----------------------------------------------------------------------------------|
| Specific subject area          | Environmental Monitoring                                                         |
| Type of data                   | Tables and Figures                                                               |
| How data were acquired         | Data available with peer-reviewed journal articles and unpublished data.         |
|                                | The weighted-averaging (WA) optimum and tolerance approach was used [2,3]        |
|                                | using the optimos.prime R package [4]; as well as the AMBI formula [5].          |
|                                | Statistics were done with the statistical language R version 3.6.3 [6].          |
| Data format                    | Primary data                                                                     |
|                                | Secondary data                                                                   |
| Parameters for data collection | The aim was to collect data on total organic carbon (TOC) and benthic            |
|                                | foraminifera in order to classify benthic foraminifera in ecological groups of   |
|                                | sensitivity to TOC [5]. Studies had to fulfill the following criteria: 1) coming |
|                                | from the English Channel, the French, Spanish and Portuguese Atlantic coasts     |
|                                | and the Mediterranean Sea, 2) sampled from intertidal areas and transitional     |
|                                | waters (TWs), 3) based on living foraminifera, 4) TOC sample must come from      |
|                                | the same site at the same date as foraminiferal sample, 5) only samples          |
|                                | containing >50 living stained specimens were considered.                         |
|                                | If only organic matter content (%) was provided, it was converted to TOC using   |
|                                | the following formula: LOI (loss-on-ignition) = $\sim 2$ TOC [7,8].              |
|                                | When foraminiferal raw counts or abundances were available, there were           |
|                                | transformed to relative abundances.                                              |
| Description of data collection | Primary data - Data from unpublished studies (studies 1, 3, 6, 7, 8, 9, 10) were |
| -                              | provided by their authors. When the raw data were not published with the         |
|                                | peer-reviewed publication (studies 13, 33 and 41), the authors were contacted    |
|                                | to provide us with the raw data.                                                 |
|                                | -                                                                                |

|                          | Secondary data – When available, relative abundances data were downloaded from online sources where the study was published. When only raw counts or abundances were published, foraminiferal data were transformed to relative abundances. |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | We standardized species names according to the World Registry of Marine<br>Species (WoRMS). All data processing and analysis was done in the                                                                                                |
| Data accuracy location   | open-source sortware R.                                                                                                                                                                                                                     |
| Data source location     | Secondary data sources: The full list of data sources is available at                                                                                                                                                                       |
| Data accossibility       | The database is available on Mondeley, Poushet Vincenty Frontalini, Fabrizie                                                                                                                                                                |
| Data accessibility       | Francoscangeli Fabio: Sauriau Bierro Cuu: Coslin Emmanuello: Martins                                                                                                                                                                        |
|                          | Virginia: Almogi Labin, Abuya: Aunaim Katay, Gestili, Elilindiluelle, Martilis,                                                                                                                                                             |
|                          | Vilginia, Alinogi-Labin, Anuva, Avnanii-Kalav, Siniona, Di Dena, Lenzia,                                                                                                                                                                    |
|                          | Centrela, Alejandro, Coccioni, Rodono, Costenoe, Asineign, Diniza, Malgania,                                                                                                                                                                |
|                          | Felialo, Lucialia, Haynell, Klistili, Maltinez-Cololi, Michael, Melis, Kollialia,                                                                                                                                                           |
|                          | Armunot du Châtalat Eric (2021) "Living foraminifora relative abundances and                                                                                                                                                                |
|                          | Annyhot du Chalelet, Elic (2021), "Living foranininera relative abundances and                                                                                                                                                              |
|                          | Mondalay Data V1 http://dv.doi.org/10.17622/stifr0yuyg1                                                                                                                                                                                     |
|                          | http://dx.doi.org/10.17622/stjff9XVXg.1                                                                                                                                                                                                     |
| Polated recearch article | IIII.p://dx.doi.org/10.17632/StJII9XVXg.1                                                                                                                                                                                                   |
| Related research article | V.M.P. DOUCHEL, F. FIOHIAIHH, F. FIANCESCHIGEH, PG. Sauliau, E. Geshin, M.V.A.                                                                                                                                                              |
|                          | Mattinis, A. Alliogi-Labili, S. Avilaini-Kaldy, L. Di Della, A. Cedifeld, K. Coccolin,                                                                                                                                                      |
|                          | A. Costelloe, M.D. Dilliza, L. Fellalo, K. Hayliett, M. Maltillez-Cololi, K. Melis,                                                                                                                                                         |
|                          | W. Schweizer, W.V. manaphynou, A. Isujiniolo, B. Wilson, E. Annyhol uu                                                                                                                                                                      |
|                          | Chatelet, indicative value of benchic foranithiera for biomonitoring:                                                                                                                                                                       |
|                          | from European intertidal areas and transitional waters. Mar. Dell. Bull. 164                                                                                                                                                                |
|                          | (2021) 112071 https://doi.org/10.1016/j.marpolbul.2021.112071                                                                                                                                                                               |
|                          | (2021) 1120/1. https://doi.org/10.1010/1.11dfD01D01.2021.1120/1                                                                                                                                                                             |

# Value of the Data

- The data of relative abundances of living benthic foraminifera in European intertidal areas and transitional waters allows assessing the response of the species to total organic carbon contained in the sediment over a large geographical scale.
- The assignment of benthic foraminiferal species to ecological groups of sensitivity to total organic carbon have further implication for environmental monitoring.
- In the present study database, foraminiferal species names and data format were standardised to species concept from the World Register of Marine Species and to relative abundances, respectively.
- These data might be re-used to further assess and improve our understanding of the biogeographical distribution patterns of benthic foraminifera in European intertidal areas and transitional waters over a large latitudinal range.

### 1. Data Description

The present study database (available in Mendeley: http://dx.doi.org/10.17632/stjfr9xvxg.1), composed of primary and secondary data, summarizes the total organic carbon content in sediment (%) and the relative abundances (%) of benthic foraminiferal species in European intertidal areas and transitional waters (French coast of the English Channel, European Atlantic Coast and the Mediterranean Sea) extracted from 35 primary peer-reviewed articles and seven unpublished grey literature that met the inclusion criteria for the related meta-analysis [1] (see meta-data in Table 1). In the English Channel/European Atlantic Coast, selected study sites included eight classical estuaries, four coastal freshwater/brackish water plumes, two artificial water bodies and two Rias (Fig. 1; see definition of each body type in Table 1 in [1] according to [9,10]). In the Mediterranean Sea, one delta, six lentic non-tidal lagoons, four lentic tidal lagoons, one artificial water body, seven semi-enclosed bays and one classical estuary were considered (Fig. 1).

This database was built to assign benthic foraminiferal species to ecological groups of sensitivity to total organic carbon (see [1] for more details). Because of the particular characteristics of foraminiferal habitats and communities, we decided to present the database split in two: one for the English Channel/European Atlantic and one for the Mediterranean region. The overall aim of this paper is to provide foraminiferal ecologists with a ready-to-use database detailing foraminiferal species relative abundances and total organic content (%) in the studied sampling sites to be used for ecological, biogeographical and environmental monitoring purposes.

