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Automated image segmentation 
method to analyse skeletal muscle 
cross section in exercise‑induced 
regenerating myofibers
Masoud Rahmati1* & Abdolreza Rashno2

Skeletal muscle is an adaptive tissue with the ability to regenerate in response to exercise training. 
Cross‑sectional area (CSA) quantification, as a main parameter to assess muscle regeneration 
capability, is highly tedious and time‑consuming, necessitating an accurate and automated 
approach to analysis. Although several excellent programs are available to automate analysis of 
muscle histology, they fail to efficiently and accurately measure CSA in regenerating myofibers in 
response to exercise training. Here, we have developed a novel fully‑automated image segmentation 
method based on neutrosophic set algorithms to analyse whole skeletal muscle cross sections in 
exercise‑induced regenerating myofibers, referred as MyoView, designed to obtain accurate fiber 
size and distribution measurements. MyoView provides relatively efficient, accurate, and reliable 
measurements for CSA quantification and detecting different myofibers, myonuclei and satellite 
cells in response to the post‑exercise regenerating process. We showed that MyoView is comparable 
with manual quantification. We also showed that MyoView is more accurate and efficient to measure 
CSA in post‑exercise regenerating myofibers as compared with Open‑CSAM, MuscleJ, SMASH and 
MyoVision. Furthermore, we demonstrated that to obtain an accurate CSA quantification of exercise‑
induced regenerating myofibers, whole muscle cross‑section analysis is an essential part, especially 
for the measurement of different fiber‑types. We present MyoView as a new tool to quantify CSA, 
myonuclei and satellite cells in skeletal muscle from any experimental condition including exercise‑
induced regenerating myofibers.

Abbreviations
CSA  Cross-sectional area
HIIT  High intensity interval training
MyHC  Myosin heavy chain
NS  Neutrosophic set

Skeletal muscle is an exceptionally regenerative tissue with the ability to undergoes extensive adaptation by 
changing its fiber type composition and cross-sectional area (CSA) upon external  stimuli1,2. Exercise training 
is a unique physiologicall-hypertrophy stimulus with the capability to induce muscle regeneration machinery 
throw increasing myofiber CSA to overcome corresponding skeletal muscle demands. Moreover, during physi-
cal inactivity, aging and some metabolic disorders, skeletal muscle losses in mass due to atrophy of individual 
 myofibers3. Among different cellular, molecular and structural components, CSA quantification of myofibers in 
microscopic images is widely used since it reflects the regenerative capability of the muscle as a final results of 
activating, proliferating, differentiating and fusing of muscle stem  cells1. Currently, CSA quantification is com-
monly performed method to delineate individual myofibers using immunohistochemical approaches targeting 
laminin or dystrophin in the basal lamina or inside of the sarcolemma,  respectively4,5. Image quantification is 
highly time-consuming and labor intensive part of this process and may susceptible to both inter-individual and 
inter-laboratory variabilities. This is why some laboratories have developed their own automated programs to 
limit the experimenter bias and save  time4–8.

OPEN

1Department of Exercise Physiology, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, 
Iran. 2Department of Computer Engineering, Lorestan University, Khorramabad, Iran. *email: rahmati.mas@
lu.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-00886-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21327  | https://doi.org/10.1038/s41598-021-00886-3

www.nature.com/scientificreports/

Most of current available softwares were developed to measure myofiber CSA in normal muscle or under 
conditions targeting muscle regeneration including synergist ablation or cardiotoxin  injection4,8. While, these 
strategies induce prominent regenerating capability, there are questions about their physiological relevance due 
to invasive nature and the potential to damage the skeletal  muscle9. In addition, the shape of the cells in normal 
muscle is characterized by polygonal and angular myofibers with keeping their contact with each other, while in 
regenerating myofibers they are round-shaped, highly variable in size, and smallest ones do not regularly contact 
surrounding fibers. Moreover, image acquisition and reconstitution of different multiple subsets of the whole 
muscle may expose the overall results to bias. Additionally, while fluorescent microscopy systems are vital tool 
for muscle biology research, they require significant manual optimization and continuous human supervision. 
Further, quantifying myonuclear number by microscopy methods is difficult because skeletal muscle is hetero-
geneous and the brightness/contrast for each image should be adjusted and raises the possibility of performing 
image post-processing prior to image analysis. Moreover, the variation of myonuclei intensity within the same 
image also complicates the automatic microscopy methods, causing over-segmentation during the myonuclei 
 detection10.

We therefore sought to develop a fully-automated software to quantify CSA, myonuclei and satellite cells in 
exercise-induced regenerating myofibers. The proposed method handles noise, moving artifact, heterogeneous 
and brightness/contrast variations in neutrosophic indeterminacy set. We utilized a high intensity interval train-
ing (HIIT) protocol which led to progressive hypertrophy thereby inducing muscle regeneration machinery. Here, 
we present a fully-automated CSA quantification method for skeletal muscle images applicable to any type of 
muscle and under exercise-induced regenerating muscle condition. The proposed method; named as MyoView; 
is based on neutrosophic set algorithms designed to automatically quantify CSA, myonuclei and satellite cells 
on immunofluorescent picture of the whole skeletal muscle section. In addition, it allows the analysis of the 
CSAs of different myofibers on the whole muscle cross-section, which we show here to be essential to obtain an 
accurate CSA quantification.

