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Obesity, altered glucose homeostasis, hyperinsulinism, and reproductive dysfunction
develops in female humans and mammals with hyperandrogenism. We previously
reported that low dose dihydrotestosterone (DHT) administration results in metabolic
and reproductive dysfunction in the absence of obesity in female mice, and conditional
knock-out of the androgen receptor (Ar) in the liver (LivARKO) protects female mice from
DHT-induced glucose intolerance and hyperinsulinemia. Since altered metabolic function
will regulate reproduction, and liver plays a pivotal role in the reversible regulation of
reproductive function, we sought to determine the reproductive phenotype of LivARKO
mice under normal and hyperandrogenemic conditions. Using Cre/Lox technology, we
deleted the Ar in the liver, and we observed LivARKO female mice have normal puberty
timing, cyclicity and reproductive function. After DHT treatment, like control mice,
LivARKO experience altered estrous cycling, reduced numbers of corpus lutea, and
infertility. Liver Ar is not involved in hyperandrogenemia-induced reproductive dysfunction.
The reproductive dysfunction in the DHT-treated LivARKO lean females with normal
glucose homeostasis indicates that androgen-induced reproductive dysfunction is
independent from metabolic dysfunction.

Keywords: PCOS: polycystic ovary syndrome, DHT, dihydrotestosterone, androgen receptor (AR), liver, puberty
INTRODUCTION

Hyperandrogenism in females is associated with metabolic and reproductive dysfunction in humans
(1) and various animal models (2). The reproductive dysfunction of hyperandrogenic females
includes irregular ovarian cyclicity and follicle development, and infertility (2). The metabolic
dysfunction includes systemic insulin resistance, increased fat mass associated with adipocyte
n.org June 2022 | Volume 13 | Article 8685721
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hypertrophy (3) and altered liver function. Liver plays important
role in the reversible regulation of reproductive function (4). The
liver controls energy storage and balance through directing
glucose metabolism; this control of energy balance can thus
regulate the reproductive axis which is sensitive to changes in
systemic energy balance.

Androgen receptor (AR) signaling is present in liver involved
in systemic glucose regulation (5–8). Female mice with global
deletion of the Ar do not experience the metabolic and
reproductive dysfunction upon androgen treatment that is
experienced by wild type mice (9). This indicates the role of
the Ar in both the metabolic and reproductive phenotype of
hyperandrogenic females. Hepatocyte Ar is not required for
glucose homeostasis in female mice with normal androgen
levels (10), but plays a critical role in hepatocyte dysfunction
associated with hyperandrogenism in females (11). LivARKO
mice treated with low dose dihydrotestosterone (DHT) did not
experience the hepatic insulin resistance/upregulated
gluconeogenesis like DHT treated control mice (11). Since
altered metabolic function may affect reproduction, and the
liver and the reproductive system interacts in a complex
bidirectional fashion, we sought to determine the reproductive
pheno type o f L i vARKO mice under norma l and
hyperandrogenemia conditions. We explore the reproductive
phenotype of female LivARKO at baseline and upon treatment
with low dose DHT – an environment wherein the LivARKO
mice maintain normal glucose homeostasis.
MATERIALS AND METHODS