#### Table 1

Meta-data of the different selected studies. Full details of primary and secondary data sources are available at https: //data.mendeley.com/datasets/stjfr9xvxg/1.

|   |         |                 |          |                            | Related                                 | Related Total |                                                                                       |                            |                    |                                        |                 |                                      | Data available                    |                   |                                                |
|---|---------|-----------------|----------|----------------------------|-----------------------------------------|---------------|---------------------------------------------------------------------------------------|----------------------------|--------------------|----------------------------------------|-----------------|--------------------------------------|-----------------------------------|-------------------|------------------------------------------------|
|   |         |                 |          | Local study                | foraminiferal                           | Organic       | Sample code                                                                           | Tidal                      | Year of            | Time of the                            | Foram size      |                                      | with original                     | Sediment          | Sampling                                       |
|   | Dataset | Region          | Country  | area                       | study                                   | Carbon study  | description                                                                           | condition                  | sampling           | year                                   | fraction        | TOC method                           | publication                       | layer             | device                                         |
| _ | 1       | English Channel | France   | Grand-Fort                 | Francescangeli                          | same          | A+J-O+F: April, June,                                                                 | Intertidal                 | 2014-2015          | 4 seasons                              | > 63 µm         | CHN                                  | Unpublished                       | 0-1 cm            | Corer                                          |
|   |         |                 |          | Philippe                   | (2017)-PhD thesis                       |               | October, February;<br>FP: Fort-Philippe;<br>1-2-3: replicates                         |                            |                    |                                        |                 | Elemental<br>analyser                |                                   |                   | (diameter:<br>85 μm)                           |
|   | 2       | English Channel | France   | Liane estuary              | Armynot du<br>Châtelet et al.           | same          | BL: Boulogne sur<br>Mer; a-b-c:                                                       | Intertidal and<br>subtidal | 2008               | April                                  | $> 63 \ \mu m$  | CHN<br>Elemental                     | Yes, relative<br>abundances       | 0-1 cm            | Van Veen<br>grab                               |
|   |         |                 |          |                            | (2011)                                  |               | replicates                                                                            |                            |                    |                                        |                 | analyser                             |                                   |                   |                                                |
|   | 3       | English Channel | France   | Boulogne sur<br>Mer Harbor | Francescangeli<br>(2017)-PhD thesis     | same          | A-J-O-F: April, June,<br>October, February;<br>RI -                                   | Intertidal                 | 2014-2015          | 4 seasons                              | > 63 µm         | CHN<br>Elemental<br>analyser         | Unpublished                       | 0-1 cm            | Corer<br>(diameter:<br>85 um)                  |
|   |         |                 |          |                            |                                         |               | Boulogne-sur-Mer;<br>1-2-3: replicates                                                |                            |                    |                                        |                 |                                      |                                   |                   | ,                                              |
|   | 4       | English Channel | France   | Canche<br>estuary          | Francescangeli<br>et al. (2017)         | same          | T: transect; P:<br>sampling point;                                                    | Intertidal                 | 2012-2013-<br>2014 | September                              | > 63 µm         | CHN<br>Elemental                     | Yes, Raw<br>counts                | 0-1 cm            | Corer<br>(diameter:                            |
|   | 5       | English Channel | France   | Canche                     | Armynot du                              | same          | A,B,C: replicates<br>CE: Canche estuary                                               | Intertidal                 | 2007 (CE)          | April                                  | > 63 µm         | analyser<br>CHN                      | Yes, relative                     | 0-1 cm (CE)       | 85 µm)<br>Van Veen                             |
|   |         |                 |          | estuary                    | Châtelet et al.<br>(2018)               |               | transept cross shore;<br>D: samples in a                                              |                            | and 2017 (D)       |                                        |                 | Elemental<br>analyser                | abundances                        | and 0-2 cm<br>(D) | grab (CE),<br>scraping (D)                     |
|   | 6       | English Channel | France   | Canche                     | Francescangeli                          | esmo          | square meter                                                                          | Intertidal                 | 2014-2015          | A seasons                              | ~ 63 um         | CHN                                  | Unnublished                       | 0-1 cm            | Corer                                          |
|   |         | Lightin Channel | THINC    | estuary                    | (2017)-PhD thesis                       | Jan C         | October, February;<br>CA: Canche Estuaryr;                                            | mertida                    | 2014-2015          | 4 10000                                | » өз µш         | Elemental<br>analyser                | onpublished                       | 0-1 cm            | (diameter:<br>85 μm)                           |
|   | 7       | English Channel | France   | Authie                     | Francescangeli                          | same          | 1-2-3: replicates<br>A-I-O-F: April June                                              | Intertidal                 | 2014-2015          | 4 seasons                              | > 63 um         | CHN                                  | Unpublished                       | 0-1 cm            | Corer                                          |
|   |         |                 |          | estuary                    | (2017)-PhD thesis                       |               | October, February;<br>AU: Authie Esturie;                                             |                            |                    |                                        |                 | Elemental<br>analyser                |                                   |                   | (diameter:<br>85 μm)                           |
|   | 8       | English Channel | France   | Somme                      | Francescanzeli                          | same          | 1–2–3: replicates<br>A-I–O–F: April. June.                                            | Intertidal                 | 2014-2015          | 4 seasons                              | > 63 um         | CHN                                  | Unpublished                       | 0-1 cm            | Corer                                          |
|   |         |                 |          | estuary                    | (2017)-PhD thesis                       |               | October, February;<br>SO: Somme Estuary;                                              |                            |                    |                                        |                 | Elemental<br>analyser                |                                   |                   | (diameter:<br>85 μm)                           |
|   | 9       | English Channel | France   | Bay of Veys                | Bouchet                                 | same          | 1-2-3: replicates<br>Ref: reference station                                           | Intertidal                 | 2006               | October                                | > 63 um         | CHN                                  | Unpublished                       | 0-1 cm            | Spoon (pseu-                                   |
|   |         |                 |          |                            | (unpublished)                           |               | outside the influence<br>of the oyster farming                                        |                            |                    |                                        |                 | Elemental<br>analyser                |                                   |                   | doreplication<br>method)                       |
|   |         |                 |          |                            |                                         |               | area; Transect from<br>oyster farming area<br>(0 m) to 50, 100,                       |                            |                    |                                        |                 |                                      |                                   |                   |                                                |
|   |         |                 |          |                            |                                         |               | 200 and 400 m away                                                                    |                            |                    |                                        |                 |                                      |                                   |                   |                                                |
|   | 10      | Atlantic        | France   | Crouesty<br>harbor         | Armynot du<br>Châtelet<br>(2003)-PhD    | same          | Numbers: stations                                                                     | Subtidal                   | 2002               | July                                   | > 63 µm         | LOI                                  | Unpublished                       | 0-1 cm            | Van Veen<br>grab                               |
|   | 11      | Atlantic        | France   | Loire estuary              | Mojtahid et al.<br>(2016)               | same          | A-B-L: outer<br>estuary-lower inner                                                   | Intertidal and<br>Subtidal | 2012               | September                              | $>$ 150 $\mu m$ | LECO-CS200 <sup>®</sup><br>analyser  | Yes,<br>abundances                | 0-1 cm            | Subtidal: Van<br>Veen grab;                    |
|   |         |                 |          |                            |                                         |               | estuary; according to<br>station number                                               |                            |                    |                                        |                 |                                      |                                   |                   | scraping off                                   |
|   | 12      | Atlantic        | France   | Aiguillon bay              | Armynot du<br>Châtelet et al.<br>(2009) | same          | According to station<br>number                                                        | Intertidal                 | 2001               | October                                | > 63 µm         | LOI                                  | Partly,<br>relative<br>abundances | 0-1 cm            | Van Veen<br>grab                               |
|   | 13      | Atlantic        | France   | Aiguillon                  | Bouchet et al.                          | same          | C: control station                                                                    | Intertidal                 | 2004               | October, 29                            | $> 63 \ \mu m$  | LOI                                  | No                                | 0-1 cm            | Corer                                          |
|   |         |                 |          | Bay/Ré Island              | (2009)                                  |               | outside oyster farm;<br>OZ: in the oyster<br>zone; OFZ: oyster<br>free zone under the |                            |                    |                                        |                 |                                      |                                   |                   | (diameter:<br>95 μm)                           |
|   |         |                 |          |                            |                                         |               | influence of the<br>oyster farming area                                               |                            |                    |                                        |                 |                                      |                                   |                   |                                                |
|   | 14      | Atlantic        | France   | Ronce Perquis              | Bouchet et al.<br>(2007)                | same          | According to station<br>number                                                        | Intertidal                 | 2004               | April 22, May<br>25, June 9<br>and 22, | > 63 µm         | LOI                                  | Partly,<br>abundances             | 0-1 cm            | Spoon (pseu-<br>doreplication<br>method)       |
|   | 15      | Atlantic        | Spain    | Plentzia<br>estuary        | Cearreta et al.<br>(2002)               | same          | According to<br>sampling station                                                      | Intertidal                 | 1997               | August 4<br>Sping and<br>Autumn        | > 63 µm         | Walkey<br>method                     | Partly,<br>relative               | 0-1 cm            | Corer<br>(diameter:                            |
|   | 16      | Atlantic        | Spain    | Ria de Vigo                | Diz et al. (2006)                       | same          | name<br>According to station<br>number and month                                      | Subtidal                   | 1998               | January and<br>September               | > 63 µm         | LECO-CS200 <sup>10</sup><br>analyser | abundances<br>Yes, raw<br>counts  | 0-1 cm            | not specified)<br>Box corer                    |
|   | 17      | Atlantic        | Portugal | Ria de Aveiro              | Martins et al.<br>(2015)                | same          | of sampling<br>According to station<br>number                                         | Subtidal                   | 2011               | Summer                                 | > 63 µm         | LOI                                  | Yes, relative<br>abundances       | 0-1/2 cm          | Adapted Petit<br>Ponnar                        |
|   | 18      | Atlantic        | Portugal | Ria de Aveiro              | Martins et al.                          | same          | According to station                                                                  | Subtidal                   | 2006-2007          | Spring/                                | > 63 µm         | LOI                                  | Yes, relative                     | 0-2 cm            | sampler (with<br>two openings<br>Adapted Petit |
|   |         |                 |          |                            | (2013)                                  |               | number                                                                                |                            |                    | Summer                                 |                 |                                      | abundances                        |                   | Ponnar<br>sampler (with                        |
|   | 19      | Atlantic        | Portugal | Ria de Aveiro              | Martins et al.<br>(2010)                | same          | According to station<br>number                                                        | Subtidal                   | 2006               | March and<br>April                     | > 63 µm         | LOI                                  | Yes, relative<br>abundances       | 0-5 cm            | Adapted Petit<br>Ponnar<br>sampler (with       |

