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ABSTRACT
BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder diagnosed based on social
impairment, restricted interests, and repetitive behaviors. Contemporary theories posit that cerebellar pathology
contributes causally to ASD by disrupting error-based learning (EBL) during infancy. The present study represents the
first test of this theory in a prospective infant sample, with potential implications for ASD detection.
METHODS: Data from the Infant Brain Imaging Study (n = 94, 68 male) were used to examine 6-month cerebellar
functional connectivity magnetic resonance imaging in relation to later (12/24-month) ASD-associated behaviors
and outcomes. Hypothesis-driven univariate analyses and machine learning–based predictive tests examined
cerebellar–frontoparietal network (FPN; subserves error signaling in support of EBL) and cerebellar–default mode
network (DMN; broadly implicated in ASD) connections. Cerebellar-FPN functional connectivity was used as a
proxy for EBL, and cerebellar-DMN functional connectivity provided a comparative foil. Data-driven functional
connectivity magnetic resonance imaging enrichment examined brain-wide behavioral associations, with post hoc
tests of cerebellar connections.
RESULTS: Cerebellar-FPN and cerebellar-DMN connections did not demonstrate associations with ASD. Functional
connectivity magnetic resonance imaging enrichment identified 6-month correlates of later ASD-associated
behaviors in networks of a priori interest (FPN, DMN), as well as in cingulo-opercular (also implicated in error
signaling) and medial visual networks. Post hoc tests did not suggest a role for cerebellar connections.
CONCLUSIONS: We failed to identify cerebellar functional connectivity–based contributions to ASD. However, we
observed prospective correlates of ASD-associated behaviors in networks that support EBL. Future studies may
replicate and extend network-level positive results, and tests of the cerebellum may investigate brain-behavior
associations at different developmental stages and/or using different neuroimaging modalities.

https://doi.org/10.1016/j.bpsgos.2021.12.004
Autism spectrum disorder (ASD) is a heterogeneous condition
diagnosed on the basis of social impairment, restricted in-
terests, and repetitive behaviors (1). The characteristic
behavioral features of ASD generally emerge around 12
months of age (2), and ASD diagnoses have largely stabilized
by 24 months of age (3). To account for postnatal de-
velopments, contemporary theories posit that cerebellar con-
nectivity contributes to the causation of ASD by disrupting
error-based learning (EBL) during infancy (4–6). EBL de-
scribes an iterative process whereby expectancy violations are
2021 THE AUTHORS. Published by Elsevier Inc on behalf of the Society o
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interpreted against the backdrop of prior experiences to opti-
mize prediction and inform future behaviors (7,8). During in-
fancy, expectancy violations enhance object learning and
encourage object exploration (9). As reviewed below, there is
evidence implicating cerebellar connectivity in EBL (10–12),
cerebellar pathology in ASD (13–15), and EBL impairment in
ASD (16,17). However, cerebellar functional connectivity has
not been examined in relation to ASD during infancy. Such
studies are necessary to evaluate cerebellar functional con-
nectivity as a presymptomatic risk biomarker for ASD (18).
f Biological Psychiatry. This is an open access article under the
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Prospective studies of infants at high familial risk for ASD
(19,20) are at the vanguard of presymptomatic risk biomarker
research. These studies have identified multiple aspects of
brain structure and function that correlate with behavioral
variation relevant to ASD (21–23) and predict ASD diagnosis
(24–26). Notably, markers of risk during infancy (e.g., increased
corpus callosum volume) may be transient (27). Contextual-
izing presymptomatic risk biomarkers within a developmental
framework that accounts for experience-dependent behavioral
variation holds promise to identify modifiable pathways that
may be amenable to intervention (28). To this end, the present
study investigated cerebellar functional connectivity in relation
to one candidate experience–dependent process: EBL.

The Cerebellum Is Important for EBL

Contextualizing and extending the cerebellum’s long-
recognized role in motor control, recent data suggest that
the cerebellum subserves EBL for adaptive movement,
cognition, and social prediction (13,15,29,30). This capability is
instantiated in polysynaptic, cerebellar-cerebral circuits
(31–34). Notably, cerebellar circuit-level (anatomical) disrup-
tions are associated with cerebellar functional connectivity
alterations (35), indicating that functional connectivity is sen-
sitive to underlying neuroanatomy (34). Evidence from studies
of functional connectivity suggest that the function of a given
cerebellar region is determined by its network membership
(34,36,37), with cerebellar regions in the somatomotor network
supporting error signaling for movement (38) and cerebellar
regions in the frontoparietal network (FPN) supporting error
signaling following expectancy violations (36,39,40). Anatomi-
cally and functionally defined cerebellar connections are
implicated in the timing and execution of EBL tasks (saccade
adaption, eye-blink conditioning) (41–46), and their protracted
development represents an opportunity to leverage
experience-dependent neural plasticity in service of behavioral
intervention (47,48).

