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Abstract
Background: The recognition of microbial molecular patterns via Toll-like receptors (TLRs) is
critical for mucosal defenses.

Methods: Using well-differentiated primary cultures of human airway epithelia, we investigated the
effects of exposure of the cells to cytokines (TNF- and IFN-) and dexamethasone (dex) on
responsiveness to the TLR2/TLR1 ligand Pam3CSK4. Production of IL-8, CCL20, and airway
surface liquid antimicrobial activity were used as endpoints.

Results: Microarray expression profiling in human airway epithelia revealed that first response
cytokines markedly induced TLR2 expression. Real-time PCR confirmed that cytokines (TNF- and
IFN-), dexamethasone (dex), or cytokines + dex increased TLR2 mRNA abundance. A synergistic
increase was seen with cytokines + dex. To assess TLR2 function, epithelia pre-treated with
cytokines ± dex were exposed to the TLR2/TLR1 ligand Pam3CSK4 for 24 hours. While cells pre-
treated with cytokines alone exhibited significantly enhanced IL-8 and CCL20 secretion following
Pam3CSK4, mean IL-8 and CCL20 release decreased in Pam3CSK4 stimulated cells following
cytokines + dex pre-treatment. This marked increase in inflammatory gene expression seen after
treatment with cytokines followed by the TLR2 ligand did not correlate well with NF-B, Stat1, or
p38 MAP kinase pathway activation. Cytokines also enhanced TLR2 agonist-induced beta-defensin
2 mRNA expression and increased the antimicrobial activity of airway surface liquid. Dex blocked
these effects.

Conclusion: While dex treatment enhanced TLR2 expression, co-administration of dex with
cytokines inhibited airway epithelial cell responsiveness to TLR2/TLR1 ligand over cytokines alone.
Enhanced functional TLR2 expression following exposure to TNF- and IFN- may serve as a
dynamic means to amplify epithelial innate immune responses during infectious or inflammatory
pulmonary diseases.
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Background
The airway epithelium plays an important role in orches-
trating pulmonary innate and adaptive immune
responses. This mucosal surface is a site of first contact
with the environment and has evolved many mechanisms
to recognize and respond to inhaled or aspirated microor-
ganisms. Epithelial responses to microbes are initiated via
pattern recognition receptors including the Toll-like
receptors (TLRs) [1]. TLRs are a family of 10 receptors in
humans that recognize a variety of microbial molecular
patterns and regulate immune responses. Airway epithe-
lial cell responses to a number of TLRs, including TLR2 [2-
4], TLR3 [5], TLR4 [6], TLR5 [7,8], and TLRs 6 through 9
[9,10] have been investigated in human cells and animal
models. TLR activation initiates signaling that culminates
in a number of host defense responses including the secre-
tion of antimicrobial peptides, cytokines, and chemok-
ines by epithelial cells [11,12].

TLR expression is regulated in a cell and tissue specific
manner [11,13-15]. Experimental evidence in humans
[16] and animal models [17-20] indicates that the expres-
sion and function of several TLRs is developmentally reg-
ulated. Here we focus on TLR2 expression and function in
well-differentiated human respiratory epithelia. TLR2
forms heterodimers with either TLR6 or TLR1; these het-
erodimers recognize diacyl and triacyl lipopeptides,
respectively [21,22]. TLR2 signaling occurs via a MyD88-
dependent pathway leading to the nuclear translocation
of NF-B [14], and induction of various inflammatory
cytokines, including IL-8, and antimicrobial peptides,
such as human beta-defensin 2 (HBD-2) [4,23].

We hypothesized that first response cytokines would
influence both the array of functional TLRs and their
responses to stimuli. Further, dexamethasone, when co-
administered with pro-inflammatory cytokines, was
reported to synergistically enhance TLR2 expression in the
human alveolar and bronchial epithelial cell lines A549
[24] and BEAS-2b [3]. We therefore investigated the effects
of both cytokine and glucocorticoid exposure on TLR2
expression in primary cultures of human airway epithelia.