(continued on next page)

|--|

| base         control         control         decima         main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |         |               |          |                | Related             | Related Total          |                      |               |              |                               |                 |                            | Data available  |           |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|---------------|----------|----------------|---------------------|------------------------|----------------------|---------------|--------------|-------------------------------|-----------------|----------------------------|-----------------|-----------|-----------------|
| base         base <t< th=""><th></th><th></th><th></th><th></th><th>Local study</th><th>foraminiferal</th><th>Organic</th><th>Sample code</th><th>Tidal</th><th>Year of</th><th>Time of the</th><th>Foram size</th><th></th><th>with original</th><th>Sediment</th><th>Sampling</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |         |               |          | Local study    | foraminiferal       | Organic                | Sample code          | Tidal         | Year of      | Time of the                   | Foram size      |                            | with original   | Sediment  | Sampling        |
| D         Marker         Name         Image         Diam         Marker with being waters         Marker with beind waters         Marker with beind wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ | Dataset | Region        | Country  | area           | study               | Carbon study           | description          | condition     | sampling     | year                          | Iraction        | TOC method                 | publication     | layer     | device          |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 20      | Atlantic      | Portugal | Ria de Aveiro  | Martins et al.      | same                   | C1-C8: stations      | Subtidal      | 2009 to 2011 | Autumn, early                 | > 63 µm         | LOI                        | Yes, relative   | 0-1 cm    | Box-corer       |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |         |               |          |                | (2016)              |                        | number; 1-4:         |               |              | winter, early                 |                 |                            | abundances      |           |                 |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |         |               |          |                |                     |                        | Sampling season (1:  |               |              | spring, late                  |                 |                            |                 |           |                 |
| 1         100         100         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |         |               |          |                |                     |                        | Autumn, 2: eany      |               |              | winte                         |                 |                            |                 |           |                 |
| Image         Processes         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |         |               |          |                |                     |                        | spring A: late       |               |              |                               |                 |                            |                 |           |                 |
| 1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>winter)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |         |               |          |                |                     |                        | winter)              |               |              |                               |                 |                            |                 |           |                 |
| Image         Image <t< td=""><td></td><td>21</td><td>Atlantic</td><td>Portugal</td><td>Guadiana</td><td>Camacho et al</td><td>same</td><td>According to station</td><td>Intertidal</td><td>2010</td><td>Winter and</td><td>&gt; 63 um</td><td>CHN</td><td>Ves relative</td><td>0-1 cm</td><td>Corer</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 21      | Atlantic      | Portugal | Guadiana       | Camacho et al       | same                   | According to station | Intertidal    | 2010         | Winter and                    | > 63 um         | CHN                        | Ves relative    | 0-1 cm    | Corer           |
| Andres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |         |               |          | estuary        | (2014)              |                        | name and season of   |               |              | Summer                        |                 | Elemental                  | abundances      |           | (diameter:      |
| 1     National     National <td></td> <td></td> <td></td> <td></td> <td>,</td> <td> ,</td> <td></td> <td>sampling</td> <td></td> <td></td> <td></td> <td></td> <td>analyser</td> <td></td> <td></td> <td>50 um)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |         |               |          | ,              | ,                   |                        | sampling             |               |              |                               |                 | analyser                   |                 |           | 50 um)          |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 22      | Mediterranean | Spain    | Ebro delta     | Benito et al.       | same                   | According to station | Intertidal    | 2012-2013    | November.                     | > 63 um         | LOI                        | Yes, relative   | 0-1 cm    | Corer           |
| Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |         | Sea           |          |                | (2016)              |                        | number and date of   |               |              | April and                     |                 |                            | abundances      |           | (diameter:      |
| 1     Matemate     Name     Name     Matemate     Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |         |               |          |                |                     |                        | sampling             |               |              | August                        |                 |                            |                 |           | 57 μm)          |
| 9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9 </td <td></td> <td>23</td> <td>Mediterranean</td> <td>France</td> <td>Bagès-Sigean</td> <td>Foster et al.</td> <td>same</td> <td>According to station</td> <td>Subtidal</td> <td>2010</td> <td>September</td> <td>&gt; 125 um</td> <td>CHN</td> <td>Yes, relative</td> <td>0-1 cm</td> <td>Shallow-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 23      | Mediterranean | France   | Bagès-Sigean   | Foster et al.       | same                   | According to station | Subtidal      | 2010         | September                     | > 125 um        | CHN                        | Yes, relative   | 0-1 cm    | Shallow-        |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |         | Sea           |          | lagoon         | (2012)              |                        | number               |               |              |                               |                 | Elemental                  | abundances      |           | water surface   |
| Amound Participant         Amound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |         |               |          | 0              |                     |                        |                      |               |              |                               |                 | analyser                   |                 |           | sediment        |
| 1     Matement     Matement <td></td> <td>sampler</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |         |               |          |                |                     |                        |                      |               |              |                               |                 |                            |                 |           | sampler         |
| Image         Sat         Made         Cat         Made         Cat         Made         Made <thm< td=""><td></td><td>24</td><td>Mediterranean</td><td>Italy</td><td>Sardinia</td><td>Schintu et al.</td><td>same</td><td>According to</td><td>Subtidal</td><td>2010 (PT and</td><td>May (PT and</td><td>&gt; 63 µm</td><td>LOI</td><td>Yes, relative</td><td>0-3 cm</td><td>Van Veen</td></thm<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | 24      | Mediterranean | Italy    | Sardinia       | Schintu et al.      | same                   | According to         | Subtidal      | 2010 (PT and | May (PT and                   | > 63 µm         | LOI                        | Yes, relative   | 0-3 cm    | Van Veen        |
| Image: state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |         | Sea           |          | island         | (2015)              |                        | sampling zone (PT:   |               | PS) and 2011 | PS) and June                  |                 |                            | abundances      |           | grab            |
| 1         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |         |               |          |                |                     |                        | Porto Torres, PS:    |               | (LM)         | (LM)                          |                 |                            |                 |           |                 |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |         |               |          |                |                     |                        | Portoscuso, LM: La   |               |              |                               |                 |                            |                 |           |                 |
| 1         Normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |         |               |          |                |                     |                        | Maddalena            |               |              |                               |                 |                            |                 |           |                 |
