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Abstract: Eukaryotic 5-methylcytosine RNA methyltransferases catalyze the transfer of a methyl
group to the fifth carbon of a cytosine base in RNA sequences to produce 5-methylcytosine (m5C).
m5C RNA methyltransferases play a crucial role in the maintenance of functionality and stability
of RNA. Viruses have developed a number of strategies to suppress host innate immunity and ensure
efficient transcription and translation for the replication of new virions. One such viral strategy is to
use host m5C RNA methyltransferases to modify viral RNA and thus to affect antiviral host responses.
Here, we summarize the latest findings concerning the roles of m5C RNA methyltransferases, namely,
NOL1/NOP2/SUN domain (NSUN) proteins and DNA methyltransferase 2/tRNA methyltransferase 1
(DNMT2/TRDMT1) during viral infections. Moreover, the use of m5C RNA methyltransferase
inhibitors as an antiviral therapy is discussed.
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1. Introduction

The development of molecular techniques has allowed for research intensification in the field of
RNA modifications. Up to now, over a hundred of RNA modifications have been identified including
the methylation of fifth carbon in cytosine catalyzed by a number of m5C RNA methyltransferases [1].
Since the first report demonstrating chromatography-based detection of methylated cytosines in
poly(A)-messenger RNA [2], m5C was also detected in other types of RNA such as transfer RNA (tRNA),
ribosomal RNA (rRNA), small nuclear RNA (snRNA), microRNA (miRNA), long noncoding
RNA (lncRNA), transactivation response element (TAR), small vault RNA (vtRNA), and enhancer RNA
(eRNA) of many organisms across all phylogenetic groups [3–6] Thanks to advances in RNA bisulfite
sequencing, methylated RNA immunoprecipitation sequencing, and 5-azacytidine-mediated RNA
immunoprecipitation or methylation-induced cross-linking immunoprecipitation, new qualitative
and quantitative information about the target sites of RNA cytosine methyltransferases may be
provided [7–10]. Molecular studies have also shown that m5C can regulate many aspects of RNA
metabolism, namely, RNA export, ribosome assembly, translation, and RNA stability [11]. However,
the impact of RNA cytosine methylation on transcriptional and translational efficiency during viral
infection is still far from being understood. More information is available concerning the effects of
N6-methyladenosine (m6A) and 2′O-methylated (Nm) ribonucleotides. For instance, m6A may stabilize
the viral RNA and efficiency of viral protein translation [12,13]. Moreover, the 2′-O-methylation on the
first nucleotide of the viral RNA may protect the viral RNA from the innate immune response pathway
by camouflaging the viral RNA as a cellular mRNA [14]. Despite the role of m6A and 2′O-methylated
(Nm) ribonucleotides in viral RNA metabolism is well characterized, the function of m5C during
viral infection is less explored, and important issues remain to be resolved [15]. Therefore, here,
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we summarize the latest findings concerning the roles of m5C RNA methyltransferases during viral
infections and suggest the use of m5C RNA methyltransferase inhibitors in antiviral therapies.

2. m5C RNA Methyltransferases and Their RNA Targets

It is widely accepted that in humans, m5C is incorporated into different RNA molecules by the
action of seven members of the NOL1/NOP2/SUN domain (NSUN) family of proteins, namely, NSUN1,
NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, and NSUN7, and the DNA methyltransferase 2/tRNA
methyltransferase 1 (DNMT2/TRDMT1) [16]. Moreover, selected NSUN proteins such as NSUN1,
NSUN2, and NSUN5 are evolutionally conserved and, e.g., the yeast Saccharomyces cerevisiae orthologues
are available, namely, Nop2, Trm4, and Rcm1, respectively [6]. m5C RNA methyltransferases rely on
S-adenosylmethionine (SAM) as a donor of the methyl group, and NSUN proteins utilize two catalytic
cysteines in the active site, whereas DNMT2 uses a single cysteine in the active site that is similar to
the mechanism of action of other DNA methyltransferases [17,18]. Regardless of mechanism involved,
a covalent intermediate is created between a protein cysteine and the cytosine in RNA to stimulate
the electron-deficient pyrimidine heterocycle for the nucleophilic attack of fifth carbon on the methyl
group of SAM that is located in two conserved motifs IV and VI in NSUN family members [17].