Cerebellar Contributions to ASD

Cerebellar contributions to ASD, in turn, are supported by
basic and late developmental (child/adult) clinical research. In
mice, cerebellar pathology is sufficient to produce ASD-like
social and repetitive behaviors, and pharmacologic treatment
targeting cerebellar Purkinje cells redresses those same be-
haviors (49). Among individuals with ASD, cerebellar functional
connectivity differentiates cases from controls (12,50–53) and
scales with symptom severity (53,54), total cerebellar volume is
commonly increased (55), and Purkinje cell counts are
decreased (56,57). Among individuals without ASD, acquired
cerebellar injury produces behaviors resembling the ASD
phenotype, including difficulties with social judgment, abstract
reasoning, and set shifting (58). Although there are few studies
examining the infant cerebellum in relation to ASD, the avail-
able literature suggests that adult findings may generalize. The
development of cerebellar white matter pathways during in-
fancy predicts sensory responsivity and restricted, repetitive
behavior among toddlers (21), and perinatal cerebellar mal-
formations are associated with a 36-fold increase in ASD risk
(5,59).
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EBL May Be Disrupted in ASD

Finally, there is growing interest in EBL impairment in ASD
(17,45,60). Individuals with ASD perform poorly on cerebellar-
mediated tasks of EBL (45,61,62), which may alter
experience-dependent learning and thereby contribute to the
emergence of ASD-associated behaviors (63–65). In the social
domain, EBL impairment may disrupt predictions, with down-
stream consequences for social learning and joint attention
(66,67). In the motor domain, EBL impairment may disrupt
planning following errors of precision or timing, contributing to
high rates of motor discoordination in ASD (68,69). However,
discerning the pathways through which these associations
emerge is difficult. In the context of diminished EBL, restricted
interests and repetitive behaviors may serve a compensatory
function to make the immediate environment more predictable
(70,71). They may also reflect alterations to neuro-
developmental processes supporting the adaptability of the
motor system to environmental inputs (72,73).

Motivation for Study Design

The present study examined cerebellar functional connectivity
contributions to ASD in a presymptomatic infant sample. Data
from the Infant Brain Imaging Study (IBIS) were used to
examine 6-month cerebellar functional connectivity magnetic
resonance imaging (fcMRI) in relation to 12- and 24-month
ASD-associated behaviors and 24-month ASD diagnostic
outcomes (Figure 1). For additional information about IBIS,
refer to the Supplement (page 1). ASD-associated behaviors
were selected based on hypothesized associations with EBL
(Table S1), and our three-part analytic plan (univariate, multi-
variate machine learning, whole-brain fcMRI enrichment) was
designed to inform understanding of EBL.

To this end, univariate and multivariate machine learning–
based tests analyzed cerebellar-FPN and cerebellar–default
mode network (DMN) connections. The FPN subserves error
signaling in support of EBL (39,40,74) and is overrepresented
in the cerebellum compared with the cortex (36). It would be
extremely difficult to perform task-based neuroimaging of EBL
in infants; thus, we used cerebellar-FPN functional connectivity
as a proxy for EBL. Unlike the FPN, the DMN is not implicated
in error processing; however, it is frequently implicated in ASD
(54,75–77), making it an ideal comparative foil. Concomitant
analysis of cerebellar-FPN and cerebellar-DMN functional
connections afforded insight into the breadth and nature of
hypothesized cerebellar disruption. Both the FPN and DMN are
implicated in ASD-associated motor, social, restricted, and
repetitive behaviors during early development (78–80).

To assess whether cerebellar contributions to ASD-
associated behaviors are detectable in a brain-wide search
space, including but not limited to the FPN and DMN, we
performed data-driven fcMRI enrichment (78–80) with post hoc
randomization testing. Enrichment identifies clusters of strong
brain-behavior associations within and between functional
brain networks, and post hoc testing evaluated whether
cerebellar connections contributed to enrichment above
chance. Evidence that infant cerebellar fcMRI relates to later
ASD-associated behaviors and outcomes would advance
current understanding of ASD pathogenesis, informing the
development of targeted interventions.
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Figure 1. Summary of the (A) data collection
timeline and (B–D) three-part analytic plan. Func-
tional connectivity magnetic resonance imaging
(fcMRI) data were collected at 6 months, continuous
measures of autism spectrum disorder (ASD)–asso-
ciated behavior were collected at 12 and 24 months,
and ASD diagnostic outcomes were evaluated at 24
months. Circles and squares represent regions of
interest (ROIs) located in the cortex and cerebellum,
respectively. Colors (green, pink, blue, yellow)
denote ROI network (Net) assignments (Net 1 and
Net 2 being arbitrary non–frontoparietal network
[FPN] and non–default mode network [DMN],
respectively). bx, behavior; Fc, functional connec-
tions/functional connectivity.
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METHODS AND MATERIALS

Participants

This study analyzed neuroimaging and behavioral data from
infants who participated in IBIS at the four original network sites:
the University of North Carolina, Children’s Hospital of Phila-
delphia, Washington University School of Medicine, and the
University of Washington. To be included, infants were required
to provide usable fcMRI data at 6 months and diagnostic
outcome data at 24 months. LORIS (Longitudinal Online
Research and Imaging System) (81) served as the hub for data
management. All families who participated in IBIS provided
informed consent, approved by each site’s Human Subjects
Review Board. IBIS data have been published previously [e.g.,
(80–82)], but IBIS studies have examined neither cerebellar
fcMRI nor 6-month fcMRI in relation to later ASD-associated
behaviors and outcomes.