| 1         5         5         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |         |               |          |                |                     |                        | Archipelago) and     |               |              |                               |                 |                            |                 |           |                 |
| 1         Mademian         Martial<br>(000)         Martial<br>(0000)         Martial<br>(000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |         |               |          |                |                     |                        | station number       |               |              |                               |                 |                            |                 |           |                 |
| jok     jok </td <td></td> <td>25</td> <td>Mediterranean</td> <td>Italy</td> <td>Santa Gilla</td> <td>Frontalini et al.</td> <td>Aztori</td> <td>According to station</td> <td>Subtidal</td> <td>2006</td> <td>October</td> <td>&gt; 63 µm</td> <td>CHN</td> <td>Yes, relative</td> <td>0-2 cm</td> <td>Van Veen</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 25      | Mediterranean | Italy    | Santa Gilla    | Frontalini et al.   | Aztori                 | According to station | Subtidal      | 2006         | October                       | > 63 µm         | CHN                        | Yes, relative   | 0-2 cm    | Van Veen        |
| 1     Mathemate     Market     Parte     Market     Parte     Market     Parte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |         | Sea           |          |                | (2009)              | (2013)-PhD             | number               |               |              |                               |                 | Elemental                  | abundances      |           | grab            |
| A         Name         Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 20      | M             | ter be   | 0.1            | Provide the task of | thesis<br>Grouphically | A                    | Coloridat     | 2002         | 0                             | <b>63</b>       | anaiyser                   | Mar and shares  |           | Mar Mara        |
| xa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 20      | Mediterranean | italy    | Orbetello      | (2010)              | specchium              | According to station | Subtidai      | 2003         | October                       | > 63 µm         | CHIN                       | res, relative   | 0-2 cm    | van veen        |
| 1       Mader and a set in the set i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |         | 564           |          |                | (2010)              | et al. (2010)          | number               |               |              |                               |                 | Elementai                  | abundances      |           | grab            |
| J.         Generation         Participant         Partipant         Paripant         Paripant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 77      | Maditamanaan  | Italu    | Naples hashes  | Exercises of al     | c2000                  | According to         | Subtidal      | ND           | ND                            | 175             | CUN                        | Most collations | 0.30.000  | Undeanlie       |
| Arr         Balayer         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 27      | Sea           | italy    | Naples failed  | (2006)              | same                   | sampling zone (DI -  | Subtidat      | N.D.         | N.D.                          | > 125 µm        | Elemental                  | abundances      | 0=20 Cm   | vibro-corer     |
| Image: Participant service of the service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |         | Jea           |          |                | (2000)              |                        | Levante dock DC:     |               |              |                               |                 | analwar                    | abundances      |           | (diameter:      |
| Interaction         Interaction <thinteraction< th=""> <thinteraction< th=""></thinteraction<></thinteraction<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |         |               |          |                |                     |                        | Granili dock) and    |               |              |                               |                 | unaryser                   |                 |           | (uninecci)      |
| 1     Median with with with with with with with with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |         |               |          |                |                     |                        | station number       |               |              |                               |                 |                            |                 |           | ,,              |
| is       join       join      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 28      | Mediterranean | Italy    | Varano lake    | Frontalini et al.   | same                   | According to station | Subtidal      | 2012         | March                         | > 125 um        | CHN                        | Yes, relative   | 0-2 cm    | Van Veen        |
| And and any and any and any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |         | Sea           | ,        |                | (2013)              |                        | number               |               |              |                               |                 | Elemental                  | abundances      |           | grab            |
| 1     Median     Mus     Mus<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |         |               |          |                |                     |                        |                      |               |              |                               |                 | analyser                   |                 |           | 0               |
| Image: second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 29      | Mediterranean | Italy    | Lesina lagoon  | Frontalini et al.   | Borja et al.           | According to station | Subtidal      | 2004         | March                         | > 63 µm         | CHN                        | Yes, relative   | 0-2 cm    | Van Veen        |
| Partner         Barrner         Barrner <t< td=""><td></td><td></td><td>Sea</td><td></td><td></td><td>(2010)</td><td>(2011)</td><td>number</td><td></td><td></td><td></td><td></td><td>Elemental</td><td>abundances</td><td></td><td>grab</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |         | Sea           |          |                | (2010)              | (2011)                 | number               |               |              |                               |                 | Elemental                  | abundances      |           | grab            |
| 10         Mediermane         10         Vicia Lagio         Occomit p and participant set of the set of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |         |               |          |                |                     |                        |                      |               |              |                               |                 | analyser                   |                 |           |                 |
| ind     ind     ind     main     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 30      | Mediterranean | Italy    | Venice lagoon  | Coccioni et al.     | Secco et al.           | According to station | Subtidal      | 2002         | June                          | > 63 µm         | CHN                        | Yes, relative   | 0-2 cm    | Van Veen        |
| Addit ranze         Matra and bala         Mar. and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |         | Sea           |          |                | (2009)              | (2005)                 | number               |               |              |                               |                 | Elemental                  | abundances      |           | grab            |
| 11     Mediatranam     kala     Mana ad Melia     and     We Vale Register     Intribut     205     May ad July     6 July     6 July     100     Uppelshed     0 - cm     Correct (amaterial addition of addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |         |               |          |                |                     |                        |                      |               |              |                               |                 | analyser                   |                 |           |                 |
| Sol       Galo is get       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 31      | Mediterranean | Italy    | Marano and     | Melis               | same                   | VN: Valle Noghere,   | Intertidal    | 2015         | May and July                  | > 63 µm         | CHN                        | Unpublished     | 0-2 cm    | Corer           |
| <ul> <li>International control of the state of the st</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |         | Sea           |          | Grado lagoon   | (unpublished        |                        | according to station |               |              |                               |                 | Elemental                  |                 |           | (diameter:      |
| 12     Medierrane method     Genere method     Sample method     So diales from he     So field     So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |         |               |          |                | data)               |                        | number               |               |              |                               |                 | analyser                   |                 |           | 56 µm)          |
| <ul> <li>Jachi and a serie and a serie</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 32      | Mediterranean | Greece   | Saronikos gulf | Portela             | same                   | S: distance from the | Subtidal      | 2016         | February                      | > 125 µm        | CHN                        | Unpublished     | 0-1 cm    | Stainless steel |