Methods
Culture of human airway epithelia
Primary cultures of human airway epithelia were grown at
an air-liquid interface as described previously [25].
Human donor lungs were obtained from individuals
without primary pulmonary diseases whose lungs were
determined to be unsuitable for organ transplantation.
The use of human tissues was approved by the University
of Iowa Institutional Review Board. Well-differentiated (>
2 weeks in culture) tracheal and bronchial epithelia were
used in all studies. Epithelia were maintained in DMEM/
F-12 with 1% penicillin-streptomycin, 50 g/ml gen-

tamicin, and 2% Ultroser G. In a microarray experiment
(described below), epithelia were incubated for 24 hours
in 2% Ultroser G media containing 100 ng/ml each of
recombinant interleukin-1-beta (IL-1; Sigma, St. Louis,
MO), tumor necrosis factor-alpha (TNF-; Sigma), and
interferon-gamma (IFN-; Sigma). For all other experi-
ments, epithelia were placed in serum free DMEM/F-12
for 48 hours, then incubated overnight (18 hr) in media
containing cytokines (100 ng/ml each of TNF- and IFN-
), 1 M water-soluble dexamethasone (D2915; Sigma),
cytokines plus dexamethasone, or control serum-free
media (100 l volume applied apically, and 500 l baso-
laterally). Cell viability was similar under all experimental
conditions.

In TLR2 receptor agonist experiments, epithelia were
rinsed with media, then incubated for an additional 24
hours in media containing 25 g/ml Pam3CSK4 (tlrl-
pms; InvivoGen, San Diego, CA), a synthetic bacterial
lipoprotein TLR2/TLR1 ligand, or control serum-free
media. Where specified, media containing cytokines ±
dexamethasone or Pam3CSK4 were applied to only the
apical or basolateral surface, with control serum-free
media applied contralaterally. Prior to assays of airway
surface liquid antimicrobial activity (see Antimicrobial
Assays, below), epithelia were incubated for 5 days in
antibiotic-free media and washed daily with antibiotic-
free media to remove residual antibiotics.

RNA isolation and quantitative reverse transcription-PCR 
(RT-PCR)
RNA was extracted using an RNeasy Mini Kit (Qiagen Inc.,
Valencia, CA) according to manufacturer's protocol. For
each sample, 1 g of total RNA was used as a template for
first-strand cDNA synthesis. Quantitative PCR (ABI 7900)
was used to amplify the TLR or HBD-2 PCR products
along with GAPDH transcripts in a single reaction. For-
ward and reverse primers and TaqMan probes were
designed using Primer Express software (P-E Applied Bio-
systems, Foster City, CA). Primers and probes were: TLR2
forward, 5'-GGCCAGCAAATTACCTGTGTG-3'; TLR2
reverse, 5'-AGGCGGACATCCTGAACCT-3'; TLR2 probe,
5'-TCCATCCCATGTGCGTGGCC-3'; TLR1 forward, 5'-
CAGTGTCTGGTACACGCATGGT-3'; TLR1 reverse, 5'-
TTTCAAAAACCGTGTCTGTTAAGAGA-3'; TLR1 probe, 5'-
TGCCCATCCAAAATTAGCCCGTTC-3'; TLR6 forward, 5'-
GAAGAAGAACAACCCTTTAGGATAGC-3'; TLR6 reverse,
5'-AGGCAAACAAAATGGAAGCTT-3'; TLR6 probe, 5'-
TGCAACATCATGACCAAAGACAAA-3'; HBD-2 forward,
5'-CCTGTTACCTGCCTTAAGAGTGGA-3'; HBD-2 reverse,
5'-ACCACAGGTGCCAATTTGTTTA-3'; HBD-2 probe: 5'-
CCATATGTCATCCAGTCTTTTGCC-3'. The TLR and HBD-
2 probes were labeled with the fluorophore FAM, and the
GAPDH probe with the fluorophore JOE. CT for the TLR or
Page 2 of 11
(page number not for citation purposes)



Respiratory Research 2009, 10:96 http://respiratory-research.com/content/10/1/96
HBD-2 PCR product was normalized against the CT for
GAPDH.

Microarray hybridization
Five micrograms of total RNA was processed using the
Affymetrix GeneChip one-cycle target labeling kit
(Affymetrix, Inc., Santa Clara, CA) following the manufac-
turer's protocols. The resultant biotinylated cRNA was
hybridized to a custom GeneChip Human Airway Array
(HsAirway, Affymetrix, Inc.). Tracheal and bronchial epi-
thelial cells from seven donors were used in this study.
The custom Affymetrix array (HsAirway) was comprised
of approximately 23,000 probe sets derived from sequenc-
ing of cDNA libraries prepared from human lung, primary
airway epithelial cells, and human alveolar macrophages
[26]. The arrays were washed, stained, and scanned using
the Affymetrix Model 450 Fluidics Station and Affymetrix
Model 3000 scanner. Each sample and hybridization
underwent quality control evaluation, including cRNA
amplification of more than 4-fold, percentage of probe
sets reliably detecting between 40 and 60 percent present
call, and 3'-5' ratio of GAPDH gene less than 3.