High-risk infants were defined as having at least 1 siblingwith
an ASD diagnosis. High-risk-positive infants received a clinical
best estimate ASD diagnosis (see below) at 24 months of age,
whereas high-risk-negative infants did not. Low-risk-negative
infants had at least 1 typically developing older sibling, did not
have any first- or second-degree family members with ASD or
intellectual disability, and did not receive anASDdiagnosis at 24
months of age. Low-risk-positive infants (n = 1) were excluded
from analyses. Complete genetic and family history exclusion
criteria are detailed in prior publications (79,82).

Mann-Whitney U (continuous variables) and c2 (categorical
variables) tests were used to compare participants included in
analyses (n = 94) with the full IBIS sample. No differences were
observed with respect to behavior, risk status, or diagnosis (ps
. .05). However, the ratio of females to males was lower
among participants who provided 6-month fcMRI data (p ,

.01). There were no effects of sex on behavior (ps . .05).
Sample characteristics are reported in Table 1.

Behavioral Assessment

Functional connectivity at 6 months was examined in relation
to 12- and 24-month continuous behaviors (Figure 2) and 24-
Biological Psychiatry: Global O
month diagnostic outcomes. Twelve-month behaviors
indexed core and associated ASD risk factors: initiation of joint
attention (79,83), fine and gross motor functioning (78,84),
restricted behaviors (80), and ritualistic/sameness behaviors
(80). Twenty-four-month behaviors indexed ASD symptoms:
total symptom severity (85), social affect (86), and restricted
interests and repetitive behaviors (RRBs) (86). We will refer to
12-month risk factors and 24-month symptoms collectively as
ASD-associated behaviors (Figure 1). Groupwise descriptive
statistics are provided in Table S2.

Initiation of joint attention was assessed using the
Communication and Symbolic Behavior Scales Developmental
Profile (87). Consistent with prior work (79), initiation of joint
attention was operationalized as Communication and Sym-
bolic Behavior Scales Developmental Profile item 7: the num-
ber of examiner-participant interactions “used to direct
another’s attention to an object, event, or topic of a commu-
nicative act” (87). Fine and gross motor functioning were
assessed using the Mullen Scales of Early Learning (88). The
Mullen Scales of Early Learning is a standardized, clinician-
administered test of developmental milestones for children 3
to 69 months of age, and it is well validated in ASD (89–91).
Standardized T scores were analyzed. Restricted and ritual-
istic/sameness behaviors were assessed using the Repetitive
Behavior Scale–Revised (RBS-R) (92). The RBS-R is a 43-item
parent-report questionnaire validated for toddlers (93–95).
Ritualistic and sameness subscales were combined because
they load onto a common factor (93,95), and items endorsed
(rather than severity scores) were examined given evidence
that counts are less susceptible to rater bias (94). One outlier
7.7 SDs from the mean was excluded from analyses of ritual-
istic/sameness behaviors.

Twenty-four-month behaviors were indexed by the
Autism Diagnostic Observation Schedule (ADOS) and
Autism Diagnostic Observation Schedule, Second Edition
(ADOS-2) (96,97). Consistent with ADOS conventions, in-
fants were administered Module 1 or 2 based on language
proficiency (n = 56 ADOS Module 1, n = 5 ADOS Module 2,
n = 33 ADOS-2 Module 1). Continuous measures of ASD
pen Science January 2023; 3:149–161 www.sobp.org/GOS 151
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Table 1. Sample Characteristics

Characteristics n %

Sex

Female 26 27.7%

Male 68 72.3%

Outcome Group

Low-risk negative 35 37.2%

High-risk negative 46 48.9%

High-risk positive 13 13.8%

Race

Biracial/multiracial 10 10.6%

Black/African American 2 2.1%

White 72 76.6%

Not reported 10 10.6%

Ethnicity

Hispanic or Latino 6 6.4%

Not Hispanic or Latino 78 83.0%

Not reported 10 10.6%

Mean SD

Age at Time of Scan, mo 6.51 0.59

Number of BOLD Frames (After Scrubbing) 241.13 57.17

12-mo Behaviors

Age at time of assessment, mo 12.48 0.49

CSBS-DP IJA 1.44 1.38

RBS-R restricteda 0.30 0.85

RBS-R ritualistic-samenessa 0.63 1.73

MSEL fine motor (T score) 56.21 9.59

MSEL gross motor (T score) 48.70 12.75

24-mo Behaviors

Age at time of assessment, mo 24.57 1.09

ADOS total CSSa 2.05 1.94

ADOS social affect CSSa 2.39 1.98

ADOS RRB CSSa 2.91 2.53

All participants included in the study sample (n = 94) provided at
least 150 noncensored functional connectivity magnetic resonance
imaging frames at 6 months. High scores reflect typical behaviors,
unless otherwise indicated.