Generation of Liver Specific AR Knockout
and Hyperandrogenemic Females
Hepatocyte Ar knockout mice were maintained in our laboratory
as previously described (11). Briefly, we crossed an exon 2-floxed
Ar (12, 13) female (ARfl/fl; Cre-/-) mouse, with a male albumin-
Cre+/- mouse to produce developmental hepatic Ar knockout mice
(LivARKO, ARfl/fl; albumin (Alb)-Cre+/-), The Alb-Cre mouse
produces liver-specific expression of Cre driven by the albumin
promoter in a C57/BL6 background. Litter mates (ARfl/fl; Alb-
Cre-/-) were referred to as Control (Con) mice. Genotyping
primers were designed to detect the presence of Cre or the
floxed allele, WT allele, or knockout allele of Ar. Genomic DNA
obtained from tail or ear was used for genotyping. Genomic DNA
obtained from the liver will amplify a 952-bp amplicon for floxed
Ar allele, if the sequence between the LoxP sites is excised, it will
amplify a 404-bp amplicon for Ar KO allele. Primer sets were
listed in Supplementary Table 1. Once female mice reached 2-
months old, 4 mm-DHT (DHT) or vehicle (Veh) pellets were
inserted to the mice under the skin (14–19). Two months after
insertion of the pellets, body weight was recorded. All mice were
housed in the Johns Hopkins University mouse facility, and all
experiments were conducted under a protocol approved by the
Johns Hopkins Animal Care and Use Committee.
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qRT-PCR
RNA isolation was performed on collected tissues from Con-veh
and LivARKO-veh mice using Trizol (BioRad) as previous
described (20). Ar mRNA levels in liver, ovary, uterus,
hypothalamus, pituitary, gonadal fat and muscle were measured
by quantitative real-time PCR (qRT-PCR) using iQSYBR green
reagent according to the manufacturer’s protocol (Bio-Rad). Briefly,
1µg of RNA was reverse transcribed to cDNA using an iScript
cDNA kit (Bio-Rad Laboratories). Real-time qPCR was performed
to determine the presence and relative expression levels of Ar
mRNA in the various tissues. Real-time qPCR was performed in
duplicate using SYBR Green Master Mix (Bio-Rad Laboratories)
and the CFX Connect qPCR machine (Bio-Rad Laboratories). For
Ar primer set (listed in Supplementary Table 1), PCR efficiency was
determined by measuring a 10-fold serial dilutions of cDNA and
reactions having 95% and 105% PCR efficiency were included in
subsequent analyses. Relative differences in cDNA concentration
between WT and LivARKO mice were then calculated using the
comparative threshold cycle (Ct) method. To compare the
difference of Ar expression in the same tissue between WT and
LivARKO, a △Ct was calculated to normalize for internal control
using the equation: Ct (Ar) – Ct (18S). △△Ct was calculated:
△Ct (LivARKO) -△Ct (WT). Relative ArmRNA levels were then
calculated using the equation fold difference = 2△△Ct.

Assessment of Puberty, Estrous Cyclicity
and Reproductive Phenotypes in
LivARKO Females
Puberty was assessed beginning at 21 days of age by visual
inspection of vaginal opening and assessing the age of first estrus
(21). Estrous cyclicity was determined, beginning at 8 weeks of
age and continuously for 24 days, by assessing vaginal cytology
(21). Fertility was assessed by mating 2-3 month old female mice
with proven fertile wild type male mice for 90 days, and
recording the number of pups and number of litters per female
(21, 22). The examiners were blinded to genotypes during all
data collection.

Analyzing Estrous Cyclicity and
Reproductive Phenotypes in
Hyperandrogenemic Females
Females implanted with DHT (Con-DHT vs LivARKO-DHT) or
an empty pellet (Con-veh vs LivARKO-veh) for 15 days were
divided into two groups. Group 1 underwent examination of
estrous cyclicity by vaginal cytology for 24 days starting at day 15
after DHT treatment. Females in group 2 were mated with fertile
males (one female with one male per cage) for 90 days starting at
day 15 of DHT treatment. Fertility was examined as
described above.

Histology Assays
The ovary was dissected from diestrus mice and fixed in 10%
formalin phosphate buffer and sectioned to 5 microns thickness
in its entirety by Johns Hopkins Medical Laboratories (Histology
June 2022 | Volume 13 | Article 868572
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group). Every 10th section was collected, and ovarian sections
were stained with hematoxylin and eosin and examined with a
Zeiss microscope.

Hormone Assays
Blood samples were collected from submandibular vein (17, 21)
between 9:00 and 10:00 AM and basal levels of serum LH and FSH
were measured. LH and FSH from serum of mice at diestrus were
measured by Luminex assay ((MPTMAG-49K, Millipore, Billerica,
MA) on a Luminex 200IS platform (Luminex Corporation). The
assay detection limit for LH was 0.012 ng/mL and for FSH was
0.061ng/mL. The intra-assay and interassay coefficients of variation
(CV) for LH and FSH were between 5% and 9%.