Methods
Mice and muscle tissue preparation. All experiments involving animals were performed in accordance 
with approved guidelines and ethical approval from Lorestan University’s Institutional Animal Care and Use 
Committee (as registered under the code: LU.ECRA.2017.12). Further, the present study was carried out in com-
pliance with the ARRIVE guidelines. C57BL/6 J (n = 18) and mdx (n = 3) mice were purchased from Lorestan 
University of Medical Sciences Laboratories. At the end of the treatment periods, all mice were anesthetized 
with inhalation of isoflurane. Gastrocnemius muscles from 16- to 18-week-old C57BL/6 mature mice and mdx 
mice were dissected in optimal cutting temperature (OCT) medium, mounted on pieces of cork, secured with 
tragacanth gum, frozen in liquid nitrogen-cooled isopentane and stored at − 80  °C. Moreover, samples from 
regenerating muscles were provided at several time points after exercise training program (day 28 and day 56). 
Muscle samples were frozen in isopentane cooled by liquid nitrogen and further stored at − 80 °C. 10 µm-thick 
cryosections were prepared and processed for immunostaining and used to test the program’s ability to recog-
nize variability in myofiber morphology.

High‑intensity interval training (HIIT) protocol. First, mice were acclimated on the treadmill (5 day/
week, 10 m/min for 10 min with no incline) and then subjected to HIIT program for 8 weeks (3 sessions/week)11. 
Each training session consisted of a warm-up stage (5 min at 10 m/min), eight exercise intervals at the prescribed 
speed and angle of inclination for 3–5 min, and a 1 min rest interval at 10 m/min was considered between each 
interval. The angle of inclination was gradually increased from 10° in the first week to 15° in the second week, 20° 
in the third week, 25° in the fourth week, and it was maintained at 25° from weeks 4 to 8. The treadmill speed was 
maintained consistent (15 m/min) for the first 4 weeks and from weeks 5–8 was gradually increased by 1–2 m/
min weekly (Model T510E, Diagnostic and Research, Taoyuan, Taiwan)9.

Immunofluorescent staining. Immunohistochemical procedures were carried out according to our pre-
vious  studies12,13. In summary, for fiber typing, Sects. (10 µm-thick) were incubated with antibodies specific to 
myosin heavy chain (MyHC) types I, IIa, and IIb (BA-D5, SC-71, and BF-F3, respectively, University of Iowa 
Developmental Studies Hybridoma Bank, Iowa City, IA), supplemented with rabbit polyclonal anti-laminin 
antibody (L9393; Sigma-Aldrich, St. Louis, MO). MyHC IIx expression was judged from unstained myofib-
ers. Secondary antibodies coupled to Alexa Fluor 405, 488 and 546 were used to detect MyHC types I, IIa, and 
IIb, respectively (Molecular Probes, Thermo Fisher Scientific, Waltham, MA, USA). Moreover, laminin (L9393 
Sigma-Aldrich, St. Louis, MO, USA) and Pax7 (Developmental Studies Hybridoma Bank, Iowa, IA, USA) were 
used to detect cell border and satellite cells, respectively. Anti-rabbit IgG Cy3 and Cy5-labeled secondary anti-
bodies (Jackson Immunoresearch Labs, West Grove, PA, USA) were used to detect laminin and Pax7.

Image acquisition and quantification. All images were captured at × 10 magnification using a Carl Zeiss 
AxioImager fluorescent microscope (Carl Zeiss, Jena, Germany). Consecutive fields from whole muscle sections 
were automatically acquired in multiple channels using the mosaic function in Image M1 Software (version 
4.9.1.0, RRID:SCR_002677).

Development of MyoView. MyoView has been implemented in MATLAB 2017b on a machine with 
2.26 GHz Corei7 CPU and 8 GB of RAM. It is very fast, simple and efficient with low time complexity to analyze 
skeletal muscle cross sections. The primary version of source codes is undergoing verification to be publicly 
available with MIT license at Code Ocean platform in https:// codeo cean. com/ capsu le/ 49100 24/ tree which gen-

https://codeocean.com/capsule/4910024/tree
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erates a standard, secure, and executable research package called a Capsule. Capsule format is open, exportable, 
reproducible, and interoperable. This capsule is versioned and contains code, data, environment, and associated 
results of MyoView.

Manual analysis for comparison to MyoView. For manual quantification of fiber-type and CSA, 
images from various experimental conditions were analyzed in FIJI using the free hand tool to encircle individ-
ual myofibers. Manual quantification of CSA and fiber-type were performed for all images used in this present 
study. Accuracy of MyoView and programs examined in this study was based on comparison between program-
derived results and manually acquired results as  described8. Additionally, Open-CSAM4,  MuscleJ6,  SMASH7, 
and  MyoVision8 analyses were performed as described.