ADOS, Autism Diagnostic Observation Schedule; BOLD, blood
oxygen level–dependent; CSBS-DP, Communication and Symbolic
Behavior Scales Developmental Profile; CSS, calibrated severity
score; IJA, initiation of joint attention; MSEL, Mullen Scales of Early
Learning; RBS-R, Repetitive Behavior Scale–Revised; RRB, restricted
interest and repetitive behavior.

aVariables for which high scores reflect atypical behaviors.
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severity were obtained for ADOS and ADOS-2 modules by
computing calibrated severity scores (CSSs) across all
symptoms (85), as well as within the social affect and RRB
symptom domains (86). CSSs (85,86) were shifted to set
minimum values to zero and eliminate discontinuities (in
RRB CSSs) engendered by the scoring algorithm. As
detailed in prior IBIS publications (24,25,82), clinical best
estimate ASD diagnoses were made at 24 months by
experienced clinicians applying the DSM-IV-TR (98)
checklist to available testing and interview data.
152 Biological Psychiatry: Global Open Science January 2023; 3:149–
Image Acquisition

Data were collected using cross-site calibrated 3T Siemens
MAGNETOM TIM Trio scanners with 12-channel head coils. A
3-dimensional sagittal T2-weighted sequence (echo time = 497
ms, repetition time = 3200 ms, matrix 256 3 256 3 160, voxels
1 mm3) was used for coregistration with blood oxygen level–
dependent scans. All sites followed identical protocols using
gradient-echo echo-planar image acquisition (echo time = 27
ms, repetition time = 2500 ms, voxels 4 3 4 3 4 mm3). Infants
were naturally sleeping during fMRI scanning, which involved
two 6.25-minute runs (79).

Pre- and Postprocessing

We implemented the same basic functional MRI processing as
previously described (25,79), with updates to improve data
quality (Supplement, page 2). fcMRI processing applied global
and nuisance signal regression, spatial and temporal filtering,
bandpass filtering, and motion scrubbing at framewise
displacement of 0.2 (99). Infants included in analyses were
required to provide at least 150 noncensored frames. Neuro-
imaging exclusions are provided in Table S3.

Definition of Regions of Interest and fcMRI
Computation

Computation of time series for the primary set of 230 regions
of interest (ROIs) (10-mm diameter) were described by Pruett
et al. (100), and ROI coordinates are provided in Table S4. In
addition to five cerebellar ROIs in the primary 230-ROI set, we
generated four new cerebellar ROIs based on their connectivity
profiles with functional networks relevant to present hypothe-
ses: the FPN and DMN. New cerebellar ROIs were centered on
voxels that exhibited maximal correlations (in an independent
24-month sample) with network-average time series for the
FPN or DMN, with one ROI placed for each hemisphere-
network pair (left/right, FPN/DMN). Additional details
regarding cerebellar ROI placement are reported in the
Supplement (pages 3–4). Connectivity values were calculated
as Pearson correlations between pairs of ROI time series
(Figure 3A) and were Fisher r-to-z transformed for analyses.

Network Derivation

To obtain an age-appropriate network solution, we applied the
Infomap community detection algorithm (101) to 6-month
fcMRI data. Infomap was implemented in MATLAB release
2015b (The MathWorks, Inc.), and ROIs were sorted into net-
works at edge densities ranging from 2% to 10% (Figure S1).
Structure-specific thresholding was applied to edges within
structural components (cortical, subcortical, cerebellar), rather
than across the entire brain (36). This approach integrates
subcortical and cerebellar ROIs into whole-brain networks by
accounting for the fact that subcortical-cortical and cerebellar-
cortical correlations are relatively diminished due to acquisition
factors (e.g., distance from head coil) (102). An automated
procedure (102) was used to identify the consensus network
structure (Figure 3B), and network names were determined by
comparing our results with existing solutions, balancing
neuroanatomical considerations (Figure S2). ROIs unassigned
to networks (n = 4) were not analyzed.
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Figure 2. Combined histograms and density plots
for autism spectrum disorder–associated behaviors
at 12 and 24 months. The leftmost distributions
(enclosed by dashed box) were modeled using
Poisson and negative binomial regression, whereas
the rightmost distributions were modeled using linear
regression. Blue density curves identify variables for
which high scores reflect atypical behaviors; red
density curves identify variables for which high
scores reflect typical behaviors. CSS, calibrated
severity score; IJA, initiation of joint attention; Rit/
Same, ritualistic and sameness behaviors; RRB,
restricted interest and repetitive behavior; V12, 12-
month visit; V24, 24-month visit.
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Statistical Analysis

Univariate analyses were conducted in R (version 4.0.0; R
Foundation for Statistical Computing) (103), and machine
learning analyses were conducted in Python (104,105).
Enrichment was implemented in Python (https://github.com/
CPD-Lab/CBM_EA). In univariate and enrichment analyses,
we modeled continuous outcomes because they provide more
nuanced information about early behavioral development. In
machine learning analyses, we predicted categorical outcomes
Biological Psychiatry: Global O
to facilitate comparison with prior IBIS work demonstrating
accurate diagnostic outcome prediction (25).