Different subcellular localization and RNA targets of human m5C RNA methyltransferases have
been documented (Figure 1) [6]. Nucleolar NSUN1 (NOP2/nucleolar antigen p120) methylates the
single C5 position of cytosine (4447nt) in 28S rRNA [19]. Nuclear/nucleolar NSUN2 introduces
m5C at two positions of intron-containing tRNA(Leu)(CAA) precursors (34 and 48nt) and at three
positions of tRNA(Gly)(GCC) precursors (48, 49, and 50nt) [20,21] as well as in mitochondrial
tRNAs [22]. NSUN2 may be also detected in the cytoplasm. NSUN2 also methylates cytosine to
produce m5C in various RNAs such as mRNAs, lncRNAs, and small non-coding RNAs, such as
vault RNAs (vtRNAs) [20,21,23,24]. Mitochondrial NSUN3 mediates methylation of cytosine to
yield m5C at the nucleotide 34 of mt-tRNA(Met) [25,26]. Mitochondrial NSUN4 methylates mt-12S
rRNA at the nucleotide 841 [27]. Nucleolar NSUN5 methylates the single C(5) position of cytosine
in 28S rRNA (3782nt) [28–30]. Cytoplasmic and Golgi apparatus located NSUN6 methylates the
C5 position of cytosine 72 in tRNA(Thr)(TGT) and tRNA(Cys)(GCA) [31–33]. Nuclear NSUN7
methylates enhancer RNAs (eRNAs) at different positions [34]. Cytoplasmic, and to a less extent
nuclear, DNMT2 (TRDMT1) methylates the aspartic acid, glycine, and valine tRNA at the cytosine-38
residue in the anticodon loop [35,36].

Diverse phenotypic features have been reported in mice lacking selected NSun proteins.
NSun1 deletion induced apoptotic cell death, affected lineage specification and decreased the pools
of RNA during mouse embryonic development [37]. In NSun2−/− mice, testis size is decreased and
sperm differentiation is inhibited [38]. Moreover, Dnmt2−/−NSun2−/− embryos were smaller and
lighter compared to their wild-type littermates. Newborn double-knockout mice also appeared smaller
at birth, failed to develop visible milk spots, showed a reduced thickness and organization of the
cerebral cortex and an immature skeleton with incomplete ossification [39]. Dnmt2−/−NSun2−/−

mice were also characterized by changes in cellular lipid storage [39]. It has been documented that
Nsun4 is essential for embryonic development in the mouse [27]. The growth of mutant embryos
(Nsun4−/−) was significantly retarded [27]. Moreover, knockout of Nsun4 in the mouse heart resulted
in mitochondrial dysfunction, namely, mitoribosome assembly and mitochondrial translation were
diminished [27]. In contrast, adult Nsun5-KO mice displayed spatial cognitive deficits with impairment
of oligodendrocyte precursor cells [40]. Nsun5 knockout in mice also resulted in a decrease in body
weight and lean mass and limited protein synthesis and growth [30]. It has been suggested that NSun6
is dispensable for mouse embryonic development, and loss of NSUN6-associated methylation lowers
mRNA stability in embryonic cells [41]. Mice with mutated Nsun7 gene showed male sterility as a
consequence of affected sperm motility [42].
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Figure 1. Overview of human m5C RNA methyltransferases and their RNA targets during viral 
infections. (a) The methylation of 5’C—phosphate—G3’ (CpG) islands in viral genomic RNA by 
DNMT2 (TRDMT1) and perhaps NSUN5 may promote viral heterogeneity. (b) The modification of 
viral transcriptome by NSUN2 and perhaps TRDMT1 may result in increased transcript stability and 
efficient translation. (c) The cytosine deamination by A3G may lead to dC-to-dU conversions in viral 
(–)ssDNA that may cause G-to-A hypermutations in progeny viral genomes. (d) Induction of viral 
latency by NSUN1-mediated m5C methylation of TAR. (e) NSUN7-mediated m5C methylation of 
eRNA, a transcriptional coactivator of PGC-1α (peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha) and an activator of RNA polymerase II. (f) NSUN2-mediated methylation of 
viral mRNA promotes its splicing and transport into the cytoplasm (a black arrow). (g,h) NSUN2-, 
TRDMT1-, and NSUN6-mediated methylation of tRNA molecules protects them against 
stress-induced degradation and supports efficient translation. (i) Putative protective role of NSUN2-, 
NSUN3-, and NSUN4-mediated methylation of tRNA and rRNA in the mitochondria. These 
modification events prevent cytoplasmic translocation of tRNA and rRNA and binding of 
stress-based degraded form of tRNA and rRNA to a pattern-recognition receptor for RNA (MDA-5) 
that in turn counteracts the induction of a type I interferon response. (j) NSUN3 and TRDMT1 as 
putative regulators of RNA polymerase II-mediated gene transcription during cellular stress 
response. (k) NSUN2-mediated biogenesis of tiRNAs. (l) NSUN2-mediated methylation of vtRNA 
may promote its conversion to svRNA that, in turn, may inhibit the translation of PKR and IFN-β 
production. (m) NSUN1- and NSUN5-mediated methylation of rRNA supports ribosome biogenesis 
and efficient translation. rRNA, ribosomal RNA; tRNA, transfer RNA; mt tRNA, mitochondrial 
tRNA; eRNA, enhancer RNA; svRNA, specific vtRNA-derived small non-coding RNA; vtRNA, vault 
RNA; TAR, transactivation response element; tiRNA; tRNA-derived stress-induced RNA, mRNA, 
messenger RNA; ssRNA, single-stranded RNA; MDA-5, melanoma differentiation-associated 
protein 5; PKR, RNA-dependent protein kinase; IFN-β, interferon beta; ?-putative action, A3G, 

