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The impact of the SARS-CoV-2 pandemic has significantly affected global health and created a world crisis. The exponentially
increasing numbers of infection and mortality have made preventive measures challenging. India being a highly populated
nation has so far effectively counteracted the pandemic outbreak with a significantly lower rate of mortality despite the high
infection rates. The genetic architecture of the immune response genes in the Indian population, BCG vaccination, the
predominantly young age group of people, and their traditional food habits might contribute to the lower rate of mortality.
Human leukocyte antigens (HLA) play a vital role in triggering T cells, and natural killer (NK) cells can immediately react to
eliminate infected cells. Activation of virus-specific CD4+ T cells and CD8+ cytotoxic T cells selectively targets the infected cells
and strengthens the immunoregulatory system. The checkpoint for NK cell function is the engagement of killer Ig-like receptors
(KIR) molecules with their respective HLA ligands overexpressed or expressed on the compromised virus-infected cells which
have shown polymorphism among different ethnic groups. Here, we explore if certain KIR-HLA motifs grant Indians a survival
advantage in terms of the low rate of mortality. Additionally, enhanced immunity through BCG vaccination may favor fruitful
eradication of SARS-CoV-2 and provide the way out as in therapeutic intervention and vaccination strategies.

1. Introduction

Coronaviruses are a large family of RNA containing viruses
that usually cause respiratory disease in humans [1]. Three
new coronaviruses have emerged in the last two decades,
spread from animals to humans causing serious and wide-
spread disease and death. Coronaviruses are found mostly
among animals like bats, camels, pigs, and cats. These viruses
can sometimes be identified (spillover) in humans and can
cause disease. Four (229E, NL63, OC43, and HKU1) of the
seven documented coronaviruses cause moderate to mild
disease, whereas three (SARS-CoV, MERS-CoV, and SARS-
CoV-2) of them causes severe illness and fatality in humans.
Severe acute respiratory syndrome (SARS) caused by SARS
coronavirus (SARS-CoV) emerged in 2002 and disappeared
by 2004. MERS coronavirus (MERS-CoV) transmitted from

camels caused localized outbreaks of Middle East respiratory
syndrome (MERS) in September 2012 [2]. SARS-CoV-2 is
the third newly emerging coronavirus of this century that
originated in December 2019 from China and was reported
by the World Health Organization (WHO) as a global pan-
demic on 11 March 2020 [3, 4].

The host of the zoonotic virus SARS-CoV-2 includes
avians that has recently passed on to humans through an
intermediate host, becoming the seventh in its family that
infects humans with a high mortality rate than SARS and
MERS coronavirus diseases [5]. The whole-genome sequence
of SARS-CoV-2 closely resembles (88% identity) bat-SL-
CoVZXC21 and bat-SL-CoVVZC45 sequences which have
50% and 79% similarities with MERS-CoV and SARS-CoV,
respectively, indicating it as a novel coronavirus. Notably,
the early study on the novel SARS-CoV-2 virus revealed
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99.98% sequence similarity among infected eight patients
with four mutations being the largest difference [6]. Thus, it
is similar more to both of the bat sequences and less to coro-
naviruses infecting humans.

The killer Ig-like receptor (KIR) family consists of several
receptor molecules with different specificity in human leuko-
cyte antigen (HLA) (human class I MHC) molecules for alle-
lic polymorphisms. KIR expression in the human population
is highly diverse and is distinctive in each natural killer (NK)
cell within an individual [7]. Remarkably, it was observed in
women that the KIR phenotype that is either underexpressed
or overexpressed correlates with the health of the individual
[7]. Additionally, KIR regulation is dependent on HLA
expression and the KIR phenotype of every individual is
dependent on the interactions between the receptor and the
ligand. In comparison to the other KIRs, KIR2DL4 triggers
a strong IFN-γ production by binding its ligand without
any cytotoxicity [8]. Interferons are the cytokine molecules
responsible for various cell signaling cascades including cell
growth, cell differentiation, apoptosis, and immunoregula-
tory function. IFN-γ possesses exclusive immunoregulatory
functions that are particularly significant in the innate immu-
nity to microbial infections; it also acts as a protective shield
against viral infection, particularly long-term control of viral
diseases [9].

Among the Indian population, certain genetic variants of
the HLA class I haplotypic groups have shown great genetic
diversity associated with various diseases. A deeper under-
standing of the HLA genetic variations and the IFN-γ immu-
noregulatory function correlation on SARS-CoV-2 will
ultimately help to develop stronger and likely more specific
treatment strategies [10]. It has been explored that there is
less incidence and mortality of COVID-19 in India as com-
pared to western counterparts. This review will focus primar-
ily on factors that may provide a shield of mortality against
the COVID-19 pandemic such as the importance of HLA,
modulation by KIR on INF expression, expression of
angiotensin-converting enzyme 2 (ACE2), status of BCG vac-
cination, immune response of the host, and environmental
and lifestyle factors.