Univariate Associations. To evaluate whether 6-month
cerebellar-FPN and/or cerebellar-DMN connections
contribute to the development of ASD-associated behaviors, 9
(cerebellar ROIs) 3 28 (12 FPN116 DMN ROIs) correlation
matrices were computed for each subject, and generalized
linear models were used to examine associations between
Figure 3. Functional network architecture in 6-
month infants. (A) The sample-mean functional
connectivity (FC) magnetic resonance imaging matrix
depicts the correlation structure among spherical
regions of interest (ROIs) (n = 234). ROIs are sorted
by network assignment [see legend in panel (B)], and
the color gradient illustrates the strength of correla-
tions between ROIs. (B) Functional networks are
visualized on dorsal, lateral, and medial surfaces of
the brain. The color of an ROI identifies its network
assignment. (C) Cerebellar ROIs, also colored by
network [see legend in panel (B)], are visualized on a
flattened cerebellar surface (124). aDMN, anterior
default mode network; aFP, anterior frontoparietal
network; CO, cingulo-opercular network; DAN, dor-
sal attention network; MotM, motor-mouth network;
mVis, medial visual network; pCO, posterior cingulo-
opercular network; pDMN, posterior default mode
network; pFP, posterior frontoparietal network; SM1,
somatomotor network 1; SM2, somatomotor
network 2; SubC, subcortical network; tDMN, tem-
poral default mode network; US, unspecified/unas-
signed; Vis, visual network.
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matrix elements and dimensional behaviors (Figure 2). Based
on distribution shape, Poisson regression was used for the
Communication and Symbolic Behavior Scales, RBS-R, and
ADOS variables, whereas linear regression was used for the
Mullen Scales of Early Learning fine and gross motor vari-
ables. To ascertain robustness given intermittent evidence
for overdispersion (106), we compared results from Poisson
and negative binomial models. Empirical p values were
calculated using randomization (n = 5000). To balance sta-
tistical rigor and power (Figure S3), false discovery rate
(FDR) correction was performed with respect to the number
of connections (n = 252). Connections were considered
significant at FDR q values ,0.05.

Multivariate Machine Learning Prediction. Whereas
univariate approaches are well suited for identifying strong
individual functional connections, machine learning ap-
proaches examine the collective utility of many functional
connections. Prior IBIS work by Emerson et al. (25) ach-
ieved a highly accurate diagnostic outcome prediction
(positive and negative predictive values .95%) using 6-
month whole-brain functional connectivity. To determine
whether accurate diagnostic outcome prediction is attain-
able using exclusively cerebellar features, we replicated
their approach using 6-month cerebellar-FPN and
cerebellar-DMN connections (networks defined using 6-
month solution).

Detailed methods are provided by Emerson et al. (25).
Briefly, support vector machine learning classifiers were
trained and tested in a high-risk sample (n = 59) using nested,
leave-one-out cross-validation. Features were selected based
on the strength of correlations with 12- and 24-month ASD-
associated behaviors. To be included as a training feature in
the outer loop, we required that a given functional connection
exhibit at least one nominally significant behavioral correlation
(p , .05) across all folds of the inner loop. Hyperparameter
tuning was conducted in the inner loop over a range of regu-
larization values (C: [0.001, 10.0]) using a linear kernel and
balanced class weights (25).

fcMRI Enrichment. fcMRI enrichment identifies functional
network pairs that contain clusters of strong brain-behavior
associations (78–80). To assess whether cerebellar contri-
butions to ASD-associated behaviors are detectable in a
brain-wide search space, we first identified network pairs
that were enriched for associations with 12- and 24-month
ASD-associated behaviors, and we then performed
randomization testing to quantify the extent to which cere-
bellar connections were overrepresented in enriched
networks.

Our approach proceeded in three steps. First, the 5%
strongest brain-behavior associations (hereafter referred to as
hits) were identified in real and shuffled (n = 50,000) data using
univariate screening (Poisson or linear regression). Second, for
every network pair, enrichment p values were computed as the
fraction of shuffled runs with at least as many hits as real data.
Based on simulations, we determined that p values ,.001
were necessary to approximate a 5% brain-wide false positive
rate. To avoid overlooking potentially informative results, p
values ,.01 were also considered significant if they
154 Biological Psychiatry: Global Open Science January 2023; 3:149–
demonstrated the capacity to significantly predict behavior in
secondary validation (Supplement, page 5).