Figure 1. Overview of human m5C RNA methyltransferases and their RNA targets during viral
infections. (a) The methylation of 5′C—phosphate—G3′ (CpG) islands in viral genomic RNA by
DNMT2 (TRDMT1) and perhaps NSUN5 may promote viral heterogeneity. (b) The modification
of viral transcriptome by NSUN2 and perhaps TRDMT1 may result in increased transcript
stability and efficient translation. (c) The cytosine deamination by A3G may lead to dC-to-dU
conversions in viral (–)ssDNA that may cause G-to-A hypermutations in progeny viral genomes.
(d) Induction of viral latency by NSUN1-mediated m5C methylation of TAR. (e) NSUN7-mediated
m5C methylation of eRNA, a transcriptional coactivator of PGC-1α (peroxisome proliferator-activated
receptor gamma coactivator 1-alpha) and an activator of RNA polymerase II. (f) NSUN2-mediated
methylation of viral mRNA promotes its splicing and transport into the cytoplasm (a black arrow).
(g,h) NSUN2-, TRDMT1-, and NSUN6-mediated methylation of tRNA molecules protects them
against stress-induced degradation and supports efficient translation. (i) Putative protective role of
NSUN2-, NSUN3-, and NSUN4-mediated methylation of tRNA and rRNA in the mitochondria.
These modification events prevent cytoplasmic translocation of tRNA and rRNA and binding
of stress-based degraded form of tRNA and rRNA to a pattern-recognition receptor for RNA
(MDA-5) that in turn counteracts the induction of a type I interferon response. (j) NSUN3 and
TRDMT1 as putative regulators of RNA polymerase II-mediated gene transcription during cellular
stress response. (k) NSUN2-mediated biogenesis of tiRNAs. (l) NSUN2-mediated methylation
of vtRNA may promote its conversion to svRNA that, in turn, may inhibit the translation of
PKR and IFN-β production. (m) NSUN1- and NSUN5-mediated methylation of rRNA supports
ribosome biogenesis and efficient translation. rRNA, ribosomal RNA; tRNA, transfer RNA;
mt tRNA, mitochondrial tRNA; eRNA, enhancer RNA; svRNA, specific vtRNA-derived small
non-coding RNA; vtRNA, vault RNA; TAR, transactivation response element; tiRNA; tRNA-derived
stress-induced RNA, mRNA, messenger RNA; ssRNA, single-stranded RNA; MDA-5, melanoma
differentiation-associated protein 5; PKR, RNA-dependent protein kinase; IFN-β, interferon beta;
?-putative action, A3G, apolipoprotein B mRNA editing enzyme catalytic subunit 3G (cytidine
deaminase); *- dC-to-dU conversion in viral negative-sense single-stranded DNA (–ssDNA).
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3. Host-Based Methylation of the Fifth Position of Cytosine Residues in Viral RNA

In 1975, the presence of 5-methylcytosine (m5C) in the Sindbis virus 26S RNA obtained from
infected host cells was revealed and the putative role of m5C during viral infection was postulated [43,44].
Similar observations were noticed in the case of adenovirus 2 [45]. In the RNA of cells infected with
adenovirus 2, N6-methyladenosine (m6A) and a minor fraction of m5C were detected. However,
the authors were unable to identify the presence of m5C in the viral RNA particles.

Recent studies using ultrahigh-performance liquid chromatography (UHPLC), tandem mass
spectrometry (UPLC-MS/MS), and photo-cross-linking-assisted m5C sequencing have revealed that
genomic RNA of murine leukemia virus (MLV) contains higher levels of m6A, m5C, and 2′O-methylated
(Nm) ribonucleotides than cellular mRNA [46]. Similarly, 10-fold higher levels of m5C and 2′O-methylations
have been observed in human immunodeficiency virus 1 (HIV-1) RNA compared to these noticed in
typical cellular mRNAs [47]. Courtney et al. determined that m5C accounted for 0.6–1.4% of cytosines
in HIV-1 RNA (approximately 11 m5Cs per HIV-1 genomic RNA) [47].