2. Natural Killer Cells (NK Cells)

The assassins of defense against virus-infected or tumor-
transformed cells are NK cells of innate immunity and
CD8+ cytotoxic T cells (CTLs) of adaptive immunity. Natural
killer (NK) cells are the predominant innate lymphocyte sub-
sets divided into cytotoxic, regulatory, and tolerant NK cells
which mediate antiviral reactions and thus have promising
clinical use. NK cells circulate in multiple tissues throughout
the body that can be formed by tissue-specific microenviron-
ment through different combinations of cytokines [11]. NK
cells are educated during development, undergo clonal
expansion during infection, possess antigen-specific recep-
tors, and generate long-lived memory cells [11]. However,
the cell surface receptors that filter the unhealthy cellular tar-
gets from the healthy host cells are different for NK cells and
CTLs [12]. CTLs are triggered through a T cell receptor
flagged with a specific foreign peptide-loaded HLA class I

molecule borne by infected cells, whereas NK cells can be
activated through different receptors with inhibitory or acti-
vating function, independently or in combination, depending
on the ligands presented by the target cell in a given event
[13].

Primary NK cells essentially need cytokines to facilitate
their development and function, such as IL-2, IL-12, IL-15,
and IL-21. Cytokines IL-15 and IL-12/15/18 will further
improve NK cell cytotoxicity to maximize its efficacy for
adoptive immunotherapy. NK cells utilize inhibitory recep-
tors (KIR and Ly49) to mature and recognize self from non-
self. These cells are significant producers of interferon-γ
(cytokines) that destroy the virus-infected cells. The interac-
tion between self-specific MHC-I receptors from KIRs (in
humans) and self-MHC-I molecules plays a major role in
the effective functioning of NK cells termed as “NK cell
licensing” [14, 15]. However, a significant proportion of NK
cells in humans lack self-specific MHC-I receptors known
as “unlicensed NK cells” and display boosted functionality
after preactivation with cytokines such as IL-12, IL-15, and
IL-18 [16]. A recent study reveals that in humans, CD56bright-

KIR− (KIR2DL4) and CD56dimKIR− (KIR2DL5) natural
killer cells can attain KIR expression upon IL-15 stimulation
in the presence of stromal cells [17] (Figure 1). Activation
with IL-2, IL-12, and IL-15 cytokines can enhance the de
novo expression of KIRs and/or CD94/NK group 2 member
A (NKG2A) on KIR− NKG2A− natural killer cells without
feeder cells [18]. These data suggest that cytokine activation
can trigger unlicensed NK cells to be stronger reactions
against target cells. Functional benefits induced by IL-15
depend on the activated mTOR-regulated signal [19];
thereby, maintenance of NK cell processes implies a support-
ive implementation of cytokines (IL-15) in adoptive NK cell
therapy. Additionally, it promotes mature NK cells to pro-
duce a large granular lymphocyte with increased cytokine
production (IFN-γ and perforin) by coactivation with IL-2
or IL-15, resulting in enhanced cytotoxic effects [20]
(Figure 2).

2.1. Diversity of Killer Ig-Like Receptors (KIRs) on NK Cells.
Killer Ig-like receptors (KIRs) belong to the family of NK cell
receptors that are different from other NK cell receptors
owing to the abundant diversity found in individual-specific
KIR gene content and the nucleotide sequence polymor-
phism of the KIR genes. In humans, there are 14 KIRs
encoded by a cluster of genes on a stretch of 150 kb Leukocyte
Receptor Complex (LRC) sequence found on chromosome
19q13.4 that triggers activation (3DS1, 2DS1-5), inhibition
(3DL1-3, 2DL1-3, and 2DL5), or both (2DL4). The KIR fam-
ily is unique for its allelic diversity, and over 30 different hap-
lotypes have been demonstrated in different groups and
populations [21]. Based on the number of extracellular Ig
domains (2D or 3D), KIR is divided into two classes accord-
ing to its long (L) (block lysis of NK cells) or short (S) (cyto-
toxic properties) cytoplasmic tail [22]. The specific blocking
or activating effects of different KIRs rely on the small varia-
tions in the L and S cytoplasmic tails. The L-form of KIRs is
important for the self-identification of MHC molecules and
the prevention of autoimmune disorders. Furthermore, the
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inhibitory KIRs are considered to be evolved first, acting as
ancestors to triggering KIRs [23]. The activating KIRs (short
cytoplasmic tail) are truncated and lack an immunoreceptor
tyrosine-based inhibitory motif (ITIM), unlike the inhibitory
KIRs. Binding of MHC class I molecules to KIR inhibits NK
cell activation by signaling through an associated immunor-
eceptor tyrosine-based inhibitory motif (ITIM). The lytic

capacity of a NK cell is determined by striking a balance
between the activating and inhibitory KIRs. Among the com-
plete KIR family, the KIR2DL4 is unique from other activat-
ing KIRs as it possesses Arg residue instead of Lys in its
extracellular domain, and although it contains a functional
ITIM domain, it is present only on cytokine-producing pop-
ulation or CD56bright of peripheral blood NK cells [24]. In
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addition, to activate NK-mediated cell lysis, the KIR2DL4
short-form associates with the Fcγ-RIα adapter protein and
not with DAP1224 triggering a robust production of IFN-γ
without inducing cytotoxicity [25]. The ligands for KIR pro-
vide specific motifs among the HLA class I molecules with
HLA-C being the dominant one. HLA-C is the product of a
highly polymorphic class of MHC genes.