The hybridizations were normalized using the RMA
(robust multi-chip averaging) [27] method from Biocon-
ductor [28] to obtain summary expression values for each
probe set. Gene expression levels were analyzed on a log-
arithmic scale. Differentially expressed genes were identi-
fied using a 1-factor ANOVA test. Heat-map visualizations
were generated with GenePattern [29]. Global scaling of
the expression levels was used to allow experiment-wide
comparison of gene expression.

Protein quantification by ELISA
IL-8 and CCL20 protein abundance in the basolateral
media was measured by ELISA (Duoset DY208 (IL-8) and
DY360 (CCL20); R&D Systems, Minneapolis, MN).

Antimicrobial assays
Apical washings from epithelia were obtained after a 24-
hour incubation with the TLR2 agonist Pam3CSK4 or con-
trol serum-free, antibiotic-free media. Airway surface liq-
uid (ASL) was obtained by adding 100 l of sterile 1× PBS
to the apical surface and immediately pipetting off the
fluid. We used a modified radial diffusion assay to quan-
tify ASL antimicrobial activity as described previously
[30]. Briefly, 4 × 106 bacteria in mid-log phase were sus-
pended in an underlay gel. 2.5 mm diameter wells were
punched into the gel and filled with 0.04-5 l of ASL, with
0.02% acetic acid with 0.1% human serum albumin
(Sigma) to equal 5 l, or control antibiotic (gentamicin,
0.4-50 g/ml). The plates were then incubated for 3 hours
at 37°C. Nutrient rich gels were then overlaid, and the
plates incubated at 37°C overnight. Zones of clearance
were manually measured and plotted on a semi-log graph

where the X-intercept represents the minimal inhibitory
concentration (MIC) [31]. Test organisms included
Escherichia coli DH5, Pseudomonas aeruginosa PA01, and a
clinical strain of Listeria monocytogenes.

Immunoblot Analysis
Whole cell protein extract preparation and immunoblot
analysis were performed as described previously [32,33].
Primary antibodies used to detect specific cellular and
nuclear proteins were: mouse IgG1 mAb clone L35A5
against human IB, rabbit polyclonal IgG 9171 against
human Stat1 phosphorylated on tyrosine-701, rabbit pol-
yclonal IgG 9172 against human total Stat1, rabbit IgG
mAb clone 3D7 against human p38 MAP kinase phos-
phorylated on threonine-180 and tyrosine-182, rabbit
IgG mAb clone 7D6 against human total p38 MAP kinase
from Cell Signaling Technology (Beverly, MA); mouse
IgG2 mAb clone AC-74 against human -actin from
Sigma-Aldrich (St. Louis, MO); rabbit polyclonal antise-
rum against human heat shock protein (HSP)-90 from
Assay Designs (Ann Arbor, MI). Primary antibody binding
was detected using goat antirabbit or antimouse IgG con-
jugated to horseradish peroxidase (Santa Cruz Biotech-
nology, Santa Cruz, CA or Cell Signaling Technologies)
and an enhanced chemiluminescence detection system
(Amersham Biosciences, Uppsala, Sweden). Reprobing of
membranes was done after washing twice in Restore™
buffer (Pierce, Rockford, IL) for 15 min at 37°C. In some
experiments, radiographic film images were analyzed
using ImageJ software [34]. To generate an integrated den-
sity level, band area was multiplied by the band mean gray
value, and the integrated density for IB or phosphor-
ylated p38 was divided by the corresponding -actin or
HSP-90 level creating a ratio for each sample.

NF-B Activation Assay
NF-B-dependent gene activation was determined using a
recombinant adenoviral vector that expresses a luciferase
gene driven by four tandem NF-kB enhancer sequences as
described previously [32,35]. Photinus pyralis luciferase
activity was determined using a commercial luciferase
reporter assay kit (Promega) and a Lumat LB 9501 lumi-
nometer (Berthold, Bad Wildbad, Germany).