It is worthwhile to mention that methylation occurs the most frequently in CpG regions of DNA
and RNA viruses [48–50]. More recently, it has been shown that CpG may be also over-represented in
dsRNA viruses at the location across codon boundaries compared to negative-sense single-stranded
RNA (−ssRNA) and positive-sense single-stranded RNA (+ssRNA) viruses [51]. It is postulated
that the changes in retroviral CpG RNA may be a result of cytidine deaminase activity. However,
the mechanism that may contribute to the elimination of CpG in riboviruses is still unknown. Perhaps
it is not based on cytidine deaminase activity as riboviral RNA does not form the DNA intermediate
that is essential for cytidine deaminase activity [51,52].

The analysis of RNA modification using direct RNA sequencing also revealed m5C signals in
viral RNA of Coronaviridae family [53,54]. More recently, a comprehensive study on severe acute
respiratory syndrome coronaviruses (SARS-CoV) using direct RNA sequencing documented that
42 positions with predicted m5C modification occur at consistent positions between subgenome-length
mRNAs [55]. Thus, one may ask a question if the occurrence of cytosine methylation at fifth position
may be a source of genetic heterogeneity in early steps of coronavirus infection. This may rely on the
discontinuous extension for synthesis of subgenome-length negative strands [56], namely, a nested set
of 5′- and 3′-coterminal subgenomic (sg) mRNAs is produced and this set is characterized by a common
5′ leader sequence, which is identical to the 5′-end of the viral genome [57,58]. However, the role of
5-methylcytosine in viral genomic RNA, especially in Coronaviridae family, is not well established and
requires further comprehensive studies.

It is known that experimental increase in the pools of CpG dinucleotides in CpG-deficient viral
genomes may lead to significant decrease in viral replication and virulence [59–61]. Thus, it may
suggest that m5C RNA methyltransferases may play an important role during the recognition of
viral CpG and the inhibition of replication process of selected types of viruses. For example, fruit fly
m5C RNA methyltransferases Dnmt2 has been reported to directly interact with Drosophila C virus
(DCV) RNA being a part of antiviral defense strategy as an evolutionarily conserved innate immune
response [62,63] (Figure 1).

It has been shown that NSUN5 can also bind to the core protein of HCV, a positive-strand RNA
virus [64] (Figure 1). On the other hand, it has been reported that the methyltransferase NSUN2 may
serve as the primary writer for m5C on HIV-1 genomic RNA [47]. Inactivation of NSUN2 resulted in
limited addition of m5C to HIV-1 transcripts and inhibited viral replication [47]. Thus, we suggest that
this modification may be important also for genomic RNA stabilization, RNA transport to host cellular
compartments, replication regulation, protection against degradation, and promotion of viral genetic
heterogeneity that is based on cytidine deaminase activity.

To the best of our knowledge, little is known about the effects of m5C RNA methyltransferases
on the activity of cytidine deaminase-based antiviral defense system. The evolutionarily conserved
APOBEC family of proteins (apolipoprotein B mRNA editing enzymes) are deaminase enzymes
(cytidine-to-uridine editing enzymes) that allow for editing of RNA/ssDNA sequences and may
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promote diversity is mRNA editing [65]. Apolipoprotein B editing complex 3 (APOBEC3) consists of
one gene in rodents and up to seven genes in primates, namely, APOBEC3A, APOBEC3B, APOBEC3C,
APOBECDE, APOBEC3F, APOBEC3G, and APOBEC3H [65]. APOBEC3 subfamily has important
role during viral infections as it can inhibit a number of viruses, e.g., HIV-1, human T-lymphotropic
virus (HTLV), hepatitis C virus (HCV), hepatitis B virus (HBV), human papillomavirus (HPV),
herpes simplex virus 1 (HSV-1) and Epstein-Barr virus (EBV) by editing-dependent and independent
mechanisms [65]. In particular, APOBEC3G (A3G) promotes cytidine-to-uridine hypermutations
during reverse transcription and deaminates C residues in CC motifs and other members of APOBEC3
group provide modifications in CT motifs [66,67]. APOBEC3 may promote beneficial mutations of
HIV type-1 that may result in adaptation and evolution in natural infection [68]. APOBEC3A can be
considered as a potent deamination factor of both C and m5C, while APOBEC3G is much weaker in
its ability to deaminate m5C [69]. More recently, the N2-C271A NSUN2 mutant was considered to
study the proteins, which are packaged into HIV-1 virions [47]. This mutagenic event is based on
the substitution of second conserved cysteine to alanine that may result in spontaneous cross-links
to target cytosines. Interestingly, APOBEC3G and NSUN2 were shown to be packaged into HIV-1
virions in the N2-C271A NSUN2 mutant [47]. This may suggest putative interactions between NSUN2
and APOBEC3G. However, the consequences of such interactions need to be determined in the future
(Figure 1). Perhaps host m5C RNA methyltransferases may protect some viruses against mutagenic
activity of cytidine deaminase that may limit cytidine deaminase-mediated lethality.