Statistical analyses. Reported data represent mean ± S.E.M. Statistical analysis was performed using the 
Graph-Pad Prism statistics software (Graph-Pad Software Inc., San Diego, La Jolla CA, USA free demo version 
5.04, www. graph pad. com). One-way ANOVA followed by Tukey’s post hoc test was performed for inter-user 
reliability comparisons. Paired, two-tailed Student’s t-tests were performed for comparing MyoView with man-
ual quantification data. Repeated-measures two-way ANOVA followed by Bonferroni multiple-comparisons 
tests were performed for CSA changes with HIIT program and fiber counting accuracy and efficiency measure-
ments. Spearman correlation coefficient was computed to assess the correlation analyses.

Results
Proposed cell segmentation models. Model cell images in neutrosophic sets and neutrosophic imag-
es. Interactions between neutralities as well as their scope and nature are modeled in neutrosophy as a branch 
of philosophy. Neutrosophic logic and neutrosophic set (NS) stem from neutrosophy. Suppose that N is a uni-
versal set in the neutrosophic domain and a set X is included in N. Each member x in X is described with three 
real standard or nonstandard subsets of [0, 1] named as True(T), Indeterminacy(I), and False(F) which have 
these properties: Sup_T = t_sup, inf_T = t_inf, Sup_I = i_sup, inf_I = i_inf, Sup_F = f_sup, inf_F = f_inf, n-sup = t_
sup + i_sup + f_sup and n-inf = t_inf + i_inf + f_inf. Therefore, element x in set X is expressed as x(t,i,f), where t, i 
and f varies in T, I and F respectively. x(t,i,f) could be interpreted as it is t% true, i% indeterminacy, and f% false 
that x belongs to A,  T, I and F could be considered as membership  sets7.

NS can be used in image processing domain. The main contribution of the proposed NS segmentation method 
is to separate, count and compute sum area of blue, green, black, and red cells in skeletal muscle cross sections. 
For this task, an image is transformed into the neutrosophic domain. The method of transformation is completely 
depending on the image processing application. In cell segmentation, image C with the dimension of m × n and L 
gray levels and k channels are considered. Here images with 3 channels Red, Green and Blue (RGB), each chan-
nel with the dimension of 5751 × 7600 for each channel and 256 Gy levels are used for automated segmentation. 
Since all neutrosophic sets are in the range of [0 1], in the first step, C is normalized to interval [0 1] as follows:

where Cmin(k) and Cmax(k) represent minimum and maximum values of pixels in cell image C in channel k, 
respectively. C is mapped into three sets T (true subset), I (indeterminate subset) and F (false subset). Therefore, 
the pixel p(i,j) in C is transformed into PNS(i, j) = {T(i, j), I(i, j), F(i, j)}) or PNS (t, i, f) in neutrosophic domain. 
T, I and F are dedicatedly defined for each type of cells.

Cell counting and area computation for all types of cells. For gray-scale image in Fig. 1A, region of interest is 
selected and shown in Fig. 1B. The proposed method for cell counting and area computation is explained for this 
image. In the first step, boundary regions between cells are modeled in true set T and cell regions are considered 
in False set F. Proposed definitions of neutrosophic sets are as follows:
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where k is channel number which can be 1, 2 or 3. min and max indexes are minimum and maximum values in 
the whole matrix, respectively. Matrix τk computes eligibility of pixels to be assigned to cell k, is based on nor-
malized value of pixels in channel k associated with this cell and inverse values in other channels with respect 
to maximum value 1. True component T is achieved by τ normalization. If a pixel has a high value in channel k 
and low values in other channels simultaneously, a high percent is assigned to this pixel to be a member of cell 
index k. Indeterminacy matrix is calculated by difference of pixels in channel k from mean of local neighbor 
pixels in this channel. Therefore, pixels close to local mean of a channel receive low indeterminacy, means a high 
confidence of assignment is considered for those pixels.

Therefore, in binarized version of True and False sets, boundary and cell pixels are illustrated in light and dark 
regions, respectively (Fig. 1C). In the next step, true and false sets are converted to each other to place cell pixels 
in true set as shown in Fig. 1D. In error correction steps, small regions and holes are corrected in Fig. 1E. Finally, 
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(A) Input gray-level image of 
all cell types

(B)  Region of interest selected 
from gray-level image of all 
cell types

(C) Boundary and cell pixels in 
binarized true and false sets in 
neutrosophic domain

(D) Converting true and false 
sets to each other

(E) Error correction in 
binarized true and false sets

(F) Final segmentation of all 
cell types

(G) Input gray-level image of 
all cell types

(H) Binarized version of 
detected all cell types

Figure 1.  MyoView workflow for all cell types. (A) When the MyoView software starts, a window automatically 
opens to select the image to be analyzed (here muscle cryosections immunostained for laminin in white). (B) 
Represents zoom-in example of a specific area. (C-F) Represent MyoView different steps for segmentation 
process of all cell types. (G-H) Represent the segmentation process of all cell types in the whole image. 
Bars = 25 μm.
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true set T is placed in input image and boundaries are illustrated with blue color for better visualization as shown 
in Fig. 1F. Binarized version of detected all cell types in the whole image is depicted in Fig. 1G,H. In this step, all 
connected components are found by iteratively 8-neighbor correlated pixels. Components are counted, area of 
each component is calculated, then number of components, sum and average of areas are reported as outputs.