Statistical Analysis
Assessment of statistical significance for quantitive PCR
and ELISA data was performed using one-tailed Student's
t tests with Microsoft Excel. P values < 0.05 were consid-
ered significant. Luciferase assays and densitometry anal-
ysis were analyzed for statistical significance using
ANOVA for a factorial experimental design. The multi-
comparison significance level for the ANOVA was 0.05. If
significance was achieved by one-way analysis, post-
ANOVA comparison of means was performed using
Tukey's test [36].
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Results and Discussion
Microarray profiling of TLR expression in airway epithelia
We performed a screening microarray expression analysis
to profile responses of human airway epithelia to a cock-
tail of first response pro-inflammatory cytokines. Well-
differentiated primary epithelia from seven donors were
stimulated with IL-1 (100 ng/ml), TNF- (100 ng/ml),
and IFN- (100 ng/ml) for 24 hours. Following treatment,
total RNA isolation, preparation of cDNA, and microarray
hybridization were performed as described in Materials
and Methods. Figure 1 summarizes the expression of
selected genes involved in microbial pattern recognition
and related responses in airway epithelia under resting vs.
cytokine-stimulated conditions. The TLRs were differen-
tially expressed, with TLRs 1 through 5 being most abun-
dant in both resting and cytokine-stimulated airway
epithelia. Compared to other TLRs expressed in epithelia,
TLR2 expression was markedly (over 8-fold) induced by
cytokine stimulation (P < 10-6) and TLR3 increased ~3-

fold. Other genes with notable induction included MD-2
and NOD2, which exhibited over 3-fold and nearly 6-fold
increases, respectively. To confirm and further investigate
the functional consequences of TLR2 induction, several
experiments were performed.

Induction of TLR2 mRNA expression in airway epithelia
TLR2 expression was previously documented in human
airway cell lines, passaged cells in submersion culture, or
in lung tissues [2,4,9,10,37]. Although these studies noted
TLR2 expression in several model systems, the functional
consequences of combined cytokine and glucocorticoid
treatment were not investigated, nor were the polarity of
TLR2 responses. We focused on functional TLR2
responses in well-differentiated primary airway epithelia.
With the exception of studies by Becker et al [37] and
Hertz and colleagues [4], TLR2 expression and function
has been little studied in this model that closely mimics
the in vivo airways.

We used quantitative RT-PCR to investigate the effects of
cytokine and dexamethasone exposure on TLR2 mRNA
expression in well-differentiated airway epithelia. Because
two recent publications reported the synergistic effects of
TNF-, IFN-, and corticosteroids on TLR2 function in air-
way cell lines [3,24], we focused our subsequent analysis
on these stimuli. As shown in Figure 2A, cytokine treat-
ment (TNF- (100 ng/ml) and IFN- (100 ng/ml)) over-
night resulted in a 4-fold increase in TLR2 mRNA (P <
0.01). A 2-fold increase was seen following treatment with
dexamethasone alone (1 M) (P < 0.05), and a 12-fold
increase in TLR2 mRNA expression following treatment
with cytokines plus dexamethasone (P < 0.01). The com-
bination of cytokines plus dexamethasone synergistically
enhanced TLR2 mRNA abundance over treatment with
cytokines alone (P < 0.05).

As cell-surface TLR2 exists as a heterodimer with either
TLR1 or TLR6 [21,22], we next investigated the effects of
cytokine and dexamethasone exposure on TLR1 and TLR6
mRNA expression. As shown in Figure 2B, TLR1 mRNA
abundance remained unchanged following cytokine ±
dexamethasone treatment. Unlike TLR2, TLR6 mRNA
decreased modestly following cytokine treatment, both in
the presence, and absence, of dexamethasone (P < 0.05).

Treatment with cytokines ± dexamethasone alters effects 
of TLR2 receptor ligation in airway epithelia
To determine the functional effects of increased TLR2
expression, epithelia pre-treated with cytokines ± dexam-
ethasone were stimulated with the TLR1/2 ligand
Pam3CSK4 for 24 hours. Two different concentrations of
Pam3CSK4, 10 and 25 g/ml, were studied initially. As
greater changes in IL-8 abundance were seen with 25 g/

Heatmap of microarray expression profiling in human airway epithelia following 24 hour stimulation with cytokines (IL-1 (100 ng/ml), TNF- (100 ng/ml), and IFN- (100 ng/ml)) or controlFigure 1
Heatmap of microarray expression profiling in 
human airway epithelia following 24 hour stimulation 
with cytokines (IL-1 (100 ng/ml), TNF- (100 ng/ml), 
and IFN- (100 ng/ml)) or control. Represented are 
expression profiles for microbial pattern recognition proteins 
including TLRs 1-10, NOD1, NOD2, and the PGRP family 
members. Also included are the IL-1 receptor variants 1 and 
2 and proteins involved in endotoxin sensing (LBP, CD14, and 
MD-2). Dark blue signifies lowest expression, and dark red 
denotes highest expression levels. Asterisks indicate genes 
with significant cytokine induced increases in expression.
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ml (data not shown), this concentration was used for fur-
ther studies.