Post Hoc Randomization. Between enriched networks,
randomization testing (n = 10,000) examined whether cere-
bellar ROIs were overrepresented among hits. Cerebellar
involvement was quantified as the number of hits (nC) that
included at least one cerebellar ROI. Empirical p values were
computed as the fraction of the randomization distribution in
which nCrandom . nCreal. Aggregation of cerebellar-cerebral
connections (in the top 5% of the randomization distribution)
would identify important cerebellar contributions to ASD-
associated behaviors, affording a whole-brain counterpart to
hypothesis-driven testing.

RESULTS

Univariate Associations

Hypothesis-driven tests of univariate associations between 6-
month cerebellar-cerebral (FPN, DMN) functional connectivity
and later dimensional behaviors failed to implicate the cere-
bellum in ASD (Figure 4) despite statistical power to detect
medium-sized effects (Figure S3). Prior to FDR correction, as
expected by chance, 5.6% of univariate tests were significant
at p , .05. Following FDR correction, no significant results
remained at q , .05. To guard against false negatives, we
reanalyzed data under conditions with fewer comparisons;
results remained null (Supplement, page 6).

Multivariate Machine Learning

In the context of familial risk (w1/5 chance of ASD), a machine
that exclusively predicts the minority class (high-risk positive)
will achieve w20% positive predictive value, providing a
baseline for classifier evaluation. Our classifier failed to
meaningfully exceed 20% positive predictive value (observed
positive predictive value = 23%), and performance was simi-
larly poor with respect to other metrics (accuracy = 66%,
sensitivity = 23%, specificity = 78%), indicating that cerebellar-
FPN and cerebellar-DMN features are insufficient to inform
diagnostic outcome prediction at 24 months.

fcMRI Enrichment

Enrichment identified four 6-month network pairs that exhibi-
ted strong associations with later ASD-associated behaviors
(Figure 5), three of which passed secondary validation
(Figure S4). Network pairs passing secondary validation
included the posterior frontoparietal and medial visual (pFP-
mVis), anterior frontoparietal and posterior default mode (aFP-
pDMN), and cingulo-opercular and anterior default mode
(CO-aDMN) pairings. The somatomotor-1 and temporal default
mode (SM1-tDMN) network pair did not pass secondary vali-
dation (p = .15) and was not interpreted. Between the pFP and
mVis, increased positive connectivity was associated with
increased 24-month RRBs (p = .006). Between the anterior
FPN and pDMN, increased positive connectivity was associ-
ated with decreased 12-month fine motor functioning
(p = .010). Finally, between the CO and aDMN, increased
positive connectivity was associated with decreased 12-month
gross motor functioning (p = .007).
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Figure 5. (A) Within and between networks, clusters of brain-behavior associations were identified using enrichment. Lower triangles depict b coefficients.
Upper triangles were generated by applying a 5% threshold to b coefficients. Each black dot represents a single, strong brain-behavior association. (B) Six-
month functional connections between the somatomotor network 1 and temporal default mode network (SM1-tDMN), posterior frontoparietal network and
medial visual network (pFP-mVis), anterior FP and posterior DMN (aFP-pDMN), and cingulo-opercular network and anterior DMN (CO-aDMN) were strongly
associated with 12- and 24-month motor functioning and restricted interests and repetitive behaviors (RRBs). Within enriched network pairs, locations of
strong brain-behavior associations are visualized on posterior, dorsal, and lateral views of the brain (top). Box plots (bottom) further illustrate the range of
functional connectivity values in the study sample (x-axis) that underlie each brain-behavior correlation (y-axis). Blue-pink and green-red color gradients
identify negative and positive brain-behavior associations, respectively. Specific colors denote the sign and strength of functional connectivity (e.g., pale blue/
green = predominantly negative connectivity; pink/red = predominantly positive connectivity). All network pairs except the SM1-tDMN passed our secondary
validation protocol. ADOS, Autism Diagnostic Observation Schedule; CSS, calibrated severity score; MSEL, Mullen Scales of Early Learning; RBSR, Repetitive
Behavior Scale–Revised.