Cell counting and area computation for color cells. For red, green and blue cells with k indexes of 1,2 and 3, 
respectively, PNS (t, i, f) means that this pixel is %t percent true to be a member of cell with index k, confidence 
of this decision is %i and %f percent true that this pixel does not belong to cell k. T, I and F for cell index k are 
computed as follows:

For black cells, Eq. (9) for τk computation is rewritten as:

It can be interpreted by this fact that: the lower values of a pixel in all channels, the higher membership degree 
to black cells is assigned. Consider input image shown in Fig. 2A to apply the proposed segmentation method. 
For better visualization of details, a region of interest (ROI) is selected and illustrated in Fig. 2B.

For each pixel in neutrosophic domain, two conditions are considered to assign high membership degree 
for that pixel to cell index k. The first one is high value of True matrix and the second one is low indeterminacy, 
means there is a high confidence to decide that pixel has a high membership degree to True set T. These condi-
tions are combined with “AND” relation by pixelwise product of True and Indeterminacy sets as follows:

The result of matrix M; still in neuromorphic domain; for blue cells (k = 2) is shown in Fig. 2C. It is clear that 
pixels in blue cells have higher membership degrees (in lighter gray levels) in comparison with pixels in other 
cells (darker pixels). Matrix M in neuromorphic domain is binarized with a strict threshold as shown in Fig. 2D.

Error correction. In binarization process of image M in neutrosophic domain, some extra regions are appeared 
which are incorrectly assigned to blue regions (Fig. 2D). Therefore, these errors should be corrected. Error cor-
rection is done automatically. Connected components for true image T in neutrosophic domain are found itera-
tively by connecting all 8-neighbor pixels in Supplementary Fig. S1 and labeling connected pixels upon there is 
no unlabeled pixel. Average area of all components is computed and small components under 20% of average 
area are ignored as shown in Fig. 2E.

Pixels inside blue cells are located inside a distribution of blue color in channel 3 with a mean and standard 
deviation. Blue pixels close to the mean of this distribution are strongly assigned to blue cells since high values 
of T and I matrixes leads to a high value of M for such pixels. Pixels which are far from the mean of distribution 
are weakly assigned to blue class since their indeterminacy I is high and their true membership is low. Therefore, 
their values in matrix M are low. It is worth mentioning that such pixels although have low membership degrees 
blue cells, they are located inside blue regions and should be assigned to blue cells. These errors are corrected by 
filling holes inside connected components as illustrated in Fig. 2F.

Final segmentation of cells. After finalizing matrix M in neutrosophic domain, edge pixels are detected by 
canny edge detector as shown in Fig. 2G. For better visualization of cell boarders, thickness of edges is increased 
by image dilation operator with a disk structure element depicted in Fig. 2H. Final edges are placed in input 
image which lead to high-accuracy segmentation of blue cells in Fig. 2I. Finally, blue cells are separated from 
input image and shown in an image with black background as illustrated in Fig. 2J. The same scenario is applied 
to segment red, green and black cells results in detected cells in Fig. 2K–P. Segmented cells in the whole images 
are shown in Fig. 2Q–U.
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(A) Input image for cell 
segmentation

(B) Region of interest 
for analysis

(C) Matrix M in 
neuromorphic domain

(D) Binarization of 
matrix M

(E) Small objects 
removal

(F) Filling holes inside 
connected components

(G) Detecting edges of 
matrix M 

(H) Increase edge 
thickness

(I) Placing blue edges 
in input image

(J) Separating blue 
cells from input image

(K) Placing green edges 
in input image

(L) Separating green 
cells from input image

(M) Placing black 
edges in input image

(N) Separating black 
cells from input image

(O) Placing red edges 
in input image

(P) Separating red cells 
from input image

(Q) Input image (R) ROI for MyHC I (S) ROI for MyHC IIa (T) ROI for MyHC IIx (U) ROI for MyHC IIb