| 3     Mediatranes     Sevent     Saves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |         | Jea           |          |                | (2017)-wise mesis   |                        | effluents            |               |              |                               |                 | analwar                    |                 |           | bux-corer       |
| Sa       Torong       Caliby       Same and second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 33      | Mediterranean | Greece   | Saronikos gulf | Dimiza et al.       | same                   | S: distance from the | Subtidal      | 2012         | February                      | > 125 um        | CHN                        | No              | 0-1 cm    | Stainless steel |
| 14         Kedierrance<br>Sa         Creep<br>(2013)-MC         Folding all<br>(2013)-MC         Creep<br>(2013)-MC         Folding all<br>(2013)-MC         Satistice<br>(2013)-MC         Satistice<br>(2014)-MC         Satistice<br>(201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |         | Sea           |          |                | (2016)              |                        | point source of the  |               |              | ,                             |                 | Elemental                  |                 |           | box-corer       |
| 1 Mediatrance       Genes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |         |               |          |                |                     |                        | effluents            |               |              |                               |                 | analyser                   |                 |           |                 |
| 36a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 34      | Mediterranean | Greece   | Evoikos gulf   | Goreija             | same                   | N: According to      | Subtidal      | 2011         | November                      | $> 125 \ \mu m$ | CHN                        | Unpublished     | 1 to 2 cm | Van Veen        |
| 35.       Rediterance scale       Rediterance scal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |         | Sea           |          |                | (2013)-MSc          |                        | station number       |               |              |                               |                 | Elemental                  |                 |           | grab            |
| 35       Medilemane forece know (2013)-Mac integrated into a coording to the solution of the solution into a coording to thin solution into a coording to the solution into a coording to thin solutin into a coording to thin s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |         |               |          |                | thesis              |                        |                      |               |              |                               |                 | analyser                   |                 |           |                 |
| Sea       Defails       analyset       equipational states       analyset       analyset       analyset         36       Mediletranzen       Turkey       Gaf of larmin       lengin et al.       same       According to station       Subtil all       202       November       > 25 g m       Nationes       Neise relative       managet         37       Mediletranzen       Ivarel       Turkey       Off of larmin       Palas-Zarithy       same       According to date       ground       202 and       November       > 5 3 m       Emental       0-4 cm       Corder       Gamerer         38       Mediletranzen       Ivarel       Rezer, Anality       same       According to date       Palas-Zarithy       Same       Netroiter       203 and       Netroiter       > 5 3 m       Emental       O-4 cm       Corder       Gamerer         38       Mediletranzen       Ivarel       Nazawa, state       Netroiter       Samerer       Netroiter       30, pm 6.       > 5 3 m       Emental       Netroiter       5 4 m       Samerer       Samerer </td <td></td> <td>35</td> <td>Mediterranean</td> <td>Greece</td> <td>Kavala bay</td> <td>Delliou</td> <td>same</td> <td>according to the</td> <td>Subtidal</td> <td>2012</td> <td>November</td> <td>&gt; 125 µm</td> <td>CHN</td> <td>Unpublished</td> <td>1 to 2 cm</td> <td>Bowser-corer</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | 35      | Mediterranean | Greece   | Kavala bay     | Delliou             | same                   | according to the     | Subtidal      | 2012         | November                      | > 125 µm        | CHN                        | Unpublished     | 1 to 2 cm | Bowser-corer    |
| Intersection         Turkey<br>Sea         Call of Lemin<br>(2006)         Same<br>(2007)         Same<br>(2007)         Same<br>(2007)         Same<br>(2007)         November<br>(2007)         Same<br>(2007)         November<br>(2007)         Same<br>(2007)         Same<br>(2007)         Same<br>(2007)         November<br>(2007)         Same<br>(2007)         November<br>(2007)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |         | Sea           |          |                | (2013)-MSc          |                        | sampled              |               |              |                               |                 | Elemental                  |                 |           |                 |
| So       So       Initial case       Regr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 36      | Mediterranean | Turkey   | Culf of Izmir  | Berrin et al        | eame                   | According to station | Subtidal      | 2002         | November                      | ~ 750 um        | analyser<br>Hach method    | Vec relative    | 0-1 cm    | Van Veen        |
| 37       Mediterranean<br>Sea       Israel       Timush pend<br>et al. (2011)       Rab- zaritsky<br>et al. (2011)       same<br>et al. (2011)       gend<br>pend<br>et al. (2011)       gend<br>pend<br>et al. (2011)       202 and<br>pend<br>pend<br>pend<br>pend<br>pend<br>pend<br>pend<br>pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |         | Sea           |          |                | (2006)              |                        | number               |               |              |                               | p               |                            | abundances      |           | grab            |
| Sea     e al. (2011)     ampline<br>(mercentrol)     water-winter,<br>inter, actions     203     and February     benefinal     counts     fidumeter:<br>(analyser)       38     Mediterranen<br>(staret     Bratel     Berzet,<br>(analyser)     main-Katav     same     Three regitates.     Inter(1a)     2012-2013     3 seasons:<br>(analyser)     > 63 µm     Elemental     counts     - 1 cm     (dumeter:<br>(analyser)       58     Mediterranen<br>(analyser)     Namuar,<br>Pole, Lehchh     same     Three regitates.     Inter(1a)     2012-2013     3 seasons:<br>(analyser)     > 63 µm     Elemental<br>(analyser)     - 1 cm     (dumeter:<br>(analyser)       59     Mediterranen<br>(analyser)     Namuar,<br>Pole, Lehchh     same     Three regitates.     Inter(1a)     2012-2013     3 seasons:<br>(analyser)     - 53 µm     Elemental<br>(analyser)     - 1 cm     (dumeter:<br>(analyser)       61     Mediterranen<br>(Gumeter:     Nome     - 1 cm     Same     Same     - 1 cm     Same     - 1 cm     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 37      | Mediterranean | Israel   | Timsah pond    | Flako-Zaritsky      | same                   | According to date of | ground        | 2002 and     | November                      | > 63 µm         | CHN                        | Yes, raw        | 0-4 cm    | Corer           |
| <ul> <li>Martin and State State</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |         | Sea           |          |                | et al. (2011)       |                        | sampling             | water-surface | 2003         | and February                  |                 | Elemental                  | counts          |           | (diameter:      |
| 1 Parking the series of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |         |               |          |                |                     |                        |                      | water         |              | -                             |                 | analyser                   |                 |           | 35 μm)          |
| Participant         Retret,<br>Name         Main-Kau<br>(a)         name         Main-Kau<br>(a)         Same         Maine (a)         Main-Kau<br>(a)         Main-Kau<br>(a)         Main-Kau<br>(a)         Main-Kau<br>(a)         Maine (a)         Maine (a) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>interaction</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |         |               |          |                |                     |                        |                      | interaction   |              |                               |                 |                            |                 |           |                 |
| 38       Medilerranen       Iszel       Rizel       Medilerranen       Intree replicates       Intree replicates       Intree replicates       Intree replicates       Solamon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |         |               |          |                |                     |                        |                      | pond          |              |                               |                 |                            |                 |           |                 |
| Sea       Name,<br>Poles, Labis,<br>ettaaries       Sample names are<br>ettaaries       Sample names are<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 38      | Mediterranean | Israel   | Betzet,        | Avnaim-Katav        | same                   | Three replicates.    | Intertidal    | 2012-2013    | 3 seasons:                    | > 63 µm         | CHN                        | Yes, raw        | 0-1 cm    | Corer           |
| Piece, Leichik Hammer, Aussie Hamm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |         | Sea           |          | Naaman,        | et al. (2016)       |                        | Sample names at      |               |              | summer: May                   |                 | Elemental                  | counts          |           | (diameter:      |