2.2. Interferon-Gamma (IFN-γ) in Viral Infection. Interferon-
gamma (IFN-γ) is a pleiotropic, dimerized soluble cytokine
and is the only member of the type II class of interferons that
regulates both the innate and adaptive immunity levels [26].
IFN-γ is a glycosylated protein of 25 kDa that is produced by
NK cells and type 1 CD4+ and CD8+ T cells (immune IFN).
IFN-γ has a clear role in host defense against viruses, includ-
ing hepatitis B, herpes simplex, lymphocytic choriomeningi-
tis virus, and mousepox [27]. Immune function is enhanced
by Th1 cells while inhibiting Th2 cell growth and generating
NK cytotoxic activity. IFN-γ induces MHC class I and class II
gene expression on the surface of target cells and enhances
antigen presentation by activating dendritic cells [28]. IFN-
γ is the major activator of macrophages, primarily through
the nitric oxide production, induction of superoxide, and
NRAMP (natural resistance-associated macrophage protein)
gene expression [29]. This function of IFN-γ is critical for
host resistance against intracellular pathogens.

3. Why Is SARS-CoV-2 Apparently Smiling
on Indians?

Since 25 March 2020, India has undergone a phase-by-phase
national lockdown in the surge of COVID-19. The increasing
rate of SARS-CoV-2 infection has caused various health care
issues and a tremendous burden on the management of this
pandemic. However, there are certain characteristics that
have been brought to the foreground that makes it unique
to the Indian situation. The scientific community needs to
delve into these aspects and perhaps generate solutions that
will be unique to India. The specific immune response to
COVID-19 among Indians has not been worked out in detail.
However, the reduced mortality of COVID-19 patients in
India is a glaring example to indicate that there is something
unique about the Indian immune climate for COVID-19.
There are a few reports emerging that are highlighting the
differences among Indians that may be providing protection
against COVID-19 mortality. It may be likely environmental
conditions, multiple biological factors, and public health
response that are modulating the reduced mortality in India;
however, further research in basic, clinical, and epidemiolog-
ical areas is required for a better understanding of such vari-
ation among Indians as it pertains to COVID-19 response.
We have tried to bring out these points coherently in this
article. The lines of thought that may be worth pondering
upon are described as follows.

3.1. KIR/HLA: Immune Advantage for Indians

(i) HLA Diversity. Viral infection downregulates the
expression of HLA class I MHC molecules on the

surface of infected cells evading cytotoxic T lympho-
cyte (CTL) response, making them potential targets
for NK cell-mediated lysis. Studies have shown that
the disease outcome can be influenced by the genetic
variation in the host HLA class I. In silico analysis
found that HLA-B∗46:01 had the fewest predicted
binding peptides for COVID-19 and that individuals
with this genotype may be particularly susceptible to
COVID-19 as it was to SARS [30]. Another in silico
analysis found that certain alleles (e.g., HLA-B∗
4601) were associated with severe infection and the
frequency of this allele related to SARS susceptibility
was only 0.26% in Western India, compared to
13.5% in Wuhan, China [31].

(ii) KIR Diversity. There are 2 main KIR haplotypes
defined: group A haplotypes are characterized by
the absence of all stimulatory receptors and the pres-
ence of 2DS4, and group B haplotypes are defined by
the presence of one or more of the following genes:
KIR2DS1-3, KIR2DS5, KIR3DS1, and KIR2DL5
[32]. Over 30 different KIR haplotypes have been
recognized by genomic analysis [33]. Studies have
shown that sequence polymorphisms in KIR genes
can make HIV escape from NK cell-mediated
immune response [34].

(iii) KIR-HLA Diversity. Variable KIR and HLA gene
families segregate independently presenting a sce-
nario where individuals expressing KIRs lack HLA
class I ligands and vice versa, whereby the diversity
in the number and type of KIR-HLA combinations
may modulate the outcome of the disease. The inter-
action of KIR to HLA class I ligands determines the
threshold capacity of NK cells and controls the NK
cell response. In support, there is evidence for the
coevolution of KIR and HLA pairs [35]. Various
studies have shown that in humans, a minimum of
one KIR-HLA interaction is critical to the functional
development of NK cells.