4. The Modulation of Host Cellular Metabolism via Virus Hijacking of RNA Processing

The transcriptome of host cells infected with several RNA viruses, e.g., Zika virus (ZIKV),
dengue virus (DENV), HCV, poliovirus, and HIV-1, has been reported to be post-transcriptionally
modified [70]. This may suggest that post-transcriptional modifications such as 5-methylcytosine may
be considered as a new layer of regulation by which RNA viruses subvert the host and evade cellular
surveillance systems [70].

Viral infections are also accompanied by cellular stress responses in the host cells that
may affect proper transcription and translation of viral mRNA and proteins, respectively [71].
Thus, m5C RNA methyltransferases can be exploited to sustain viral transcriptional and translational
activity by the incorporation of 5-methylcytosine into viral mRNA and/or host tRNA and rRNA [20].
Indeed, there are numerous examples of the involvement of host m5C RNA methyltransferases in RNA
modification-based regulation of transcription and translation upon viral infections.

It has been postulated that NSUN1 (NOP2), a member of ribosomal large subunit assembly
complex, may play the role in the regulation of the cell cycle and in the nucleolar activity associated with
cell proliferation [72]. Kong et al. have recently shown that NOP2 restricts HIV-1 replication, suppresses
HIV-1 transcription, and promotes viral latency via m5C methylation of TAR RNA [73] (Figure 1).

Depletion of NSUN7 decreased the levels of m5C in eRNA. Methylated eRNA is considered to
be a transcriptional coactivator associated with peroxisome proliferator-activated receptor-gamma
co-activator 1 alpha (PGC-1α) that modulates cellular metabolic responses. eRNA methylation
stabilizes eRNA-bound protein complex and enhances RNA polymerase II activity [34]. This may
suggest the involvement of NSUN7 during metabolic reprogramming of infected cells as PGC-1α is
robustly induced upon HCV infection [74] (Figure 1).

NSUN2 is involved in various processes such as cellular differentiation by controlling protein
synthesis, promoting tRNA stability and preventing mRNA decay [21]. It has been shown that HIV-1
mRNA in infected cells is highly modified by the addition of m5C by the host NSUN2 methyltransferase.
Inactivation of NSUN2 resulted in the loss of m5C addition and inhibition of HIV-1 mRNA translation
as well as reduced ribosome binding to viral mRNAs and the dysregulation of alternative splicing of
viral RNAs [47] (Figure 1). It was also shown that downregulation of the m5C writer NSUN2 inhibits
MLV replication [46].
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It was also reported that human DNMT2 participates in RNA processing during cellular stress [75].
DNMT2 interacts with proteins involved in RNA processing and DNMT2 is translocated from the
nucleus into the cytoplasm during cellular stress [75]. DNMT2 also promoted survival of HIV-1 RNA
in infected host cells by RNA cytosine methylation activity [76]. HIV-1 induces DNMT2 translocation
from the nucleus to the stress granules, and then, DNMT2 methylates HIV-1 RNA [76]. These suggest
that HIV-1 ensures its own survival in the host cells via hijacking of the RNA processing machinery
and stress granule promotion.

In contrast to DNMT2- and NSUN2-mediated tRNA modifications, the role of NSUN6 during
viral infection remains elusive due to the lack of comprehensive research data. However, selected
transcriptomic analyses showed that the changes in NSUN6 expression occur upon infection with the
SARS-CoV [77] (Figure 1).

Thus far, there is no information regarding the direct associations between NSUN3 or NSUN4
and viral infection. However, it is evident that at least one role of these mitochondrial m5C rRNA
methyltransferases is to maintain mitochondrial activity during infection-associated intense energy
consumption [71] (Figure 1).

Interestingly, mRNA expression microarray datasets from the Gene Expression Omnibus (GEO)
database showed that expression levels of both 5-methylcytosine rRNA methyltransferase genes in
cells infected with Ebola virus (EBOV) (GSE17509), influenza A virus (IAV) subtype H5N1 (A/H5N1)
(GSE43302), SARS-BatS RBD (GSE47960), and HCV JFH-1 strain (GSE20948) were altered suggesting
that NSUN3 and NSUN4 proteins are active members of the cellular viral response pathway.