| $ \begin than the strain of t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |         |               |          | Poleg, Lachish |                     |                        | each estuary include |               |              | 30, June 6,                   |                 | analyser                   |                 |           | 54 µm)          |
| 1 + 4  there exists a set is a set is a set is set is is a set is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |         |               |          | estuaries      |                     |                        | a capital letter     |               |              | June 27, July                 |                 |                            |                 |           |                 |
| $\begin to the the the the the the the the the the$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |         |               |          |                |                     |                        | representing         |               |              | il; autumn:                   |                 |                            |                 |           |                 |
| 19     Mediteranean<br>Sea     Egyet<br>Initial<br>Barket al,<br>2018)     Bishawany<br>and<br>annexistic<br>Portuging to station<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Subtidal<br>Su |   |         |               |          |                |                     |                        | sampling season      |               |              | October                       |                 |                            |                 |           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |         |               |          |                |                     |                        | (S -summer; A -      |               |              | 25;winter:                    |                 |                            |                 |           |                 |
| 10       Mediterranen<br>Sea       Tunisia       Bierte lagon       E kank et al.<br>2018)       Same       Assee       Satistica sumber       101       Satistica sumber       63 µm       LECO - C5200 <sup>®</sup> Yes, relative<br>abundances       9-1 cm       Gats         10       Mediterranen       Tunisia       Bigeta beta of<br>abundances       Satistica sumber       2014       June       >63 µm       LECO - C5200 <sup>®</sup> Yes, relative<br>abundances       0-1 cm       Gats         10       Sea       Tunisia       Bigeta beta of<br>abundances       Satistica subtidat       2014       June       >63 µm       LECO - C5200 <sup>®</sup> Yes, relative<br>abundances       0-1 cm       Gats         11       Mediterranen<br>Sea       Tunisia       Bierte lagon       El katob et al.<br>(2018)       same       According to station<br>member       Satistica       2014       June       >63 µm       LECO - 5200 <sup>®</sup> Yes, relative<br>abundances       0-1 cm       Gats         12       Mediterranen<br>Sea       Tunisia       Monastir by mark et al.       same       According to station<br>member       Satistica       2015       Agaust       >125 µm       Meller - 100       0-1 cm       Scaping         14       Mediterranen<br>Sea       Tunisia       Bizerte Joo       Same       Satistica       2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |         |               |          |                |                     |                        | autumn;W- winter;    |               |              | January 1/<br>(chosthy after- |                 |                            |                 |           |                 |
| 4     angle     angle       E-V gradiet away     5-V     event, March     event, March       F-V gradiet away     income     event, March     event, March       1     Mediteranean     Tanisa     Barbay     Barbay     angle       2     Mediteranean     Tanisa     March     Barbay     Barbay     angle       3     Mediteranean     Tanisa     Barbay     Barbay     Saa     According to station     Sabital     2015     May and     >63 µm     LECO-CS200°     Yes, estative     0-1 cm     Grab       3     Mediteranean     Tanisa     Marbay     Barbay     Barbay     Saa     According to station     Sabital     2015     May and     >63 µm     LECO-CS200°     Yes, estative     0-1 cm     Grab       40     Mediteranean     Tunisia     Marbay     Barbay     Barbay     According to station     Sabital     2015     May     >63 µm     LECO-CS200°     Yes, estative     0-1 cm     Grab       50     Mediteranean     Tunisia     Marbay     Barbay     According to station     Sabital     2015     Asgust     >53 µm     Mandances     -1 cm     Grab       50     Mediteranean     Tunisia     Marbay     Marbay     Asmande                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |         |               |          |                |                     |                        | vv ) and numerals    |               |              | (snoruy arter                 |                 |                            |                 |           |                 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |         |               |          |                |                     |                        | E-W gradient www     |               |              | a inajor<br>winter storm      |                 |                            |                 |           |                 |
| 100 Mar Allerianesan     Egypt     Abs-Qir kay     Eskanawary<br>et al. (2011)     Same     According to station     Subtidal     2005     May and     >63 µm     LECO-CS200°     Yes, relative     0-1 cm     Gab       20     Mediterranesan     Egypt     Abs-Qir kay     Eskanawary<br>et al. (2011)     same     According to station     Subtidal     2015     May and     >63 µm     LECO-CS200°     Yes, relative     0-1 cm     Gab       30     Mediterranesan     Tunisia     Opena lagon     E Kateb et al.<br>Same     Same     According to station     Subtidal     2014     July     >63 µm     LECO-CS200°     Yes, relative     0-1 cm     Gab       40     Mediterranesan     Tunisia     Opena lagon     E Kateb et al.<br>Same     Same     According to station     Subtidal     2015     July     >63 µm     LECO-CS200°     Yes, relative     0-1 cm     Gab       41     Mediterranesan     Tunisia     Monstir bay     Damak et al.<br>Same     Same     According to station     Subtidal     2015     August     >53 µm     Multimarian     No     0-1 cm     Scaping       42     Mediterranesan     Tunisia     Bizerte lagon     Medit Marini     Same     According to station     Subtidal     2015     March     >63 µm <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>from the stream</td><td></td><td></td><td>event) March</td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |         |               |          |                |                     |                        | from the stream      |               |              | event) March                  |                 |                            |                 |           |                 |
| 39     Mediterranean<br>Sea     Egypt     Abu-Qir bay     Eikhanwany<br>et al. (2011)     same     According to station     Sabidal     2014     May and<br>November     > 63 µm     LECO-CS20°     Yes, relative<br>abundances     0-1 cm     Crab       40     Mediterranean<br>Sea     Tunisia     Djeba lagon<br>(2018)     H Katho et al.<br>(2018)     same     According to station     Sabidal     2014     July     > 63 µm     LECO-CS20°     Yes, relative<br>abundances     0-1 cm     Crab       41     Mediterranean<br>Sea     Tunisia     Monsatir bay<br>(2018)     same     According to station<br>number     Sabidal     2015     Angust     > 125 µm     MIN     Yes, relative<br>abundances     0-1 cm     Crab       42     Mediterranean<br>Sea     Tunisia     Bizerte lagon<br>et al. (2015)     same     Satidios number     Sabidal     2015     Angust     > 125 µm     Multer and<br>Mediterranean     No     0-1 cm     Scapping       42     Mediterranean<br>Sea     Tunisia     Bizerte lagon<br>et al. (2015)     same     Satidios number     Sabidal     2013     Angust     > 53 µm     Multer and<br>Mediterranean     No     0-1 cm     Scapping       42     Keinternean<br>Sea     Tunisia     Bizerte lagon<br>et al. (2015)     Satidios number     Sabidal     2013     March     > 63 µm     Perl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |         |               |          |                |                     |                        | mouth: 1 heing the   |               |              | 19                            |                 |                            |                 |           |                 |
| <ul> <li>Medilerranean Lunisia Super Lagon Monastir bay Damak et al. (2015)</li> <li>Medilerranean Tunisia Monastir bay Damak et al. (2015)</li> <li>Medilerranean Tunisia Monastir bay Damak et al. (2016)</li> <li>Medilerranean Tunisia Monastir bay Damak et al. (2016)</li> <li>Medilerranean Tunisia Monastir bay Damak et al. (2016)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2016)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2016)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2016)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2016)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2016)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2016)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2016)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2016)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2015)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2015)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2015)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2015)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2015)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2015)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2015)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2015)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2015)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2015)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2015)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al. (2015)</li> <li>Medilerranean Tunisia Bizere Lagon Monastir bay Damak et al.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |         |               |          |                |                     |                        | closet to the river  |               |              |                               |                 |                            |                 |           |                 |