A study reported that homozygous KIR2DL3:HLA-C1
rendered protection against hepatitis B viral (HBV) infection
while KIR2DL1:HLA-C2 made it susceptible [36]. One of the
KIR2DL3 ligands (HLA-Cw∗07) does not impart any protec-
tion against chronic hepatitis C viral (HCV) infection [33],
while HLA-DQB1∗0301 may predict spontaneous resolution
of HCV following acute infection [37]. KIR2DL3:HLA-C1
has been shown to give protection in patients with HCV
infection but without anti-HCV antibodies [38]. However,
KIR2DL3:HLA-C1 does not have the same protective effect
in HIV/HCV coinfected patients indicating that the HIV
infection changes the defensive effect of KIRs [33]. In human
immunodeficiency (HIV) infection, the protective effect of
HLA-B27 and HLA-B57 has been documented [39].
KIR3DL1/S1 is a unique gene that encodes both the inhibi-
tory (KIR3DL1) and activating (KIR3DS1) receptors [40].
KIR3DS1 together with its ligand HLA-B, Bw480I (isoleucine
at position 80), showed slow progression to AIDS, while on
their own, both made any effect on the progression. However,
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highly expressed KIR3DL1 alleles (KIR3DL1∗h) combined
with HLA-B∗57 (a HLA-Bw480I allele) were effective against
AIDS progression and viral replication which highlights a
more protective role in comparison to the combined
KIR3DS1/HLA-Bw480I. Moreover, HLAB∗27 alleles which
contain the Bw480T motif showed greater protection against
AIDS progression in the presence of KIR3DL1∗l (underex-
pressed alleles), suggesting that B∗27 alleles might have a
greater affinity for one or more of the KIR3DL1∗l allotypes
[40]. There are studies that point out certain signature motifs
of KIR-HLA specific to the racial/ethnic groups. In a study of
759 unrelated individuals, most had the four well-defined
inhibitory KIRs (3DL1, 3DL2, 2DL1, and 2DL2/3) but only
a subset expressing all relevant HLA class I ligands was found
such as HLA-Bw4 (3DL1), HLA-A3/11 (3DL2), HLA-C2
(2DL1), and HLA-C1 (2DL2/3) [41]. Two or three of these
inhibitory KIR-HLA combinations are carried by a majority
of Caucasians, Hispanics, and African Americans. Interest-
ingly, one out of five individuals in these populations carries
only a single receptor-ligand pair, KIR2DL3+HLA-C1. In
another study, more polymorphism was observed among
African Americans in the KIR2DL5 alleles [41]. This is an
inhibitory orphan receptor for which no ligand has been
identified. The KIR2DL5 (designated CD158f, 2DL5, and
inhibitory KIR) receptor belongs to the KIR family of
60 kDa type I transmembrane glycoprotein [42] expressed
on CD56dim T cell subsets and NK cells, thereby regulating
innate immunity [42] (Figure 1). KIR2DL5 consists of two
ITIM domains in its long tail; however, one ITIM domain
may cause KIR2DL5 to be less inhibitory KIRs. It forms a
subfamily by connecting with KIR2DL4. The KIR2DL5 gene
has two copies that are almost identical, KIR2DL5A and
KIR2DL5B [43]. Nearly 57% of the African Americans and
Asians carry similar frequencies of the KIR2DL5 gene; how-
ever, African Americans carry 2DL5B whereas Asians had
2DL5A [41]. Although the role of KIR2DL5 in immunity is
poorly understood, it has been implicated with impaired
responses to antiviral therapies, increased susceptibility to
viral infection, and faster progression in Alzheimer’s patients
[44]. Even though it inhibits cytotoxicity in NK92 cells, the
mechanism of this receptor is unclear due to the lack of a
ligand. Recently, a potential ligand, the poliovirus receptor
(PVR), was shown to engage KIR2DL5 protein and inhibit
cytotoxicity [44]. Does the KIR2DL5 genotype bear any sig-
nificance for the Indian population?

Studies have indicated the predominance of activating
KIRs and group B haplotypes among the Indian population
indicating that the early human migration originated from
Africa through the Southern India route [45]. About 52 dif-
ferent types of haplotypes were observed among the Indian
population, where simple 7 KIR genes and complex 15 KIR
genes were reported in Indians. Based on the early report,
59% of Indians exhibit all types of inhibitory KIRs and not
more than one inhibitory KIR is missing from any individual
[46]. It is also reported that classical HLA class I molecule-
identifying inhibitory KIRs (2DL1, 2DL3, 3DL1, and 3DL2)
are observed in 83% of the Indian individuals. The most
common HLA haplotype (HLA-A2-B50-DR3) is predomi-
nantly present in only the Indian population and not in the

rest of the world [47]. Furthermore, the prevalence of subtype
A∗0211 of the HLA-A2 allele has been reported to be distinct
only in the Indian population [48]. Do Indians have a specific
immune advantage over other ethnic groups by virtue of spe-
cific KIR-HLA interaction? This is interesting in the light of a
study that found higher cell numbers of dendritic cells,
patrolling monocytes, NK cells, CD4+ T cells, and naïve B
cells among Indian newborns when compared to American
newborns where plasmacytoid dendritic cells, CD8+ T cells,
and total T cells were higher [49]. However, these findings
need to be correlated in Indian adults. So do these signature
KIR-HLAmotifs make it resistant or susceptible to infection?
This could partially explain the lower mortality rate found
among Indian COVID-19 patients when compared with
mortality rates seen in France, Italy, or the United Kingdom
(Table 1).