Figure 4. Hypothesis-driven tests of brain-
behavior associations. Each subplot visualizes esti-
mates and 95% confidence intervals (plotted on y-
axis) for univariate models relating 6-month
cerebellar–frontoparietal network (FPN) and
cerebellar–default mode network (DMN) functional
connections (n = 252 per subplot; plotted on x-axis
and sorted by magnitude) to 12- and 24-month
autism spectrum disorder (ASD)–associated behav-
iors (n = 8; indicated at top of subplots). The
modeling approach (Poisson, negative binomial, or
linear regression) is indicated at right, and blue
confidence intervals identify significant results
(empirical p , .05) prior to false discovery rate
correction. Following false discovery rate correction,
no significant results remained at false discovery
rate–corrected q , .05. ADOS, Autism Diagnostic
Observation Schedule; CSBS, Communication and
Symbolic Behavior Scales; CSS, calibrated severity
score; IJA, initiation of joint attention; MSEL, Mullen
Scales of Early Learning; RBSR, Repetitive Behavior
Scale–Revised; RitSame, ritualistic and sameness;
RRB, restricted interest and repetitive behavior; SA,
social affect.
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Post Hoc Randomization

Two of the three significant network pairs contained cerebellar
ROIs: CO-aDMN and pFP-mVis. Significant aggregation of
cerebellar-cerebral connections was not observed in either
network pair (Figure 6).
DISCUSSION

The present study failed to observe a relationship between 6-
month cerebellar connectivity and later ASD-associated be-
haviors and outcomes. Univariate tests of cerebellar-FPN and
cerebellar-DMN connections did not identify associations with
ASD-associated behaviors, multivariate machine learning tests
of cerebellar-FPN and cerebellar-DMN connections did not
achieve above-chance ASD diagnostic classification accuracy
at 24 months, and fcMRI enrichment with post hoc randomi-
zation did not support a substantial role for infant cerebellar
connectivity in enriched networks. Although cerebellar func-
tional connections did not predict ASD-associated behaviors
and outcomes, fcMRI enrichment identified multiple 6-month
network correlates of 12- and 24-month ASD-associated be-
haviors. Specifically, we observed prospective correlates of
156 Biological Psychiatry: Global Open Science January 2023; 3:149–
motor behaviors and RRBs in functional networks implicated in
error signaling (FPN) and ASD (DMN).

Cerebellar Effects May Manifest After ASD
Symptoms Have Consolidated

Given strong motivation for examining the cerebellum as a
presymptomatic risk biomarker for ASD, the present results
should not be taken to falsify cerebellar theories of ASD path-
ogenesis. We examined cerebellar functional connectivity as a
predictor of ASD, focusing primarily on cerebellar-FPN and
cerebellar-DMN connections. Alternatively, cerebellar connec-
tivity may differentiate individuals with ASD after symptoms
have consolidated. This putative sequencing is supported by
computational work, which suggests that cerebellar circuitry
expedites cortical processing in situations in which established
stimulus-response associations exist (8). It is also supported by
recent models of neurodevelopment, which argue that disrupted
sensorimotor and attentional experiences precede alterations in
experience-dependent brain development (28). Densely sam-
pling brain and behavior data at multiple time points across the
first few years of life would facilitate identification of develop-
mental epochs that may be acutely sensitive to—or predictive
Figure 6. Cerebellar contributions to network
enrichment. Dotted lines indicate the number of
cerebellar hits (nC) in real data, and shaded regions
identify randomization runs in which nCrandom .

nCreal. (A) Between the cingulo-opercular network
and anterior default mode network (CO-aDMN),
8.41% of randomization runs included at least as
many cerebellar hits as were observed in real data.
(B) Between the posterior frontoparietal network and
medial visual network (pFP-mVis), 49.17% of
randomization runs included at least as many cere-
bellar hits as were observed in the real data. These
results fail to support a statistically significant role for
the cerebellum in the emergence of 12- and 24-
month autism spectrum disorder–associated
behaviors.
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of—cerebellar disturbance. In addition to issues of develop-
ment, research is needed to comprehensively characterize as-
sociations among cerebellar pathology (assessed using multiple
neuroimaging modalities), EBL (assessed using behavioral tasks
with well-described cerebellar circuitry), and ASD (assessed
with respect to diagnosis and severity).

fcMRI Enrichment Identified Network Correlates of
ASD-Associated Behaviors

Despite null cerebellar findings, fcMRI enrichment identified
clusters of strong brain-behavior relationships in networks of a
priori interest (FPN, DMN), as well as in the CO and mVis. This
pattern of results is broadly consistent with the triple network
model of psychopathology (107,108). Although we did not
make a priori hypotheses about the CO, along with the FPN, it
subserves error signaling in support of EBL (74,109,110).
Together, the FPN and CO support the broader “control sys-
tem” (74,111), and their involvement in enriched network pairs
raises the possibility that ASD-associated behaviors reflect
cortically mediated error signaling impairments. Behavioral
studies are necessary to rigorously test cortical versus cere-
bellar learning systems (8) to determine which may account for
emerging ASD-associated behaviors. DMN representation
within enriched network pairs supports the developmental
extension of findings obtained in older samples (54,75–77).
Notably, a recent review implicated both the FPN and DMN in
ASD across multiple neuroimaging modalities and heteroge-
neous samples (112).