Glucose Tolerance Test
Mice were fasted overnight (16 h) and received intraperitoneal
(i.p.) injections of 2 g/kg body weight (BW) glucose. Glucose
level was measured at 0, 15, 30, 60, 90 and 120 minutes after
glucose injection.

Statistical Analysis
Statistical analyses used were described in each individual figure
legend. Some data were analyzed by student t-tests. Some data were
assessed by 2-way ANOVAwithmain effects of DHT treatment and
genotype assessed. All analyses were performed using Prism
software (GraphPad, Inc.). All results were expressed as means ±
SEM. A value of p<0.05 was defined as statistically significant.
RESULTS

Deletion of Androgen Receptor
Specifically in Liver
A hepatocyte-specific AR knockout mouse was generated using
the CRE/lox system (11). In LivARKO mice, Ar mRNA
expression in the liver was significantly reduced (90%)
compared to control mice littermates, while Ar mRNA
expression was not altered in the ovaries, uterus, brain,
pituitary, fat or muscle (Figure 1A). The PCR product from
liver DNA indicated the homozygous floxed-Ar alleles in control
mouse and KO alleles in LivARKO mouse (Figure 1B). In our
observations (11, 15, 17) and others (10, 23), mice with ARfl/fl,
Alb-Cre -/- do not exhibit a different reproductive or metabolic
phenotype, thus ARfl/fl mice are commonly used as control mice.

Female LivARKO Mice Have Normal
Puberty, Estrous Cycling and Fertility
To assess age of pubertal onset in female mice, age of initial
vaginal opening and first estrus was determined. Compared to
control littermates, LivARKO females experienced vaginal
opening (28.3 ± 0.6 vs 28.4 ± 0.9 day of life) and first estrus
(37.1 ± 1.0 vs 37.0 ± 1.3 day of life) at similar ages (Figures 2A,
B). There was also no difference in ovarian estrous cycle duration
or pattern (Figures 2C–E); LivARKO female mice spent similar
amounts of time in proestrus, estrus, and met/diestrus as control
mice. During the mating period of 90 days, there was no
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significant difference between control and LivARKO mice in
either the number of litters or number of pups per female
(Figures 2F, G).

Female LivARKO-DHT Mice Have Altered
Cyclicity and Fertility
We have previously reported that low dose DHT to control
female mice results in reproductive and metabolic abnormalities
(11, 15, 17) and that LivARKO mice do not experience the
insulin resistance and glucose intolerance present in control mice
upon DHT treatment (11, 19). We examined whether female
LivARKO mice, while not exhibiting the metabolic
derangements, would experience reproductive dysfunction. In
both control and LivARKO vehicle treated mice (Figure 2C–E),
estrous cycling was disrupted (consistent diestrus) upon
treatment with DHT (Figure 3A). Estrous cycles in the 4
groups of mice were shown in Figure 3B.

Examples (one mouse as representation per group) of fertility
profiles are plotted for Con-DHT and LivARKO-DHT mice in
Figure 3C. Number of litters and average litter size was compared
among experimental groups ((litters: 3.0 ± 0.0 (Con-veh); 3.2 ± 0.2
(LivARKO-veh); 0.3 ± 0.3 (Con-DHT); 0.0 ± 0.0 (LivARKO-DHT);
number of pups: 26.3 ± 3.0; 25.6 ± 4.6; 2.5 ± 2.5; 0.0 ± 0.0)) and
graphed in Figure 3D, E. Vehicle treated data are displayed as
references. The number of litters (Figure 3D) and pups per female
(Figure 3E) of LivARKO-DHT and Con-DHT mice during the
mating period was significantly reduced compared to Con-veh and
LivARKO-veh mice. In the presence of hyperandrogenemia,
LivARKO-DHT mice failed to exhibit impaired glucose tolerance
compared to Con-DHT mice (Figures 3F, G).