3.2. Do These Probable Factors Contribute to Lower COVID-
19 Mortality among Indians? The lower mortality rates seen
among Indian COVID-19 patients when compared with
others could be due to certain attributes unique to Indians.
This is worth considering especially when India has a higher
population density (464 persons/km2) when compared to
other countries with lower densities [50] (Table 1). The prob-
able factors are described as follows:

(i) Virulence of the Infectious Agent. A Chinese group
reported two types of SARS-CoV-2 strains identi-
fied as the original S type and mutant L type with
the mutant L type being more aggressive than the
original S type. A preliminary study that is yet to
be peer-reviewed used integrated sequence-based
analysis of SARS-CoV-2 genome samples from
India, Nepal, China, Italy, and the USA and found
99% similarity with the Wuhan SARS-CoV-2
genome [51]. The novel mutation occurred in the
region of spike surface glycoprotein in the Indian
SARS-CoV-2 strains that was absent in Italy, the
USA, and Nepal and SARS-CoV genomes. The S
protein of the virion binds to the ACE2 (angioten-
sin-converting enzyme 2) receptor of the host cell
to gain entry.

(ii) Angiotensin-Converting Enzyme 2 (ACE2) Expres-
sion. Angiotensin-converting enzyme 2 (ACE2) is
the receptor for SARS-CoV-2. In silico analysis of
South Asians revealed close proximity to East Eur-
asians that involves two unique polymorphisms
(rs4646120 and rs2285666) in ACE2. Therefore,
the host susceptibility of South Asians to SARS-
CoV-2 will be more similar to East Eurasians [51].
miRNA are small noncoding RNA that modulate
RNA silencing and gene expression. hsa-miR-27b,
a unique miRNA, targets mutation found in the
SARS-CoV-2 genome isolates from India [52]. This
miRNA was found to inhibit ACE expression that
indirectly increases ACE2 expression [51]. Replica-
tion of HIV-1 was decreased in cells overexpressing
hsa-miR-27b [53]. Nine host miRNA were
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identified that potentially target SARS-CoV-2, of
which hsa-miR-27b is the unique miRNA that can
target the Indian viral genome [52]. It has been
shown that SARS-CoV and COVID-19 have similar
pathologies that involve a downregulation of ACE2
leading to similar respiratory distress syndrome
with similar gender bias and case fatality rates
[54]. It was hypothesized that certain hormonal
and genetic factors could account for ACE2 overex-
pression that leads to a better outcome and lower
death rate in females than in males. Estrogen has a
protective role in SARS by directly inhibiting
SARS-CoV replication [55] and upregulating
ACE2 expression [56]. Furthermore, ACE2 is
located on the X chromosome at sites that escape
X chromosome inactivation (XCI), a mechanism
that silences transcription in one of the X chromo-
somes of the female mammalian cells to balance
the expression dosage between XX females and XY
males. This silencing is not complete as nearly
10% of the genes escape inactivation and overex-
press genes at the XCI sites such as ACE2 [57]. A
study based on single-cell RNA-seq analysis indi-
cated that the Asian donor had a much higher
ACE2 expression cell ratio than White and African
American donors [58]. Meanwhile, another study
of ACE2 expression analysis using RNA-seq and
microarray datasets from control lung tissues
showed there were no significant differences
between Asians and Caucasians or males and
females [59]. Since the ACE2-expressing cells form

a very small part of cells in lung tissues, conclusions
can be affected by the sample size and the purity of
ACE2-positive cells in the selected samples [58].

(iii) A Disintegrin and Metalloproteinase 17 (ADAM 17)
Activity. A Disintegrin and Metalloproteinase 17
(ADAM 17) is a protein involved in inflammation
and immunity (TNF-α, ICAM-1, and ACE2). Poly-
morphisms in ADAM 10, a related protein of
ADAM 17, were found among Indian asthmatic
patients [60]. So, polymorphisms in ADAM 17
may be likely to have an impact on the COVID-19
immune response.

(iv) BCG Vaccination. Few reports have indicated that
BCG vaccination may impart immunoprotective
effects towards COVID-19 mortality. Countries
with no mandatory program for BCG vaccination
have higher COVID-19 fatality (the USA, the Neth-
erlands, and Italy) than countries with a universal
policy of vaccination (Japan) [61]. However, China
despite having a program faced high mortality, due
to the 10-year gap between 1966 and 1976 when
the program was disbanded, thereby creating a pool
of potential hosts prone/susceptible to COVID-19.
Consequently, India too has a national program of
BCG vaccination and it can be suggested that the
protective effects have been observed in the present
pandemic. The immunity imparted by BCG vacci-
nation has been shown to extend and enhance the
immune response to other nonrelated pathogens
[62]. BCG induces changes in the immune system

Table 1: Confirmed and death cases of SARS-CoV-2 from different countries of the world. The rate of SARS-CoV-2 mortality compared with
the death rate, population density, urban population, and median age group of countries. India with the highest population density (464
persons/km2) shows the least mortality (1.4%) with the median age group of 28 years as per data on 19 November 2020 (https://www
.worldometers.info/ and https://www.who.int/).