Here, we hypothesize that mitochondrial NSUNs are essential for the maintenance of mitochondrial
RNA stability and loss of methylation may lead to the transfer of nonfunctional mtRNAs into the
cytoplasm. mtRNAs can be recognized by MDA5 and bind to MDA5, a well-known pattern-recognition
receptor for RNA that induces a type I interferon response [78]. This hypothesis is supported by a
recent work of Dhir et al. (2018) showing that mitochondrial RNA could be a source of self-nucleic
acids and an initiator of an interferon response via the cytoplasmic receptor MDA5 as a consequence of
RNA metabolism [79] (Figure 1).

Moreover, NSUN3 may have distinct roles beyond the methylation of mt-tRNA(Met) I [25,26,80].
Cheng et al. have found that NSUN3 can form a complex with heterogeneous nuclear ribonucleoprotein
K (hnRNPK), DNMT2, and positive transcription elongation factor b (P-TEFb) at elongating RNA
polymerase II sites [80]. Thus, it is possible that DNMT2 and NSUN3 can be also considered as new
regulatory proteins in transcriptional process in the nucleus during cancer progression or chronic
cellular stress [80] (Figure 1).

5. Attenuation of Host Antiviral Response by Virus-Mediated Activation of NSUN2

NSUN2, a multifunctional methyltransferase, is also required for biogenesis of tRNA-derived
non-coding fragments (tRFs) [20] (Figure 1). tRFs inhibit protein synthesis via several mechanisms
including direct inhibition of the ribosome and displacement of RNA-binding proteins [81–83].
Interestingly, some viruses can use tRFs to modulate host immune responses [84]. Deng et al. showed
that respiratory syncytial virus (RSV) induces activation of ribonuclease angiogenin (ANG) and cleaves
mature cytoplasmic tRNAGlu (CTC) in its anticodon loop to produce two halves: 5-half (tRF5-GluCTC
or 5-tiRNAGlu) and 3-half (3-tiRNAGlu) that suppress the expression of anti-RSV protein APOER2 [84].

In addition, C(5)-methylation of mRNAs regulates mRNA export (Figure 1). Methylated transcripts
are specifically recognized by THOC4/ALYREF that mediates mRNA nucleocytoplasmic shuttling [85].
THOC4/ALYREF are essential for the export of Kaposi’s sarcoma-associated herpesvirus (KSHV)
intronless mRNAs and infectious virus production via recruitment of the TREX complex [86].

NSUN2 controls processing of vault ncRNAs into small regulatory RNAs with microRNA functions
such as the three vtRNAs [87]. vtRNA contains a cytosine methylation site, and the methylation of
vtRNA1.1 promoted its processing into smaller fragments (svRNAs). The lack of NSUN2 protein leads to
the loss of cytosine-5 methylation in vault RNAs causing aberrant processing into Argonaute-associated
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small RNA fragments [87]. vtRNAs can be also used by viruses to silence host antiviral responses [88].
The double-stranded (ds) RNA-dependent protein kinase (PKR), a member of host innate immune
responses, mediates the activation of signal transduction pathways leading to interferon beta (IFN-β)
gene induction during viral infection or RNA transfection [89] (Figure 1). It was shown that vtRNAs
promoted viral replication in A549 cells and mouse lungs after infection with IAV through repressing
PKR activation and the subsequent antiviral interferon response [88].

During SARS-CoV infection, small noncoding RNAs were also detected. The analysis of deep
sequenced RNA isolated from the lungs of infected mice showed three 18–22 nt small viral RNAs (svRNAs).
The three svRNAs were derived from the nsp3 (svRNA-nsp3.1 and -nsp3.2) and N (svRNA-N) genomic
regions of SARS-CoV [90]. These observations suggest that the biogenesis of small viral RNA could be
also a target of host NSUN2, but additional studies are required to confirm such assumptions.

6. Inhibitors of m5C RNA Methyltransferases as Antiviral Drugs

Taking into account the involvement of m5C RNA methyltransferases in the antiviral response,
one can ask whether the inhibitors of these enzymes can be considered as antiviral drugs. Nucleotide
and nucleoside analogs are examples of broad-spectrum antiviral drugs that inhibit transcription and/or
replication of different RNA and DNA viruses [91]. Pharmacologic inhibition of DNA methylation has
been successfully used as an anticancer therapy using the cytosine analogs 5-azacytidine (azacytidine)
and the closely related compound 2-deoxy-5-azacytidine (decitabine) [92].