Female LivARKO-DHT Mice Have Similar
Body Weight, CL, and LH and FSH Levels
Compared to Con-DHT Mice
During the two months of DHT treatment, body mass
(Figure 4A) was not altered among groups. Morphology of
ovaries from Con-veh, LivARKO-veh, Con-DHT and LivARKO-
DHT mice is shown in Figures 4B–E. Ovarian architecture was
similarly altered upon DHT treatment in both control and
LivARKO mice (Figures 4D, E). The most marked difference
was abundance of the CL ((corpora lutea: 2.7 ± 0.8 (Con-veh); 2.3
± 0.4 (LivARKO-veh); 0.0 ± 0.0 (Con-DHT); 0.0 ± 0.0 (LivARKO-
DHT)) which were much less common in the ovaries of the DHT
treated mice (Figures 4D–F) than in any of the vehicle treated
groups (Figures 4B, C, F). There was no significant difference in
serum levels of LH and FSH among Con-veh, LivARKO-veh,
Con-DHT and LivARKO-DHT groups: LH: 0.36 ± 0.07 vs 0.46 ±
0.09 vs 0.32 ± 0.03 vs 0.56 ± 0.10ng/ml; FSH 0.99 ± 0.50 vs 0.72 ±
0.11 vs 0.95 ± 0.18 vs 0.74 ± 0.13ng/ml (Figures 4G, H).
DISCUSSION

Multiple organs and hormones are involved in the pathophysiology
of androgen-induced metabolic and reproductive dysfunction. Liver
dysfunction encompassing hepatocyte insulin resistance and up
June 2022 | Volume 13 | Article 868572
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regulated gluconeogenesis occurs in hyperandrogenism in the lean
and obese state. We were able to delete Ar in liver but not in other
tissues at mRNA levels (Figure 1) in addition to protein levels (11).
Hepatocyte Ar does not play an essential role in female reproductive
function in the normal and hyperandrogenic state as puberty
timing, estrous cycling, and fertility were similar in the LivARKO
and control mice under normal and hyperandrogenic conditions.

The LivARKO female mice have similar weights as control mice,
consistent with previous findings (10). LivARKO mice also have
normal hepatic and peripheral glucose handling (10, 11), an
Frontiers in Endocrinology | www.frontiersin.org 4
environment that is associated with normal reproductive function so
it is not surprising that they have reproductive function similar to
control mice under physiological androgen conditions. Because of the
role of Ar in organ dysfunction in the hyperandrogenic state, we next
induced hyperandrogenemia in the LivARKO mice. Upon treatment
with DHT, LivARKO mice exhibit reproductive dysfunction with
altered estrous cycling, and infertility to a similar degree (Figures 3,
4) as control mice. Importantly, LivARKO mice treated with DHT do
not experience disrupted metabolic changes (Figures 3F–G) as
previously reported (11). That reproductive dysfunction occurs in the
A B

FIGURE 1 | Androgen receptor (Ar) is specifically deleted in liver. (A) Ar mRNA levels of LivARKO compared to control littermates, measured by qRT-PCR, in liver,
ovary, uterus, hypothalamus, pituitary, gonadal fat, and skeletal muscles. (B) PCR analysis of Ar liver genomic DNA from control and LivARKO mouse. Arrows
pointed to a 952 bp Ar floxed band in liver of control mouse and a knockout band 404 bp in liver of LivARKO mouse. Two-tailed student’s t-tests were applied.
P-values were stated in the graphs. N=4-5. Values were mean ± S.E.M.
A B C

D FE G

FIGURE 2 | Female puberty, cyclicity and fertility. LivARKO mice exhibited similar age of puberty onset, assessed by examination of vaginal opening (A) and first
estrus (B), as control mice. (C). Percentage of time spent in each of the stages (4-month old) was not significantly different between control and LivARKO mice.
Representative data for vaginal cytology from individual Con (D), and LivARKO mice (E). There were no significant differences between LivARKO and controls in
either total numbers of litters per female (F), or numbers of pups per female (G). Data were compared by two-tailed student’s t-tests. Values are mean ± SEM, n =
5-13/group. NS, non-significant; P, proestrus; E, estrus; M, metestrus; D, diestrus.
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DHT treated LivARKOmice with normal hepatic glucose homeostasis
suggests that androgen-induced reproductive dysfunction can occur
independently of androgen-induced metabolic dysfunction.