Following a 24 hour exposure to the TLR2 ligand, IL-8
increased approximately 9-fold over baseline in cytokine
pre-treated epithelia (P < 0.05) (Figure 3A). A similar
trend toward increased IL-8 was seen in both control cells
(P = 0.07), and cells pre-treated with cytokines plus dex-
amethasone (P = 0.08). Notably, mean IL-8 production in
epithelia pre-treated with cytokines plus dexamethasone
was less than half that of cells pre-treated with cytokines
alone.

Since epithelia may preferentially express proteins on
either their apical or basolateral membrane domains, we

asked whether cells exhibited polarized responses to
Pam3CSK4. As shown in Figure 3B, IL-8 abundance
increased following either apical or basolateral
Pam3CSK4 application. In control cells, mean IL-8 pro-
duction was over 3-fold higher following apical, com-
pared to basolateral application (P < 0.05). A similar trend
was seen in cytokine pre-treated cells, but did not reach
statistical significance. These functional data suggest that
TLR2 protein abundance is greater on the apical surface of
polarized airway epithelia; however airway epithelia can
respond to a TLR2 ligand from either surface.

The changes in TLR2 mRNA abundance were similar in
pattern, though less pronounced, than those reported in
epithelial cell lines. Prior studies in BEAS-2b [3] and A549
[24] cells demonstrated similar increases in TLR2-medi-
ated IL-8 production following pre-treatment with

A) Effects of cytokines and dexamethasone (Dex) on TLR2 mRNA expressionFigure 2
A) Effects of cytokines and dexamethasone (Dex) on 
TLR2 mRNA expression. Cells were treated overnight 
with cytokines (TNF- (100 ng/ml) and IFN- (100 ng/ml)), 
dexamethasone (1 M), or combination of cytokines plus 
dexamethasone. Quantitative RT-PCR results are repre-
sented as fold change from the control (untreated) condition. 
Data are presented as the mean ± SEM of experiments on 6 
donor samples. *P < 0.05, **P < 0.01. B) Effects of 
cytokines and dexamethasone (Dex) on TLR1 and 
TLR6 mRNA expression. Epithelia were treated as 
described in Figure 2A. Results of quantitative RT-PCR pre-
sented as fold change from control (untreated) condition for 
TLR1 mRNA (grey) and TLR6 mRNA (black). Data are pre-
sented as mean ± SEM from 4 donor samples. *P < 0.05.

A) Effects of cytokines and dexamethasone (Dex) on TLR2-mediated IL-8 productionFigure 3
A) Effects of cytokines and dexamethasone (Dex) on 
TLR2-mediated IL-8 production. Epithelia were pre-
treated overnight (18 hr) with cytokines (TNF- and IFN-), 
dexamethasone, or a combination of cytokines plus dexame-
thasone, then exposed to Pam3CSK4 (25 g/ml) (black), or 
control serum-free media (grey) for a period of 24 hours. 
Data represent the mean ± SEM from 5 donor samples. *P < 
0.05. B) Polarity of TLR2 responses in airway epithe-
lia. Epithelia were pre-treated overnight (18 hr) with 
cytokines (TNF- and IFN-), then exposed to Pam3CSK4 
(25 g/ml), applied to either the apical (white) or basolateral 
(BL, black) surface, or control serum-free media (shown in 
grey) for a period of 24 hours. Data represent the mean ± 
SEM from 5 donor samples. *P < 0.05.
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cytokines plus dexamethasone, but did not compare find-
ings to pre-treatment with cytokines alone. While we
detected TLR2 protein in cell lines overexpressing the pro-
tein, we were unable to conclusively localize TLR2 protein
expression in primary cells using commercially available
antibodies and methods including immunohistochemis-
try and surface biotinylation (data not shown). We con-
clude that TLR2 protein is functionally present in this
model but below the limits of immunodetection.