Interestingly, DNA demethylation responses of azacytidine and decitabine drugs are not restricted
to the inhibition of DNA methylation [93]. Schaefer et al., using RNA bisulfite sequencing, showed
that azacytidine, but not decitabine, inhibited cytosine-38 methylation of tRNA(Asp), a major substrate
of DNMT2 [93]. They found that azacytidine caused a substantially stronger metabolic effect than
decitabine in all cancer cell lines tested that is consistent with the effect of this drug on RNA
metabolism [93]. In this context, it is interesting that 5-azacytidine has been shown to inhibit HIV-1
infectivity [94]. Molecular examination of the mechanism by which 5-azacytidine inhibits HIV-1
revealed that 5-azacytidine exerts antiviral activity through its incorporation into both viral RNA
and DNA [95]. The antiviral activity of the derivative 5-aza-2′-deoxycytidine was detected using
other retroviruses such as HTLV-1 [96]. Decitabine was successfully used in a trial to reduce HIV
infectivity [97]. Moreover, azacytidine showed antiviral activity against Rift Valley fever virus
(RVFV) [91], human metapneumovirus (HMPV) [98], A/H5N1 [99], IAV subtype H3N2 (A/H3N2),
laboratory-adapted IAV H1N1 strains [100], EBV [101], and HSV-1 [102].

Zebularine (pyrimidin-2-one ribonucleoside), a cytidine analog that acts as a DNA demethylase
inhibitor as well as a cytidine deaminase inhibitor, can be also considered as an antiviral drug [89].
However, the complex metabolism of zebularine and its limited DNA incorporation may restrain
its applications in antiviral therapies. Indeed, zebularine is less potent than 5-azacytidine and its
successful action requires higher doses for inhibition of DNMT activity [103].

Sinefungin (A9145) and its related metabolite, A9145C, are analogs of the methyl donor SAM and
inhibitors of RNA and DNA methyltransferases [104]. Sinefungin (A9145) and its related metabolite,
A9145C, were also found to be potent inhibitors of Newcastle disease virus (NDV), currently named
Avian avulavirus 1 (AAvV-1) [105], Feline herpesvirus type 1 (FeHV-1) [106], vesicular stomatitis virus
(VSV) [107], ZIKV [108], DENV [109], and the West Nile virus (WNV) [110]. It is worthwhile to mention
that sinefungin has been identified as an inhibitor of 2′-O-RNA SARS-CoV-2 methyltransferase [111]
and may electrostatically interact with the 2′-OH and N3 groups of adenosine moiety of RNA substrate
thus mimicking the methyl transfer reaction of SAM substrate [112].

Tea polyphenol epigallocatechin-3-gallate (EGCG) is also another promising inhibitor of DNA/RNA
methyltransferases. It was shown that EGCG can inhibit DNA methyltransferase and reactivate
methylation-silenced genes in cancer cell lines [113].

Halby et al. developed a convergent synthetic pathway, starting from a protected bromomethylcytosine
derivative, to synthesize transition state analogs of DNA methyltransferases [114]. However, they found low



Int. J. Mol. Sci. 2020, 21, 8176 8 of 16

activity of seven 5-methylcytosine-adenosine compounds against hDNMT1, hDNMT3Acat, TRDMT1,
and other human and viral RNA methyltransferases. Nevertheless, this research paves the way for the
conception of new inhibitors based on the m5C scaffold.

7. Conclusions and Perspectives

In summary, we hypothesize that inhibitors of m5C RNA methyltransferases can be used in
the future to modulate virus-mediated effects in host cells. However, several issues need to be
addressed, namely, efficiency, selectivity, bioavailability, and biocompatibility of putative inhibitors in
biological systems. The side effects of their use can be also a serious problem since these compounds
can inhibit the enzyme activity of both virus-infected and virus-free cells. For instance, the use
of 5-aza-2′-deoxycytidine can result in thrombocytopenia and anemia and less frequently can lead
to congestive cardiac failure and tachycardia (http://sideeffects.embl.de). Moreover, it has been
documented that high dose of azacytidine or 5-aza-2′-deoxycytidine may cause renal dysfunction [115]
and spermatogenesis abnormalities [116] as well as may promote teratogenic effects during early
embryogenesis [117]. Efficiency can be improved by molecular modeling of analogs in such way
that the analogs are more effective than m5C in the binding to the catalytic sites of enzymes and the
analogs are better matched structurally that may result in permanent inhibition and degradation of
these enzymes [114]. Another problem may be the degradation of the analogs by extracellular and
intracellular enzymes. Therefore, it is also important to develop systems that would prevent the
degradation of the analogs before their targeted delivery. The selectivity of the inhibitors of m5C RNA
methyltransferases can be improved by the addition of functional groups to the analogs [118]. A good
solution would be to use the conjugates of m5C analogs based on the mechanism of cationic carriers
that would allow for more efficient transport. Techniques for obtaining the oligonucleotide analogs
with cationic backbone linkages were previously proposed [119]. Another well-established approach
for nucleic acid delivery is based on cationic lipid-nucleic acid complexes [120,121]. The advantages
of these systems for therapeutic applications include low toxicity and non-immunogenicity, ease of
production, and the potential of transferring large amount of nucleic acids or oligonucleotides into
the cells. Moreover, the addition of chemical groups to analogs can improve their bioavailability,
e.g., during oral administration [122]. Improving the effectiveness of 5-azacytidine by increasing its
bioavailability to human cells was also achieved by elaidic acid esterification [123]. An alternative
delivery system for m5C analogs was also proposed, namely mesoporous silica nanoparticles [124].
In this view, the delivery of m5C RNA methyltransferase inhibitors can be improved by the use of
nanocapsules that may serve as a promising technology for future antiviral therapies. The unique
structure of nanocapsules may allow for proper loading of nucleoside analogs, oligonucleotides with
nucleoside analogs, tag-like ligands, receptors, additional dyes, or other compounds that may support
the monitoring and control of drug release. More studies are needed to better characterize the molecular
bases of the biological action and therapeutic effects of m5C RNA methyltransferase inhibitors and
their putative side effects in vitro and in vivo.
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Abbreviations