Figure 2.  MyoView workflow for different cell types. (A) When the MyoView software starts, a window 
automatically opens to select the image to be analyzed (here muscle cryosections immunostained for laminin 
(white), MyHC I (blue), MyHC IIa (green), and MyHC IIb (red)). (B) Represents zoom-in example of a specific 
area. (C) MyoView computes matrix M in neuromorphic domain from input image. (D-H) After binarization 
of matrix M, removing small objects, and filling holes inside the connected components, then the software 
detects edges of matrix M and for better visualization increases edge thickness. (I) To dabble-check the detecting 
process, the software places edges in input image. (J) Finally, the software separate edges from input image and 
finalize the analyzing process (here for MyHC I myofibers in blue color). (K-l) Represent the same process for 
MyHC IIa myofibers in green color. (M–N) Represent the same process for MyHC IIx myofibers in black color. 
(O-P) Represent the same process for MyHC IIb myofibers in red color. (Q-U) Represent the segmentation 
process of different myofibers in the whole image. Bars = 25 μm.
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MyoView is a reliable software for measuring CSA in response to the post‑exercise regenerating 
situation. In order to test the reliability of MyoView, its performance was compared with some other common 
software including: Open-CSAM, MuscleJ, SMASH, and MyoVision (Fig. 3). We analyzed gastrocnemius mus-
cle from various conditions, including normal muscle, regenerating muscles at several time points after exercise 
training (D28 and D56) in mature mice, and a model of fibrotic dystrophy (mdx) using anti-laminin antibody. 
Open-CSAM produced significantly lower mean CSA values as compared with manual quantification on D0, D28 
and D56 (Fig. 3A, -6.6, -7.3 and -10.9%, respectively). Mean CSA values obtained with MuscleJ were similar to 
the manual quantification for normal muscles in D0. However, it gave higher mean CSA values in D28 and D56 
post-exercise regenerating muscles (Fig. 3A, between 4.5% to 5.9% of increment). Mean CSA values obtained 
with SMASH were very close to the manual quantification in normal muscles in D0. However, SMASH produced 
higher mean CSA values in D28 and D56 post-exercise regenerating muscles (+ 5.8% and + 9.9%, respectively). 
MyoVision produced similar CSA values to the manual quantification for normal muscles in D0. However, it gave 
higher mean CSA values in D28 and D56 post-exercise regenerating muscles as compared with manual quantifi-
cation (Fig. 3A, + 9.1% and + 8%, respectively). On the other hand, MyoView gave mean CSA values close to those 
obtained manually in D0, D28 and D56, with a very slight underestimation (Fig. 3A, -1.8%, -1.4% and -1.3%, 
respectively). In the case of mdx muscle, all of the softwares produced similar CSA values to the manual quan-
tification except MuscleJ and MyoVision which they produced higher values (+ 4.8% and + 9.1%, respectively).

Despite an increased CSA values obtained using MuscleJ, SMASH, and MyoVision and decreased values for 
Open-CSAM, the correlation between them and manual quantifications were strong in normal muscles in D0, as 
well as in days 28 and 56 post-exercise regenerating muscles (Fig. 3B,  R2 > 0.85), suggesting that in these condi-
tions, CSA overestimation by MuscleJ, SMASH, and MyoVision as well as CSA underestimation by Open-CSAM 
were similar to all the pictures and did not introduce a specific bias. Overall correlation between Open-CSAM 
and manual quantification was very strong in normal muscles in D0 (Fig. 3B,  R2 = 0.9854). Although this correla-
tion was lower in days 28 and 56 post-exercise regenerating muscles as well as on fibrotic muscles  (R2 = 0.9047, 
 R2 = 0.9180, and  R2 = 0.9429, respectively). Similarly, overall correlation between MuscleJ, SMASH, and MyoVi-
sion and manual quantification were very strong in normal muscles in D0 (Fig. 3B,  R2 = 0.9707,  R2 = 0.9978, and 
 R2 = 0.9755, respectively). Although these correlations were lower in D28 (Fig. 3B,  R2 = 0.9536,  R2 = 0.8959, and 
 R2 = 0.9390, respectively) and D56 post-exercise regenerating muscles (Fig. 3B,  R2 = 0.8605,  R2 = 0.8570, and 
 R2 = 0.9435, respectively) as well as on fibrotic muscles  (R2 = 0.8872,  R2 = 0.9626, and  R2 = 0.9368, respectively). 
Although, the correlation between MyoView and manual quantification was very strong in normal muscles in 
D0 (Fig. 3B,  R2 = 0.9799), there was no difference between this correlation and the corresponding values for 
other software. However, the correlation between MyoView and manual quantification was better than Open-
CSAM, MuscleJ, SMASH, and MyoVision in 28 and 56 days’ post-exercise regenerating muscles. This suggests 
that MyoView performance was better in response to the post-exercise regenerating process.

We next assessed myofiber hypertrophy at 28 and 56 days after HIIT in gastrocnemius skeletal muscle using 
MyoView. Quantification of myofiber cross-sectional area (CSA) showed a significant increase at 56 days after 
HIIT but not at 28 days’ point (Fig. 3A). These results indicate that MyoView is a reliable software for measuring 
CSA in response to the post-exercise regenerating situation.

MyoView is an efficient and accurate software for measuring CSA. In order to examine MyoView 
efficiency in detecting myofibers and the time spent on CSA analysis as well as its accuracy, we next compared 
MyoView performance with manual quantification, Open-CSAM, MuscleJ, SMASH, and MyoVision softwares 
(Fig. 4). Figure 4B shows that there was no difference between the number of fibers counted by MyoView and 
the number counted by manual quantification, which corresponds to an accuracy of 98.1% ± 0.9 (Fig. 4D). In 
contrast, Open-CSAM, MuscleJ, SMASH, and MyoVision identified lower myofibers and spent much more time 
to analyse CSA from various experimental conditions (Fig. 4C, P > 0.001). Furthermore, our results indicate that 
HIIT program has not changed the number of fibers in gastrocnemius skeletal muscle (Fig. 4B). Moreover, as 
compared with manual quantification, the accuracy of MyoView in analysing CSA was 98.2% ± 1.4, (Fig. 4E), 
while Open-CSAM, MuscleJ, SMASH, and MyoVision have been less accurate in analysing CSA (P > 0.001). 
Taken together, these results suggest that MyoView is an efficient and accurate software for detecting myofibers 
and measuring CSA in response to the post-exercise regeneration process.