Effects of Cytokines on Pam3CSK4 Signaling Responses
Human airway epithelial cells respond to cytokines and
bacterial products through induction of specific signaling
pathways. The functional expression of TLR2 may be reg-
ulated by more than one receptor-mediated signaling
pathway prominent in the early responses to bacterial and
viral pathogens [9]. Several groups have studied the mech-
anisms by which dexamethasone enhances TLR2 expres-
sion. Glucocorticoids synergistically enhanced
nontypeable Haemophilus influenzae-induced TLR2 expres-
sion via induction of MAPK phosphatase-1, leading to
inhibition of p38 MAPK [38]. The results of Hermoso et al
[24] suggest that TNF- and dexamethasone cooperatively
regulate the TLR2 promoter, through the involvement of
NF-kB and STAT transcription factors, as well as a 3'-glu-
cocorticoid response element.

In these experiments we investigated signaling in response
to conditions involving cytokine pre-treatment and TLR2
ligand application, as this setting was associated with the
maximal responses to TLR2 ligand treatment. We initially
assumed that cytokine augmentation of TLR2-mediated
responses would coincide with increased nuclear factor-
B (NF-B) pathway activation because this transcription
factor is critical for regulation of the expression of many
host defense genes [35,39]. Under basal conditions, epi-
thelial and other cells sequester NF-B family members in
the cytoplasm bound to inhibitor of B (IB) proteins
[40]. A variety of stimuli, including bacterial molecules
and host mediators, induce serine phosphorylation of IB
proteins, thereby targeting them for ubiquitination. These
modifications of IB lead to 26S proteasome degradation,
resulting in NF-B release and translocation to the cell
nucleus where it mediates defense gene activation [41]. To
assess NF-B pathway activation, we initially used immu-
noblot analyses to identify IB degradation. As expected,
the combination of TNF- and IFN- for 30 minutes
decreased IB in epithelia (Figure 4A), but this effect did
not appear to persist after 24 hours of exposure followed
by 30 minutes without treatment (Figure 4B). In addition,
pretreatment with the cytokine mixture did not clearly
affect IB levels in epithelia after TLR2 receptor stimula-
tion (Figure 4C). Assessment of NF-B-dependent gene
activation using an adenoviral vector expressing a luci-
ferase gene driven by four tandem NF-B sites revealed no

Figure 4 
Cytokine-induced NF-B activation is minimally aug-
mented during subsequent TLR2 stimulation. A) IB and
-actin cellular protein levels were assessed using immunoblot
analysis of extracts from human airway epithelia that were treated
without or with media containing TNF- (100 ng/ml) and IFN-
(100 ng/ml) for 30 min. B) IB and -actin cellular protein levels
were assessed using immunoblot analysis of extracts from human
airway epithelia that were first treated without or with media con-
taining TNF- (100 ng/ml) and IFN- (100 ng/ml) for 24 hours,
followed by incubation without or with Pam3CSK4 (25 mg/ml) for
30 min. C) IB and -actin protein levels in the experiment out-
lined in B were quantified using band densitometry of immunoblot
analyses results with inclusion of samples from three individuals.
Values were calculated as IB/-actin, were normalized to the
untreated control value for each individual, and are expressed as
mean fold change in IB ± S.D. (n = 3 in each group). D) NF-B-
dependent gene activation was assessed using luciferase activity
assays of extracts from human airway epithelia that were initially
infected with an adenoviral vector expressing a luciferase gene
driven by four tandem NF-B sites. Cells were then treated without
or with media containing TNF- (100 ng/ml) and IFN- (100 ng/
ml) for 24 hours, followed by incubation with Pam3CSK4 (25 mg/
ml) for 24 hours. Values are expressed as mean ± S.D. (n = 2-3
samples from 4 individuals in each group), and a significant differ-
ence from the untreated control is indicated by an asterisk.
Page 6 of 11
(page number not for citation purposes)



Respiratory Research 2009, 10:96 http://respiratory-research.com/content/10/1/96

Page 7 of 11
(page number not for citation purposes)

Cytokine-induced Stat1 activation does not persist during subsequent TLR2 stimulationFigure 5
Cytokine-induced Stat1 activation does not persist during subsequent TLR2 stimulation. A) Phosphorylated and 
total Stat1 cellular protein levels were assessed using immunoblot analysis of extracts from human airway epithelia that were 
treated without or with media containing TNF- (100 ng/ml) and IFN- (100 ng/ml) for 30 min. B). Phosphorylated and total 
Stat1 cellular protein levels were assessed using immunoblot analysis of extracts from human airway epithelia that were first 
treated without or with media containing TNF- (100 ng/ml) and IFN- (100 ng/ml) for 24 hours, followed by incubation with-
out or with Pam3CSK4 (25 mg/ml) for 30 min.