A/H5N1 influenza A virus subtype H5N1
A3G apolipoprotein B mRNA editing enzyme catalytic subunit 3G (cytidine deaminase)
AAvV-1 avian avulavirus 1
ANG angiogenin
APOBEC apolipoprotein B editing complex
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APOER2 apolipoprotein E receptor 2
CpG 5′C—phosphate—G3′

Cys cysteine
DCV Drosophila C virus
DENV dengue virus
DNA deoxyrybonucleic acid
DNMT2 DNA methyltransferase 2
dsRNA double-stranded RNA
EBOV Ebola virus
EBV Epstein-Barr virus
EGCG epigallocatechin-3-gallate
eRNA enhancer RNA
FeHV-1 feline herpesvirus type 1
GEO Gene Expression Omnibus
Glu glutamic acid
Gly glycine
HBV hepatitis B virus
HCV hepatitis C virus
hDNMT1 human DNA methyltransferase 1
hDNMT3Acat human DNA methyltransferase 3A catalytic domain
HIV-1 human immunodeficiency virus 1
HMPV human metapneumovirus
hnRNPK heterogeneous nuclear ribonucleoprotein K
HPV human papillomavirus
HSV-1 herpes simplex virus 1
HTLV human T-lymphotropic virus
IAV influenza A virus
IFN-β interferon beta
KSHV Kaposi’s sarcoma-associated herpesvirus
Leu leucine
lncRNA long non-coding RNA
m5C 5-methylcytosine
m6A N6-methyladenosine
MDA-5 melanoma differentiation-associated protein 5
Met methionine
miRNA microRNA
MLV murine leukemia virus
mRNA messenger RNA
mt tRNA mitochondrial tRNA
NDV Newcastle disease virus
Nop2 nucleolar protein 2
Nsp3 non-structural protein 3
NSUN NOL1/NOP2/SUN domain
nt nucleotide
PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1-alpha
PKR RNA-dependent protein kinase
P-TEFb positive transcription elongation factor b
Rcm1 rRNA (cytosine-C5-)-methyltransferase
RNA ribonucleic acid
rRNA ribosomal RNA
RSV respiratory syncytial virus
RVFV Rift Valley fever virus
SAM S-adenosylmethionine

SARS-Bat SRBD
SARS-CoV-like virus isolated from bats that contains the spike-protein
receptor-binding domain from wild type SARS-CoV Urbani

SARS-CoV severe acute respiratory syndrome coronavirus
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SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
snRNA small nuclear RNA
+ssRNA positive-sense single-stranded RNA
-ssRNA negative-sense single-stranded RNA
ssRNA single-stranded RNA
svRNA small non-coding RNA fragments derived from vtRNA
svRNA small viral RNA
TAR transactivation response element
THOC4/ALYREF THO complex subunit 4/Aly/REF export factor
Thr threonine
tiRNA tRNA-derived stress-induced RNA
TRDMT1 tRNA methyltransferase 1
TREX transcription export complex
tRFs tRNA-derived non-coding fragments
Trm4 multisite-specific tRNA:m5C-methyltransferase
tRNA transfer RNA
UHPLC ultrahigh-performance liquid chromatography
UPLC-MS/MS ultra-performance liquid chromatography and tandem mass spectrometry
VSV vesicular stomatitis virus
vtRNA small vault RNA
WNV West Nile virus
ZIKV Zika virus
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