MyoView performance in different fiber‑types is comparable to manual quantification. We 
next wanted to determine how does effective MyoView work as a tool for analysing different myofiber size and 
type in entire cross-section of gastrocnemius muscle. Three experienced researchers used the free hand tool in 
Fiji to encircle individual myofibers from six images from 16- to 18-week-old C57BL/6 mice in 56 days (D56) 
post-HIIT program to obtain CSA values. We then ran the same images through the MyoView program and 
obtained a distribution of CSA across the images. The mean CSAs and distributions did not differ significantly 
between manual and MyoView analysis (Fig. 5A,B). Next, we tested the accuracy of fiber typing using MyoView. 
Fiber type analysis was manually performed by 3 experienced researchers on six images (2 images per person). 
We then used MyoView to obtain mean data for blue, green, black, and red channels across these six images for 
fiber typing. The relative proportion of each fiber type was strongly correlated between MyoView and manual 
analysis  (R2 > 0.97) (Fig. 5C,D). Additionally, MyoView fiber type classification results in CSA were linearly and 
positively correlated to manual counts  (R2 > 0.98), and there was no statistically significant difference between 
the CSAs of each fiber type measured by hand and by MyoView. The accuracy of MyoView fiber type analysis 
is estimated to be 98.5 ± 0.7% compared with manual quantification. Moreover, fiber-type analysis using Myo-
View showed that HIIT program in D28 and D56, changes the characteristics of myofiber toward faster type IIb 
myofibers along with increasing their size (Fig. 5E,F, P > 0.05).
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Figure 3.  MyoView comparison with Open-CSAM, MuscleJ, SMASH, and MyoVision softwares. The same 
pictures were analyzed either by manual measurement or using MyoView, Open-CSAM, MuscleJ, SMASH, 
and MyoVision softwares. (A) Mean cross-section area (CSA) obtained on various gastrocnemius muscles. 
Muscles were isolated from 16- to 18-week-old C57BL/6 mice in (D0) or 28 days (D28), and 56 days (D56) 
post-HIIT program, and from dystrophic mice (mdx). Results are mean ± SEM of 10 images from 5 muscles in 
each conditions. (B) Correlation between manual measurement (X axis) and MyoView, Open-CSAM, MuscleJ, 
SMASH, and MyoVision softwares (Y axis) measurements performed on the same images used in (A). (C) 
Representative images measured by MyoView on days 0, 28, and 56 post-HIIT program, and from dystrophic 
mice (mdx). Bars = 25 μm. **P < 0.01 as compared with manual quantification. Image analysis was performed 
using Open-CSAM4,  MuscleJ6, SMASH7, and  MyoVision8 softwares. †P < 0.05 as compared with D0.
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Taken together, the results from this part implicate that MyoView performance in different fiber-types is 
comparable to manual quantification in regenerating myofibers in response to HIIT program.

Inter‑user reliability of MyoView. To assess the ease and accuracy of analyses with MyoView, we asked 
five individuals in the laboratory to analyse the CSAs of whole muscle cross-section and different fiber-types 
from a single image from gastrocnemius muscle from D28 after exercise training. The analyses of the CSA of 
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Figure 4.  Comparison of MyoView, Open-CSAM, MuscleJ, SMASH, and MyoVision CSA quantification on 
whole muscle sections. (A) Representative images measured by MyoView, Open-CSAM, MuscleJ, SMASH, and 
MyoVision on gastrocnemius muscle images obtained from 16- to 18-week-old C57BL/6 mice. Segmentation 
errors are labeled as missed fibers (green), mis-segmented fibers (red). (B) Number of fibers identified by the 
softwares. (C) Total analysis time required by the different softwares. (D) Fiber number accuracy by the different 
softwares. (E) Mean CSA accuracy by the different softwares. Results are mean ± SEM of 10 images from 5 
muscles in each condition. **P < 0.01 as compared with manual or MyoView quantification.
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whole muscle cross-section, MyHC I, IIa, IIx, and IIb fibers were similar among the five users (Fig. 6). This 
further demonstrates the reliability of the image outputs of the analyses taken by MyoView to analyses the CSAs 
of whole muscle cross-section and different fiber-types in regenerating myofibers in response to HIIT program.