To contextualize the present enrichment results between
control and sensorimotor network (pFP-mVis) and control and
default mode (aFPN-pDMN, CO-aDMN) network systems, we
compiled results from prior fcMRI enrichment studies that also
examined functional connectivity in relation to ASD-associated
behaviors (Figure S5). Consistent with the present findings,
more positive connectivity between control and default mode
systems was reliably associated with atypical behaviors (poorer
motor functioning, increased RRBs). Similar patterns have been
reported in multiple psychiatric and neurodevelopmental disor-
ders (107) and may reflect compensatory activation (i.e.,
recruitment of multiple brain networks for processes typically
performed by a single network) (113,114) and/or network
dedifferentiation (i.e., reduced segregation) (115).

Whereas brain-behavior associations between default mode
and control systems exhibited consistent patterning across
fcMRI enrichment studies, brain-behavior associations be-
tween sensorimotor and control systems were mixed. To ac-
count for this variation, it may be important to again consider
the moderating effects of age. In early development, aspects of
the control system are posited to modulate input from other
regions of the brain, scaffolding age-appropriate learning and
behavior (116). Whether increased connectivity between visual
and control systems supports or disrupts behavioral devel-
opment may depend, critically, on the age of the child (117).

Limitations

This work represents the largest analysis of cerebellar fcMRI in
a prospective infant sample at high risk for ASD. There are,
however, several limitations. First, although simulation-based
power analyses suggested sufficient power to detect
Biological Psychiatry: Global O
medium-sized brain-behavior effects (118), identifying small-
sized, reproducible effects will require larger samples (119).
Second, data were analyzed from nine 10-mm cerebellar ROIs.
It is unclear whether results generalize to other regions in the
cerebellum, and it is possible that ROI size and/or placement
resulted in signal mixing across resting-state networks. Third,
cerebellar ROI placement was optimized to test hypotheses
about the FPN and DMN, and future studies might instead
optimize cerebellar ROI placement in relation to other networks
(e.g., CO) or anatomical structures. Fourth, at 6 months,
reduced cortical-subcortical connectivity and regional sub-
divisions in late-maturing networks (e.g., DMN, FPN) (120,121)
complicate efforts to ascribe adult-like function to infant data.
Behavioral assessment of EBL is necessary to establish a more
direct link to ASD phenotypes. Fifth, some measures of ASD-
associated behavior (ADOS, RBS-R) were developed to char-
acterize variation in clinical samples (85,92) and exhibited
limited variability among individuals without ASD, possibly
attenuating brain-behavior relationships. Finally, cerebellar
ROIs placed in relation to the FPN (in an independent 24-
month sample) did not exhibit preferential connectivity with
the FPN in our 6-month sample (Supplement, pages 3–4).
However, these cerebellar ROIs, which were placed by reverse
seeding the FPN, lie in regions that map to the FPN in inde-
pendent adult samples (122), indicating that ROI placement
generalizes to later stages of development. We propose three
explanations to reconcile these observations.

First, it is possible that patterns of cerebellar-network con-
nectivity in infants differ markedly from patterns of cerebellar-
network connectivity in toddlers. Large-scale functional brain
networks exhibit rapid maturation during the first (e.g., DMN)
and into the second (e.g., FPN) year of life (121), providing
precedent for developmental functional network changes.
Second, it is possible that components of the control system
modulate sensory and motor processing to scaffold early
learning [e.g., (116)], in which case relatively elevated 6-month
functional connectivity between somatomotor ROIs and cere-
bellar ROIs placed in relation to the FPN (cf. Supplement, page
4) may support motor skill acquisition. This explanation is
broadly consistent with (the extant limited number of) fcMRI
enrichment studies (78–80,123) indicating that functional
connectivity between control and somatomotor networks is
more variable across development than functional connectivity
involving the DMN (Figure S5). Third, attenuated correlations
may be expected if infant cerebellar-FPN connectivity reflects
presymptomatic risk for ASD. Under such conditions, interin-
dividual variation in 6-month data may index group differences
of primary interest. Univariate analyses were conducted to test,
but did not find support for, this explanation. Future studies in
infant and toddler samples—both enriched and not enriched
for ASD—are necessary to clarify developmental network dy-
namics and infant ROI nomenclature.
Conclusions

We examined cerebellar connectivity as a presymptomatic risk
biomarker for ASD. Contrary to hypotheses, analyses did
not reveal strong associations between infant cerebellar func-
tional connectivity and later ASD-associated behaviors and
outcomes. Instead, fcMRI enrichment identified clusters of
pen Science January 2023; 3:149–161 www.sobp.org/GOS 157
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brain-behavior relationships between infant networks impli-
cated in error signaling (FPN, CO) and ASD (DMN) (40,75). To
thoroughly interrogate cerebellar theories of ASD, future studies
may investigate cerebellar pathology in relation to ASD-
associated behaviors and outcomes at different stages of
development and/or using different neuroimaging modalities.
Such efforts hold promise to identify mechanistically informed
risk biomarkers for ASD, bridging scientific theory and clinical
translation. Research aimed at risk biomarker discovery should
also consider focusing attention on early patterns of connec-
tivity between enriched (control, default mode, visual) networks.
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