| 39     Mediterranes     Fays     Abu-Gree     Eddamanase     roots inlaind out:     monter instantion     monter inlaind out:     abu-Gree     May and     > 63 µm     LEOD-CS20 <sup>6</sup> May and out:     abu-Gree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |         |               |          |                |                     |                        | mouth and 3 the      |               |              |                               |                 |                            |                 |           |                 |
| 39       Mediterranean<br>Sea       Egypt       Abu-Qit kyy<br>et al. (2011)       Edihanawan<br>et al. (2011)       sene<br>et al. (2011)       According to station<br>sampling       2005       May and<br>November       > 63 µm       LGO-CS00 <sup>6</sup><br>Monember       Ver, relative<br>abundances       0-1 cm       Gala         40       Mediterranean<br>Sea       Tunisia       Dieba kyon<br>Dieba kyon       Bi Kateb et al.<br>Dieba kyon       Same<br>According to station       Subtidal       2015       Juby       > 63 µm       CIN       Yes, relative<br>abundances       0-1 cm       Gala         40       Mediterranean<br>Sea       Tunisia       Monastir by<br>O2019       Danak et al.<br>(2019)       same       According to station<br>number       Subtidal       2015       August<br>2015       > 63 µm       CIN       Yes, relative<br>2010       0-1 cm       Scaping         42       Mediterranean<br>Sea       Tunisia       Bizerte kyon<br>et al. (2015)       New Martins<br>2015       Subtidal       2015       March       > 63 µm       Mola Cint       No       0-1 cm       Scaping         43       Mediterranean<br>Sea       Tunisia       Bizerte kyon<br>et al. (2015)       Nome       Subtidal       2015       March       > 63 µm       No       Nome       No       0-1 cm       Scaping         40       No       Nore Narrins<br>Sea <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>most inland one.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |         |               |          |                |                     |                        | most inland one.     |               |              |                               |                 |                            |                 |           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 39      | Mediterranean | Egypt    | Abu-Qir bay    | Elshanawany         | same                   | According to station | Subtidal      | 2005         | May and                       | > 63 µm         | LECO-CS200®                | Yes, relative   | 0-1 cm    | Grab            |
| 40       Mediterranean       Tunisia       Dijerla lagon       El Kateb et al.       same       According to station       Subtidal       2014       July       > 63 µm       CHN       Vex, relative       0-1 cm       Gala         40       Mediterranean       Tunisia       Dijerla lagon       El Kateb et al.       same       According to station       Subtidal       2014       July       > 63 µm       CHN       Vex, relative       0-1 cm       Gala         41       Mediterranean       Tunisia       Monastir bay       Damak et al.       same       According to station       Subtidal       2015       August       > 125 µm       Walker and       No       0-1 cm       Scaping         50a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |         | Sea           |          |                | et al. (2011)       |                        | number and date of   |               |              | November                      |                 | analyser                   | abundances      |           |                 |
| 40       Mediterranen Tunisia       Tunisia       Direha lagon       E Kateb et al.       same       According to station       Subital       2014       July       > 63 µm       OII       Ver, relative       0-1 cm       Grab         Sa       2018       number       same       According to station       Subital       2015       Acgust       > 212 µm       Multer and       No       0-1 cm       Scraping         42       Mediterranen       Tunisia       Bizerte lagon       Arew Martins       same       Stations number       Subital       2013       March       > 63 µm       OII       No       0-1 cm       Scraping         42       Mediterranen       Tunisia       Bizerte lagon       Arew Martins       same       Stations number       Subital       2013       March       > 63 µm       Perkin Himer       No       0-1 cm       Scraping         42       Mediterranen       Tunisia       Bizerte lagon       Arew Martins       same       Stations number       Subital       2013       March       > 63 µm       Perkin Himer       0-2 cm       Bis-corer         5a       et al. (2015)       et al. (2015)       Enternal       MA       MA       MA USA JF       2400 cTN       2400 cTN       2400 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |         |               |          |                |                     |                        | sampling             |               |              |                               |                 |                            |                 |           |                 |
| Sea     C208)     number     Elemental<br>analyzer       41     Mediterranean<br>Sea     Tunisia     Monastir bay<br>(2019)     Samet<br>(2019)     According to station     Subtidal     2015     August     > 215 µm     Walter and<br>Black method     No     0-1 cm     Scraping       42     Mediterranean     Tunisia     Bizerte lagon<br>(2019)     Samet     Subtidal     2013     March     > 63 µm     Perkin filmer     Ye     0-2 cm     Box-corer<br>(Waltam,       5a     et al. (2015)     et al. (2015)     et al. (2015)     Her Lagon<br>(2010)     March     > 63 µm     MA(Liss) F     Her Lagon<br>(2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 40      | Mediterranean | Tunisia  | Djerba lagoon  | El Kateb et al.     | same                   | According to station | Subtidal      | 2014         | July                          | > 63 µm         | CHN                        | Yes, relative   | 0-1 cm    | Grab            |
| 41     Mediterranean     Tunisia     Monastir bay     Damak et al.     same     According to station     Subtidal     2015     August     > > 25 µm     Walker and     No     0-1 cm     Scraping       5ca     (2019)     number     BLck.method     BLck.method       42     Mediterranean     Tunisia     Bizerle Jagon     Aves Martins     same     Sabtidal     2013     March     > 63 µm     Perkin Elmer     Sacorer       5ca     et al. (2015)     et al. (2015)     et al. (2015)     (Widtham,     2400 CIN       5ca     et al. (2015)     HAL USA) F     2400 CIN     2400 CIN     2400 CIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |         | Sea           |          |                | (2018)              |                        | number               |               |              |                               |                 | Elemental                  | abundances      |           |                 |
| *1 mrouneruneen i uunsus voj duffak et al. same According to station Sutotical 2010 August > 1/2 juin valiter and No 0-1 Ch Scripting<br>Sea (2019) number Black method<br>42 Mediterranean Tunisia Bizerte lagoon Avest Martins same Stations number Subtidal 2013 March > 63 juin Prevint Effort Yes 0-2 cm Box-cover<br>Sea et al. (2015) March 2013 March > 63 juin Prevint Effort Yes 0-2 cm Box-cover<br>MA, USA ) YE<br>2400 CIN<br>System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 41      | Maditarranear | Tunicia  | Monastie h     | Damak at al         | c                      | According to stat'   | Subtidal      | 2015         | August                        | . 175 um        | analyser<br>Mallor and     | No              | 0.1.cm    | Economica       |
| 42 Meditetranean Tunisia Bizerte lagon Aves Martins same Stations number Subtidal 2013 March > 63 µm Perkin Himer Yes 0-2 cm Box-corer<br>Sea et al. (2015) (Waltham,<br>2400 CIN<br>2400 CIN<br>9 system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |         | Sea           | ruffisia | wonastir bay   | (2019)              | saine                  | number               | subtidat      | 2013         | nugust                        | > 125 µm        | watter and<br>Black mothor | 140             | o-1 cm    | acidping        |
| Sea et al. (2015) General Annual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 47      | Mediterranean | Tunisia  | Rizerte Jagoon | Alves Martins       | same                   | Stations number      | Subtidal      | 2013         | March                         | > 63 um         | Perkin Elmer               | Ves             | 0-2 cm    | Box-corer       |
| AA, USA) PE<br>2400 CIN<br>System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | -       | Sea           |          |                | et al. (2015)       |                        |                      |               |              |                               | ,               | (Waltham.                  |                 |           |                 |
| 2400 CHN<br>system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |         |               |          |                |                     |                        |                      |               |              |                               |                 | MA, USA) PE                |                 |           |                 |
| system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |         |               |          |                |                     |                        |                      |               |              |                               |                 | 2400 CHN                   |                 |           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ |         |               |          |                |                     |                        |                      |               |              |                               |                 | system                     |                 |           |                 |