Whole muscle cross‑section analysis for fiber type determination is essential for best accu‑
racy. CSA determination of the of various fiber types is usually performed on a subset of images randomly 
taken throughout the muscle section. Depending on the researchers’ decision, a variety of different number of 
images and thus myofibers can be qualified for fiber type analysis. This may expose the evaluation process to 
the possibility of selection bias as myofiber size is quite heterogeneous through the whole muscle cross-section. 
Figure 7A shows an example of an entire reconstituted muscle picture. We measured CSAs of different myofibers 
on individual images from 5 mice on 56 days post-HIIT program, calculated the mean CSAs on 12 subsets of 
images, and compared the results with the CSAs obtained on the whole muscle section by MyoView. When the 
measurement was made only using a 12 subset of pictures, there was no significant different in fiber type distri-
bution as compared with whole muscle cross-section analysis (Fig. 7B, P > 0.8). Given that about eighty percent 
of gastrocnemius muscle fibers are type IIb, measuring fewer number of these fibers on 12 subsets of pictures 
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Figure 5.  MyoView is comparable to manual quantification for analysing different myofibers. (A-B) Myofiber 
CSAs and distributions were not different when determined with MyoView or by manual quantification 
(P > 0.92). Results of manual analysis of 6 images from 3 investigators are shown. (C) Proportions determined 
manually are on the y-axis and proportions determined by MyoView are on the x-axis. (D) MyHC I fibers 
indicated by blue symbols, MyHC IIa indicated by green symbols, MyHC IIx indicated by black symbols, and 
MyHC IIb indicated by red. (E) The effect of HIIT on MyHC distribution (measured with MyoView). (F) The 
effect of HIIT on myofiber CSA in different fiber types (measured with MyoView). †P < 0.05 as compared with 
D0. ‡P < 0.05 as compared with D28. Bar = 25 μm.
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(Fig. 7C, P = 0.015) was led to underestimation of CSA of IIb fibers as compared with whole muscle cross-section 
analysis (Fig. 7D, P > 0.8). Moreover, compared with whole muscle cross-section analysis, significant reduced 
CSA of type IIx fibers was observed in analyzing of 12 subsets of pictures (Fig. 7D, P = 0.04). Additionally, we 
particularly observed that compared with whole muscle cross-section analysis, mean CSA was underestimated 
when 12 subsets of pictures were measured (Fig. 7C, P = 0.015). Taken together, these results indicate that the 
whole muscle cross-section should be analyzed when measuring CSA of exercise-induced regenerating muscle 
in order to obtain an unbiased data.

MyoView performance in myonuclei and satellite cell detection is comparable to manual 
quantification. In order to develop the ability of MyoView in other features of skeletal muscle regeneration, 
we next decided to provide its capability to detect myonuclei and satellite cells. Results of MyoView in myonuclei 
and satellite cell detection are shown in Fig. 8. Here, it is shown that how does MyoView work as a tool to detect 
myonuclear number in laminin immunofluorescence demarcating the sarcolemma and DAPI-stained nuclear 
DNA. Figure 8. Q shows the results from MyoView in myonuclei detection, where the myonuclei are indicated 
by white star signs. We only considered any myonuclei which has centroid and more than 50% of its area is 
located inside  sarcolemma8. Three experienced researchers used the 3D manager plugin of Image  J14 to encircle 
individual myofibers from six images from 16- to 18-week-old C57BL/6 mice in D56 after HIIT to obtain myo-
nuclear numbers. We then ran the same images through the MyoView software.

Next, we tested the accuracy of myonuclei detection by comparing the results of MyoView with manual quan-
tification. The myonuclear number was strongly correlated between MyoView and manual analysis  (R2 = 0.9941) 
(Fig. 9A). The mean myonuclear number did not differ significantly between manual quantification and MyoView 
analysis at D56 after HIIT (Fig. 9B). We next assessed the magnitude and timing of myonuclear accretion at 
various stages of HIIT in order to reveal involved mechanism lead to skeletal muscle regeneration. We assessed 
myonuclear number on cryosections from gastrocnemius by evaluating the number of nuclei within a laminin-
stained myofibers using MyoView. This analysis also revealed an increment of myonuclei from sedentary mice 
and mice subjected to 28 and 56 days of HIIT (Fig. 9C). These data demonstrate that there is a continuous 
increase in myonuclei throughout the exercise regimen in gastrocnemius regenerating myofibers. Taken together, 
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Figure 6.  Inter-user reliability. Independent analyses of mean CSA as a function of fiber type by 5 users. Data 
from whole gastrocnemius muscle images obtained from 16- to 18-week-old C57BL/6 mice on 56 days (D56) 
post-HIIT program. (A) Representative image measured by MyoView for measuring different fiber types. (B) 
Mean CSA of whole muscle fibers. (C) Mean CSA of MyHC I fibers. (D) Mean CSA of MyHC IIa fibers. (E) 
Mean CSA of MyHC IIx fibers. (F) Mean CSA of MyHC IIb fibers. Bar = 25 μm.
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the results from this part implicate that MyoView performance in myonuclei detection is comparable with manual 
quantification in regenerating myofibers in response to HIIT program.

Finally, we assessed the number of satellite cells to determine the cause of elevated myonuclear number in 
regenerating gastrocnemius muscle. Satellite cell content was strongly correlated between MyoView and manual 
analysis  (R2 = 0.9622) (Fig. 9D). Moreover, we compared the results of MyoView with manual quantification 
for satellite cell detection at D56 after HIIT. The mean satellite cell content did not differ significantly between 
manual quantification and MyoView analysis at D56 after HIIT (Fig. 9E). Further, HIIT was accompanied with 
elevated number of Pax7 positive cells at both 28 and 56 days post-training duration (Fig. 9F). Taken together, 
these results suggest that skeletal muscle responds to HIIT by increasing cell size, satellite cell content and 
myonuclear accretion and MyoView is a powerful software to detect these changes in regenerating myofibers.