It is beyond the scope of this paper to explore the mechanism
underlying the reproductive dysfunction in the DHT- treated
control and LivARKO mice. Global AR knockout mice treated
with DHT do not experience changes in body composition, ovarian
or adipocyte dysfunction like wild type mice, indicating that the Ar
plays a role in these tissues (9). The Ar of the ovarian theca cells
(15), pituitary gonadotrope (17), and the neuron (24) all play a role
in the reproductive dysfunction of hyperandrogenic females.

In the DHT treated control or LivARKO mice, the LH is not
significantly different from untreated mice (Figure 4). This
Frontiers in Endocrinology | www.frontiersin.org 5
observation is like other rodent models of hyperandrogenemia (24,
25) and different than women with hyperandrogenism and
polycystic ovary syndrome (PCOS), who can experience a higher
LH or LH/FSH ratio (26). Indeed, the LH pulse frequency is not
different between DHT treated and untreated mice (25). In this way
postnatal DHT mouse model of hyperandrogenemia does not
completely recapitulate human PCOS which is a limitation of this
study. However, the fact that LH is not elevated allows us to tease out
the effect of hyperandrogenism on gonad function separate from any
effect due to LH hypersecretion.

Our data significantly indicate that the liver AR does not play
a critical role in the reproductive dysfunction associated with
hyperandrogenemia in lean condi t ions , and tha t
A B

C D

F G

E

FIGURE 3 | Cyclicity and fertility of mice with DHT treatment. Representative data for vaginal cytology from individual Con-DHT and LivARKO-DHT mice (A). (B) Estrous
cycles. Percentage time spent in each stage of the estrous cycle was significantly differently among the four groups. Metestrus (M)/diestrus (D) was shown consistently in DHT
treated mice. (C) Example of fertility profile: female mice were mated with wild type male mice for 90 days. Each line represents an individual female mouse of each group. The
black dot represents the day that each litter was born after introduction to male. Number on the top of line represents how many pups in each litter. Total numbers of litters
(D) and pups (E) per female were significantly reduced in DHT treated (Con-DHT and LivARKO-DHT) mice compared to vehicle treated mice during the 90 days of mating.
(F) Control and LivARKO mice, with and without DHT treatment were subjected to glucose tolerance test (GTT). (G) The area under the curve (AUC) was determined for the
GTT. Statistical analysis was performed using two-way ANOVA followed by Tukey’s multiple tests. Bars with different letters represent significantly different values from each
other with p<0.05. Values are mean ± SEM, n = 4-7/group.
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hyperandrogenemia affects reproductive function even in the
absence hepatic associated metabolic derangements. The
LivARKO treated with DHT mouse model allows us to study
the effects of hyperandrogenism on reproductive tissues in vivo
in the absence of liver-induced metabolic dysfunction, a feature
not present in other rodent models of female hyperandrogenism.
Future study may focus on how hepatic AR affects fertility and
metabolic function under obese hyperandrogenemic conditions.
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FIGURE 4 | Body mass, ovarian structure, and LH and FHS levels of mice with DHT treatment. (A) Body mass was recorded at 4 month old. Representative ovary
structure for Con-veh (B), LivARKO-veh (C), Con-DHT (D) and LivARKO-DHT (E). (F) Corpora lutea (CL) was counted every 10th section per ovary (n=7-11 per
group). LH (G) and FSH (H) levels were measured at basal (Met/Destrus) stage. There was no difference in body mas, CL, basal LH and FSH levels among groups.
(F) Statistical analysis was performed using two-way ANOVA followed by Tukey’s multiple tests. Bars with different letters represent significantly different values from
each other with p<0.05. Values are mean ± SEM, n = 5-11/group. NS: non-significant.
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