Fig. 1. Map showing the geographical distribution of the 42 studies according to the water body type (see definition of each body type in Table 1 in [1] according to [9] and [10]) used to assign the species from the English Channel/European Atlantic coast and the Mediterranean Sea intertidal and TWs. Numbers are the same as in Table 1.



Fig. 2. Caterpillar plot showing the optimum (green dots) and tolerance range (bars) to TOC of benthic foraminiferal species in the English Channel/European Atlantic intertidal areas and transitional waters.



Fig. 3. Caterpillar plot showing the optimum (green dots) and tolerance range (bars) to TOC of benthic foraminiferal species in the Mediterranean Sea intertidal areas and transitional waters.

#### 2. Experimental Design, Materials and Methods

Data acquisition: Data of benthic foraminifera relative abundances and related TOC contents (%) in the sediment are mainly from published literature, obtained from data tables in the publication or provided by the authors if not published (database available in Mendeley: http://dx.doi.org/10.17632/stjfr9xvxg.1). To select the relevant studies, the following criteria scheme was followed: only studies on living foraminifera (not dead neither total assemblages), only samples with >50 living specimens and contemporaneous TOC and foraminifera sampling. In total, it was possible to include in the data 587 samples from the English Channel/European Atlantic Coast and 301 from the Mediterranean Sea.

Data computation: When raw counts or abundances were provided, we standardised it to relative abundances. The optimos.prime R package [4] was used to calculate the weighted averaging optimum and tolerance level [2,3] of each species to TOC (Figs. 2 and 3).

In order to illustrate the typical response of species from each ecological group along the TOC gradient, a locally weighted scatterplot smooth line (LOESS) was fitted through each scatter plot (see Fig. 5–6 in [1]). Marginal plots were added to each scatter plot to show the frequency of distribution of occurrences along the TOC gradient. The median of the distribution of the occurrences was also computed. The R code (supplementary materials) includes the following packages: ggpubr, ggExtra, cowplot, mgcv.

#### **CRediT Author Statement**

Vincent M.P. Bouchet: Conceptualization, Supervision, Investigation, Data curation, Formal analysis, Visualization, Writing – original draft; Fabrizio Frontalini: Investigation, Writing – Review & Editing; Fabio Francescangeli: Visualization - Writing – Review & Editing; Pierre-Guy Sauriau: Formal analysis, Writing – Review & Editing; Emmanuelle Geslin: Supervision, Writing – Review & Editing; Virginia Martins: Investigation, Writing – Review & Editing; Ahuva Almogi-Labin: Writing – Review & Editing; Simona Avnaim-Katav: Investigation, Writing – Review & Editing; Letizia Di Bella: Writing – Review & Editing; Alejandro Cearreta: Investigation, Writing – Review & Editing; Rodolfo Coccioni: Writing – Review & Editing; Ashleigh Costelloe: Writing – Review & Editing; Margarita D. Dimiza: Writing – Review & Editing; Luciana Ferraro: Investigation, Writing – Review & Editing; Kristin Haynaert: Writing – Review & Editing; Michael Martínez-Colón: Writing – Review & Editing; Romana Melis: Investigation, Writing – Review & Editing; Magali Schweizer: Writing – Review & Editing; Maria V. Triantaphyllou: Investigation, Writing – Review & Editing; Akira Tsujimoto: Writing – Review & Editing; Brent Wilson: Writing – Review & Editing; Eric Armynot du Châtelet: Supervision, Investigation, Writing – Review & Editing.

#### **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

### Acknowledgments

Maria-Belen Sathicq helped V.M.P.B. in handling the optimos.prime R package. The authors are grateful to the Swiss National Science Foundation, the Agence de l'Eau Artois-Picardie, the Communauté d'Agglomération du Boulonnais, the Université de Lille, the Université du Littoral Côte d'Opale, the Laboratoire d'Océanologie et de Géosciences for their financial support to FOBIMO workshops in Fribourg (Switzerland), Wimereux (France) and Texel (The Netherlands);

and to Silvia Spezzaferri and Henko de Stigter for organizing and hosting the workshops in Fribourg and Texel. Additional funding was provided by Spanish MINECO (RTI2018-095678-B-C21, MCIU/AEI/FEDER, UE). The authors would like to thank the scientific editor and the anonymous reviewer for their comments that contributed to improve the manuscript.

#### **Supplementary Materials**

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2021.106920.

## References

- [1] V.M.P. Bouchet, F. Frontalini, F. Francescangeli, P.-.G. Sauriau, E. Geslin, M.V.A. Martins, A. Almogi-Labin, S. Avnaim-Katav, L. Di Bella, A. Cearreta, R. Coccioni, A. Costelloe, M.D. Dimiza, L. Ferraro, K. Haynert, M. Martínez-Colón, R. Melis, M. Schweizer, M.V. Triantaphyllou, A. Tsujimoto, B. Wilson, E. Armynot du Châtelet, Indicative value of benthic foraminifera for biomonitoring: assignment to ecological groups of sensitivity to total organic carbon of species from European intertidal areas and transitional waters, Mar. Poll. Bull. 164 (2021) 112071, doi:10.1016/j.marpolbul.2021.112071.
- [2] H.J.B. Birks, J.M. Line, S. Juggins, A.C. Stevenson, C.J.F. Ter Braak, Diatoms and pH reconstruction, Phil. Trans. R. Soc. Lond. B 327 (1990) 263–278, doi:10.1098/rstb.1990.0062.
- [3] C.J.F.Ter Braak, Unimodal models to relate species to environment (Doctoral thesis), University of Wageningen, 1987.
- [4] M.B. Sathicq, M.M. Nicolosi Gelis, J. Cochero, Calculating autoecological data (optima and tolerance range) for multiple species with the 'optimos.prime' R package, Austral Ecol 45 (2020) 845–850, doi:10.1111/aec.12868.
- [5] A. Borja, J. Franco, V. Pérez, A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments, Mar. Pollut. Bull. 40 (2000) 1100–1114, doi:10.1016/S0025-326X(00) 00061-8.
- [6] R. Core Team, R: A Language and Environment for Statistical Computing, 2020 https://www.R-project.org/.
- [7] A.-.L. Barillé-Boyer, L. Barillé, H. Massé, D. Razet, M. Héral, Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems, Estuar. Coast. Shelf Sci. 58 (2003) 147–153, doi:10.1016/S0272-7714(03) 00069-6.
- [8] G. Frangipane, M. Pistolato, E. Molinarolli, S. Guerzoni, D. Tagliapietra, Comparison of loss on ignition and thermal analysis stepwise method for determination of sedimentary organic matter, Aquatic Conserv: Mar. Fresh. Ecosyst. 19 (2009) 24–33.
- [9] D.S. McLusky, M. Elliott, Transitional waters: a new approach, semantics or just muddying the waters? Estuar. Coast. Shelf Sci. 71 (2007) 359–363, doi:10.1016/j.ecss.2006.08.025.
- [10] European Communities, Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, Off. J. Eur. Commun. 43 (L327) (2000) 75.