Cytokine-induced p38 MAP kinase activation does not augment subsequent TLR2 stimulationFigure 6
Cytokine-induced p38 MAP kinase activation does not augment subsequent TLR2 stimulation. A) Phosphor-
ylated and total p38 cellular protein levels were assessed using immunoblot analysis of extracts from human airway epithelia 
that were treated without or with media containing TNF- (100 ng/ml) and IFN- (100 ng/ml) for 30 min. B) Phosphorylated 
and total p38, and heat shock protein-90 (HSP90) cellular protein levels were assessed using immunoblot analysis of extracts 
from human airway epithelia that were first treated without or with media containing TNF- (100 ng/ml) and IFN- (100 ng/ml) 
for 24 hours, followed by incubation without or with Pam3CSK4 (25 mg/ml) for 30 min. C) Phosphorylated p38 and HSP90 
protein levels in the experiment outlined in B were quantified using band densitometry of immunoblot analyses results with 
inclusion of samples from three individuals. Values were calculated as phosphorylated p38/HSP90, were normalized to the 
untreated control value for each individual, and are expressed as mean fold change in phosphorylated p38 ± S.D. (n = 3 in each 
group).
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cytokine augmentation of TLR2-mediated NF-B activa-
tion that correlated with the observed increased inflam-
matory gene expression, although there was significant
variability between samples (Figure 4D). Increased NF-B
activity was observed after cytokine treatment of epithelia.
Thus, augmentation of NF-B does not seem to account
for cytokine pretreatment effects on TLR2-induced gene
expression.

We also examined other pathways that affect host defense
gene expression in human airway epithelia. IFN--
induced effects in epithelial and other cells requires acti-
vation of the transcription factor Stat1 by phosphoryla-
tion of tyrosine-701, with subsequent nuclear
translocation and binding to gamma interferon activation

sites in IFN--responsive genes [42,43]. The combination
of TNF- and IFN- for 30 minutes induced Stat1 phos-
phorylation (Figure 5A), but this effect did not persist
after 24 hours of exposure followed by 30 minutes with-
out or with treatment with the TLR2 agonist (Figure 5B).
Another pathway that modifies inflammatory gene
expression in epithelial and other cells is the p38 mitogen-
activated protein (MAP) kinase pathway [33]. Activation
of p38 also occurs through phosphorylation, and the
combination of TNF- and IFN- for 30 minutes increased
the level of phosphorylated p38 in epithelia (Figure 6A).
This effect was more pronounced in epithelia treated with
the TLR2 agonist, but no difference was noted without or
with pretreatment with the cytokine mixture (Figures 6B
and 6C). Based on these results, augmentation of TLR2-
induced host defense gene expression with TNF- and
IFN- pretreatment does not appear to be due to modula-
tion of these three pathways (at least at the time points
investigated), but likely is through other mechanisms, or
combinatorial effects not assessed by these assays.

TLR2 receptor ligation enhances expression of inducible 
host defense proteins and increases antimicrobial activity 
in airway surface liquid
We further hypothesized that TLR2 engagement would
activate expression of inducible host defense proteins. We
examined expression of the antimicrobial peptide HBD-2
[23], a known product of airway epithelia in response to
TLR2 agonist exposure [4]. Primary cultures of human air-
way epithelia were pre-treated with cytokines ± dexameth-
asone, then stimulated with Pam3CSK4 for 24 hours. As
shown in Figure 7A, HBD-2 mRNA abundance remained
low in unstimulated cultures, even following cytokine
pre-treatment. After exposure to the TLR2 agonist HBD-2
mRNA expression increased significantly in all condi-
tions. However, when contrasted with unstimulated or
cytokine treated cells, the increase in HBD-2 mRNA was
significantly less in epithelia pre-treated with dexametha-
sone or cytokines plus dexamethasone.