Country
Confirmed cases

(numbers)
Deaths

(numbers)
Case fatality

(%)
Urban population

(%)
Median
age

Population density
(persons/km2)

USA 11,085,184 1,333,742 12.0 83 38 36

Brazil 5,876,464 166,014 2.82 88 33 25

Mexico 1,009,396 98,861 9.79 34 29 66

UK 1,410,736 52,745 3.73 83 40 281

Spain 1,458,591 40,769 2.29 94 45 80

Italy 1,238,072 46,464 3.75 69 47 206

France 2,000,060 45,938 2.29 82 42 119

India 8,912,907 1,30,993 1.46 35 28 464

Russia 1,991,998 34,387 1.72 74 40 9

Argentina 1,419,736 35,745 2.51 93 32 17

Peru 938,268 35,271 3.75 79 31 26

Saudi
Arabia

353,918 5,692 1.60 84 32 16

South
Africa

754,256 20,433 2.70 67 28 49

Iran 788,473 42,461 5.38 75.5 32 52
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that alleviate the immune response to infections at
the innate and adaptive immunity levels [62]. In
innate immune cells, BCG induces histone modifi-
cations and mutations at the promotor sites of genes
encoding inflammatory cytokines such as interleu-
kin- (IL-) 1, IL-6, and tumor necrosis factor
(TNF). This process is termed as “trained immu-
nity” [63]. BCG vaccination significantly increases
the secretion of proinflammatory cytokines, specifi-
cally IL-1β, which has been shown to play a vital
role in antiviral immunity [64]. This altered trained
innate immune defense system has been shown to
reduce parasitemia in malarial infection [65] and
protects against experimental yellow fever [66]. A
study in South Africa showed a 73% reduction in
respiratory tract infections in BCG-vaccinated indi-
viduals as compared to nonvaccinated individuals
[67]. A similar report has been seen in multiple
doses of BCG vaccination among elderly persons
in Indonesia [68]. Furthermore, a reduced risk of
pneumonia was also observed in BCG vaccination
among elderly people in Japan [69]. In countries
with universal BCG vaccination policy, reduced dis-
ease burden and mortality was observed in the ini-
tial weeks of the COVID-19 pandemic, suggesting
that induced innate immunity provided by the vac-
cination confers a strong resistance against COVID-
19 [61, 70]. Also, reports indicate that ethno-specific
protection to the South Asians may be offered by
BCG vaccination. Since these studies are mostly
observational, definitive evidence for the causal rela-
tionship between BCG vaccination and COVID-19
fatality needs to be established.

(v) Host Factors. In diseases, the host factor determines
the severity and infectivity and finally the mortality
rate. The immune response of the host plays a sig-
nificant part in the outcome of the disease. Accord-
ing to WHO, SARS-CoV-2 infection has a higher
mortality rate among senior citizens of Italy (14%)
[64] (above 60 years), whereas there was insignifi-
cant mortality among young people [61]. Data has
shown that SARS-CoV-2 infection in countries with
a high median age (Italy 45 years; Spain 47 years) is
very much higher than that in countries with a
lower median age (India 28 years; African continent
18 years) (WHO, https://www.who.int/) [70, 71].

(vi) COVID-19 Challenges in Rural Health Care. The
low mortality among the Indian population could
also be contributed by a 65-68% population living
in rural areas [72]. Despite our past victories in
overcoming tuberculosis and smallpox and the
absence of a vaccine, and in the wake of its high rate
of infectivity, rural India is the biggest challenge for
tackling COVID-19. The Indian rural health care
system, which is a three-tier system composed of
subcenters, primary health centers (PHC), and
community health centers (CHC), has presented a

shortfall: 18% at the subcenter level, 22% at the
PHC level, and 30% at the CHC level (as of March
2018) [73]. Lack of infrastructure, health care
workers, and quality of care has contributed to han-
dling the pandemic in rural areas. For example,
rural India has 3.2 government hospital beds per
10,000 people, and in some states, it is lower [74].
Apart from that, the absence of diligent surveillance,
poor disease management, and the reverse migra-
tion of the migrant workers from urban to rural
areas that started during the lockdown period have
complicated and left a deep void to grasp the true
statistics of the pandemic.

(vii) Environmental and Lifestyle Factors. Reports have
indicated that high temperatures and humidity can
retard SARS-CoV-2 progression implying that
Indian climatic conditions may not be conducive
for virus transmission. However, recent weather
reports in India have predicted otherwise in the
coming future months with increased vulnerability
to SARS-CoV-2. There is ample evidence to show
that the spices used in Indian daily traditional food
such as turmeric, cumin, garlic, pepper, ginger, cin-
namon, cardamom, cloves, and fenugreek have bio-
active phytochemicals that possess antioxidant,
antiproliferative, antihypercholesterolemic, antidia-
betic, and anti-inflammatory effects on human
health [75]. Among these spices, turmeric, a golden
spice, contains an active polyphenol named curcu-
min that possesses numerous pharmacological
activities. Novel animal and human studies indicate
that curcumin can affect different immune cells,
such as various T lymphocyte subsets, macrophages,
dendritic cells, B lymphocytes, and natural killer
cells, which results in decreasing severity of various
diseases with immunological etiology [76]. In a
study, curcumin inhibited influenza A virus (IAV)
in human lung cancer cell line A549 and the severity
of the disease was decreased in the mouse after IAV
infection. Heme oxygenase-1 expression was trig-
gered in vivo while IAV-induced injury to the lung
tissue decreased. There was inhibition of local
inflammatory cytokine expression following IAV
infection by curcumin. Curcumin played a role in
the inhibition of NF-κB signaling in macrophages
enhancing IκBα and AMPK, leading to the subse-
quent expression of chemokines/cytokines in
response to IAV infection [76]. The antioxidant
effect of curcumin might improve the protective
effect on SARS-CoV-2 infection [77]. Furthermore,
it also explores the role of spices in balancing blood
sugar as well as type 2 diabetes, cancer, cardiovascu-
lar disease, hypertension, and AIDS. Spices, as a part
of the daily diet, help to adjust the lipid profile and
reduce the glucose level. Many spices like carda-
mom help in gastrointestinal disorders as well as
help balance the cholesterol level [78]. There are
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studies to show that spices play a part in regulating
the immune response in viral infections. Since there
is evidence to show CD8+ T cell cross-reactivity
between SARS-CoV-2 and influenza A virus [79],
it is possible that curcumin modulates the immune
response of SARS-CoV-2 as it does with IAV. A
study showed that piperine, a bioactive compound
from black pepper, inhibits the interferon inhibitory
domain (PDB id 3FKE) of Ebola virus and methyl-
transferase (PDB id 1L9K) of dengue and has more
antiviral efficacy than ribavirin [80]. Kaushik et al.
[81] reported that Z. officinale extract has excellent
anti-Chikungunya activity and also combats drug
resistance in the Vero cell line infected with Chi-
kungunya virus. Studies have shown antiviral effects
of garlic in preclinical and clinical studies. Antiviral
mechanisms include the following: blocking the
entry of viruses and their fusion to host cells, inhibi-
tion of viral RNA polymerase, reverse transcription,
viral replication, and enhancing host immune
response. The innate antiviral immune response is
increased through macrophages and natural killer
cells while adaptive immunity is elevated via anti-
inflammatory cytokines, T cells, and B cells. These
responses have been observed in randomized clini-
cal trials for the treatment of several viral infections
that include viral hepatitis, common cold, warts,
and flu [82]. So, it will be a natural progression that
Indian dietary spices will modulate the COVID-19
immune response.

4. Differential “Cytokine Storm” among
Patients Determines the Treatment

Multiple mechanisms are involved in hampering the JAK-
STAT signaling cascade by proteins encoded by viruses
(DNA and RNA) [83]. Moreover, viruses encode products
that mimic cellular components of the interferon (IFN) sig-
naling cascade. This cellular mimicry can significantly con-
tribute to the antagonism of the IFN signaling and ensue
the impairment of an antiviral condition. For example,
vIFN-Rc, a soluble IFN receptor homolog secreted by
poxvirus-infected cells, binds to IFN, thereby inhibiting them
from functioning via its natural receptors to induce an antivi-
ral response [83]. The majority of the COVID-19 patients
develop mild to moderate symptoms, while some develop
hyperinflammation triggered by massive cytokine/chem-
okine production, called a cytokine storm, which can lead
to fatal pneumonia and acute respiratory distress syndrome
(ARDS) [84]. Patients with severe COVID-19 have shown
different cytokine profiles [84, 85]. For the first time, higher
levels of interleukin- (IL-) 2, IL-7, IL-10, tumor necrosis fac-
tor (TNF), granulocyte colony-stimulating factor (G-CSF),
interferon-gamma-induced protein 10 (IP-10; CXCL10),
MCP-1 (CCL2), and MIP-1A (CCL3) were observed in
intensive care unit (ICU) patients compared to non-ICU
patients [45]. Subsequently, elevated levels of other cyto-

kines, such as IL-1β, IL-1ra, IL-2R, IL-6, IL-8 (CXCL8), IL-
17, interferon- (IFN-) γ, and GM-CSF (granulocyte-macro-
phage colony-stimulating factor), during severe COVID-19
infections were recorded [85]. Importantly, the elevated
levels of several cytokines (IL-6, IL-10, IFN-γ, TNF, and IP-
10) have been found in severely ill (ICU) COVID-19 patients
than the mild to moderate (non-ICU) group [84, 85]. The
presence of the T helper 2 cytokine IL-10, which suppresses
inflammation, is a prominent feature of all reports, and an
imbalance and/or exhaustion of T cells may be also involved
[84].