We also assayed expression of CCL20, a peptide with both
innate and adaptive immune functions produced by air-
way epithelia. CCL20 stimulates B-cell migration and has
antimicrobial activity comparable to the -defensins [44].
Following Pam3CSK4 stimulation, CCL20 increased 25-
to 30-fold over baseline in cells pre-treated with cytokines
(Figure 7B). Dexamethasone significantly blunted this
response, as CCL20 abundance in epithelia pre-treated
with cytokines plus dexamethasone was approximately
one-third that of cells treated with cytokines alone (P <
0.05).

We next investigated the effects of cytokine and dexame-
thasone exposure on TLR2-mediated airway surface liquid
(ASL) antimicrobial activity. As shown in Figure 8, ASL

A) Effects of cytokines and dexamethasone (Dex) on TLR2-mediated HBD-2 expressionFigure 7
A) Effects of cytokines and dexamethasone (Dex) on 
TLR2-mediated HBD-2 expression. Epithelia were pre-
treated overnight (18 hr) with cytokines (TNF- and IFN-), 
dexamethasone, or a combination of cytokines plus dexame-
thasone, then exposed to Pam3CSK4 (25 g/ml) (black), or 
control serum-free media (grey), for a 24-hour period. HBD-
2 mRNA abundance determined by quantitative PCR. Data 
represent mean ± SEM from 5 donor samples. *P < 0.05, **P 
< 0.01. B) Effects of cytokines and dexamethasone 
(Dex) on TLR2-mediated CCL20 release. Primary cul-
tures were pre-treated overnight with cytokines (TNF- and 
IFN-), dexamethasone, or combination of cytokines plus 
dexamethasone, then exposed to Pam3CSK4 (25 g/ml) 
(black), or control serum-free media (grey) for a period of 24 
hours. Data represent mean ± SEM from 5 donor samples. *P 
< 0.05.
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antimicrobial activity from epithelia exposed to the TLR2
agonist increased significantly following cytokine pre-
treatment, compared to control, for each of the 3 organ-
isms studied (Listeria monocytogenes, Escherichia coli
DH5, and Pseudomonas aeruginosa PA01). In contrast, net
antimicrobial activity from cells pre-treated with
cytokines plus dexamethasone was unchanged from con-
trol. Antimicrobial activity was also unchanged following
pre-treatment with dexamethasone alone (data not
shown). In the absence of TLR2 agonist exposure, ASL
antimicrobial activity was unaltered by exposure to
cytokines ± dexamethasone. These results provide further
evidence of decreased TLR2-mediated innate immune
responses in the setting of combined exposure to
cytokines plus dexamethasone. Furthermore, these data
suggest that both pro-inflammatory cytokines and a TLR2
stimulus synergistically enhanced TLR2 function in airway
epithelia. Together, these findings suggest that TLR2 func-
tion in cytokine-exposed human airway epithelia is
diminished, rather than augmented, by dexamethasone,
despite increases in TLR2 mRNA abundance.

Conclusion
We conclude that TLR2 is an inducible component of air-
way epithelial defenses. Enhanced functional TLR2
expression following TNF- and IFN- exposure may serve
as a dynamic means to amplify innate immune responses
during infectious or inflammatory pulmonary diseases.
Under conditions where first response cytokines are
present, enhanced TLR2 signaling allows for further
amplification of mucosal immunity. This increase in sig-
nalling does not correlate well with NF-B, Stat1, or p38
MAP kinase pathway activation. The importance of

lipopeptide recognition in airway defense is further dem-
onstrated by the upregulation of several host defense pro-
teins/peptides following receptor engagement. Our
finding that glucocorticoids can act as a negative regulator
of functional TLR2 expression in well-differentiated
human airway epithelia has clinical implications in set-
tings of systemic or inhaled corticosteroid use. Since
TLR2-mediated responses may occur early in the host
response to infection, any factors that negatively impact
TLR2 expression or signaling might influence disease out-
comes.
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TLR2-mediated ASL antimicrobial activityFigure 8
TLR2-mediated ASL antimicrobial activity. Epithelia were pre-treated overnight with cytokines (TNF- and IFN-), dex-
amethasone, or a combination of cytokines plus dexamethasone, then exposed to Pam3CSK4 (25 g/ml) for 24 hours. Apical 
washings were obtained, and modified radial diffusion assays performed. Data represent fold change from control, TLR2-ago-
nist exposed condition for the test organisms: Listeria monocytogenes (grey), Escherichia coli DH5 (white), and Pseudomonas aer-
uginosa PA01 (black). n = 3 donor samples. **P < 0.01.
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