Various approaches to harness the cytokine storm are
directed at globally targeting the inflammation or neutraliz-
ing a single key inflammatory mediator and are being
employed. A key cytokine of interest is IL-6, and antibodies
that block the IL-6 receptor (tocilizumab and sarilumab)
are currently under phase 2/3 clinical trials for the potential
treatment of COVID-19 [23]. Another promising immuno-
therapeutic candidate for the treatment of COVID-19 is
IFN-γ, and its potential is being worked out in a clinical trial
for the JAK-STAT inhibitor (ruxolitinib) [86]. The earlier
SARS-CoV infection revealed the protective effects of anti-
TNF therapies, as TNF acts upstream of IL-6 [38]. Inflamma-
tory diseases are successfully treated with several TNF-
blocking antibodies (e.g., adalimumab, etanercept, and goli-
mumab) and are being urgently recommended for COVID-
19 treatment [87]. There is an upregulation of IL-10 during
severe SARS-CoV-2 infection, but it may be also involved
in the infiltration of inflammatory cells and lung fibrosis
[88]. A report suggested that blocking IL-10, alone or in com-
bination with programmed cell death protein 1 (PD-1), may
be promising for the renewal of T cells and controlling
COVID-19 pathogenesis [86]. However, the caveat is the
development of chronic inflammatory disorders, and so
experimental studies are required to clearly elucidate the
therapeutic effect of overactivation or ablation of IL-10 for
severe COVID-19. Due to the differential cytokine patterns
among patients with severe COVID-19, “one-size-fits-for-
all” may not be the solution for an efficacious immunosup-
pressive program. Therefore, it is essential for the clinicians
to be well equipped with a cytokine panel, at least which
includes IL-6, IFN-γ, and TNF-α, to precisely identify the
needs of each patient before administration of selective
immunosuppressive therapy. Obviously, a combination of
immunosuppressive therapy with antiviral therapies that
lower the viral burden should also be taken into
consideration.

5. Cross-Reactivity of T Cell Immune Response
Offers Immune Protection

Different coronaviruses have cross-reactive neutralizing anti-
bodies. A report shows cross-reactive antibodies to human
coronavirus (HCoV-EMC) in SARS-recovered patients
[89]. As SARS-CoV and SARS-CoV-2 share the same recep-
tor (ACE2), there is cross-reactivity of antibodies. However,
some neutralizing antibodies against SARS-CoV have failed
to bind SARS-CoV-2 indicating that there might be differ-
ences in the receptor-binding protein (RBD) [90].
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Neutralizing antibodies formed from infection with other
coronaviruses may provide protection against SARS-CoV-2,
but the virus may enter cells and replicate via antibody-
mediated enhancement. In such cases, the virus binds with
the antibodies and this complex binds to Fc receptors on
the host cells enabling viral replication. It is surmised that
this may lead to the severity of SARS-CoV-2 infection [91].
It will be interesting to know whether cross-reactive antibod-
ies provide protection to Indians or there is a lack thereof. T
cell-mediated immune response plays an integral part in dis-
ease progression. Reports have shown a high homology
between T cell epitopes of SARS-CoV-2 and SARS-CoV
[92], and memory T cells have been known to persist for 11
years post infections [93]. Thus, this may help in T cell
immune response against SARS-CoV. A study showed the
presence of CD4+ T cells reactive against the S protein in
34% of SARS-CoV-2 seronegative healthy individuals. This
S protein had homology with other coronaviruses, common
cold, and SARS-CoV [94]. Even though variations in the T
cell response among Indians have not been studied, it is pos-
sible that these other viruses may provide cross-reactive T
cell immunity to SARS-CoV-2. There is not much evidence
to show cross-reactivity between coronaviruses and other
respiratory viruses; however, cytotoxic T cells directed
against human papillomavirus type 16 were found to be
cross-reactive to human coronavirus OC43 [95]. Another
report showed CD8+ T cell cross-reactivity between SARS-
CoV-2 and influenza A virus [79]. So, it is possible that the
protective effect of the adaptive immune response with other
viruses extends to COVID-19 in Indians.

6. Conclusion

Elucidating the interactions of HIR and KLA holds the key to
the therapeutic success of COVID-19 infection. KIR-HLA
interaction (MHC class I and MHC class II) has a significant
influence on the immunopathogenesis of viral pathogenicity
and has a controlling role on NK cell function in differentiat-
ing infected cell targets from the healthy host system.
Research on COVID-19 should include KIR-HLA sequence
variants, including their arrangements on recognition, sig-
naling, development, receptor-ligand expression, effector
function, and impact on disease susceptibility and resistance,
especially understanding how the genetic diversity of HLA
and KIR haplotypes impact the disease progression of
COVID-19 and aid in identifying high-risk individuals.
One of the ways would be to couple HLA typing with
COVID-19 testing so that an early risk assessment can be
done. If such signature motifs of HLA-KIR are identified,
then predictors for either immune protection or “high risk”
can be deployed, and it opens up the possibilities of
peptide-based immunotherapy, or future vaccination strate-
gies can be tailored for genotypically at-risk populations.
Further work to find the significance of the unique genetic
mutation in the Indian SARS-CoV-2 genomes may explain
if Indians do have a genetic advantage, and mechanisms on
how this advantage could be conferred on others would aid
in mitigating COVID-19 mortality. Also, clinical trials and
experiments are underway to realize the immunoprotective

effects of BCG vaccination. Finally, the impact of environ-
mental and lifestyle attributes providing protection against
COVID-19 mortality needs research. These approaches, in
the future, could preempt the pandemicity of COVID-19
and aid in the effective management of many more viruses
with similar potential. The Indian and African subcontinents
composed of a younger population have low mortality,
whereas countries of higher median age are harshly affected.
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