Discussion
Skeletal muscle fibers are extremely sensitive to exercise training stimuli, with individual myofibers capable 
to increase in  size9,12. Due to this adaptive characteristic, exercise physiologists have long acknowledged the 
importance of accurately quantifying muscle CSA in their  experiments8. However, there are various strategies to 
analyze images and CSA quantification that can give highly heterogeneous results among different laboratories 
and teams. On the other hand, no automated program has been developed to provides the possibility for CSA 
quantification in exercise-induced regenerating myofibers especially in whole muscle cross-section. In the present 
study, we presented MyoView software to automatically process immunofluorescence images of the whole muscle 
cross-sections stained with laminin α2 and antibodies specific to MyHC types I, IIa, and IIb (BA-D5, SC-71, and 
BF-F3, respectively) in order to facilitate the determination of different individual myofibers on D0, D28 and 
D56 post-exercise training. The parallel comparison between MyoView and manual quantification showed that 
MyoView can provide relatively efficient, accurate, and reliable measurements for detecting different myofibers 
and measuring CSA in response to the post-exercise regeneration process.

MyoView is based on neutrosophic set algorithms. It is a fully-automated method for color cell segmenta-
tion based on neutrosophic sets. To the best of our knowledge, this is the first method which is proposed for 
neutrosophic cell segmentation. The main benefit behind using neutrosophic set is that: it has been applied 
in many applications; including segmentation of fluid/cyst regions in diabetic macular edema and exudative 
age-related macular degeneration  patients15–17, unsupervised color–texture image  segmentation18, automatic 
segmentation of choroid layer in retinal  images19, content-based image  retrieval20,21, and promising results were 
achieved. In this research, first, color cells have been modeled as neutrosophic sets with three components and 
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Figure 7.  Whole muscle analysis for different myofiber types by MyoView. (A) Whole reconstitution of a 
MyHC I, IIa, IIx, and IIb -stained cryosection of a gastrocnemius muscle from 5 mice on 56 days post-HIIT 
program (12 pictures were automatically recorded and assembled by MetaMorph software (MetaMorph 
Microscopy Automation and Image Analysis Software, version 7.7.7.0., http:// www. molec ulard evices. com/ Produ 
cts/ Softw are/ Meta- Imagi ng- Series/ MetaM orph. html)). The position of each individual image is highlighted by 
the yellow lines. (B) MyHC distribution obtained after various subsettings of pictures in (A) as compared with 
whole muscle analysis by MyoView. (C) Number of fibers obtained after various subsettings of pictures in in 
(A) as compared with whole muscle analysis by MyoView. (B) Mean cross-section area obtained after various 
subsettings of pictures in in (A) as compared with whole muscle analysis by MyoView. Bar = 250 μm.
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Figure 8.  MyoView workflow for myonuclei and satellite cell detection. (A) When the MyoView software 
starts, a window automatically opens to select the image to be analyzed. (B-Q) Represent detection process for 
myonuclei. (R-T) Represent detection process for satellite cells. Higher magnification of selected area is shown 
in yellow box. Bars = 250 μm.
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then each component is used to increase the confidence of each pixel to its corresponding cell type. Therefore, 
a high-confidence assignment of pixels to cell regions is achieved.

Several other semi and fully-automated softwares have been  developed4–8,22–29. Among them, we have attempt 
to test and compare Open-CSAM, MuscleJ, SMASH, and MyoVision with MyoView and found MyoView is 
relatively easy to implement and more accurate for CSA quantification, especially in post-exercise regenerating 
muscles. We did not test all available softwares as they are either not available online or purchase is required. 
Open-CSAM, MuscleJ, SMASH, and MyoVision are well-designed software packages that act as free versions of 
commercially available image analysis tools, but they require varying amounts of manual corrections to ensure 
accuracy, especially when it comes to analysing different fiber type across the muscle section. The primary goal of 
MyoView was to develop an accurate fully-automated software for whole muscle cross-section that is user friendly 
and requires minimal post-analysis corrections. The accuracy in the CSA quantification and identifying different 
fiber types are enhanced by MyoView, especially in regenerating muscles in response to exercise training stimuli.

There are several limitations for the current version of our MyoView software. First, the accuracy of CSA 
quantification depends on the quality of the immunostaing procedures. In this case, we recommend perform-
ing a new immunostaing rather than trying to analyze poor quality images. Second, MyoView does not allow to 
manually correct the wrongly identified muscle fibers. However, our initial study with the 100 mages showed that 
MyoView error for myofiber identification was less than 3% which it does not appear to affect the conclusion of 
CSA quantification. Finally, in the current version of MyoView we have not provided the possibility to count and 
analyze vessels and macrophages. Future improvements can be made to develop these functions in MyoView.

We present a new fully-automated image analysis program, MyoView, for analyses of whole muscle cross-
sectional area and fiber-type distribution in exercise-induced regenerating myofibers. MyoView allows rapid and 
accurate analysis of whole muscle cross-sectional immunofluorescence images. Additionally, MyoView rapidly 
identifies different myofibers based on the expression of myosin heavy chain isoforms in skeletal muscle from 
any experimental condition including exercise-induced regenerating myofibers. Further, MyoView identifies 
myonuclei and satellite cells based on DAPI and PAX7 staining in immunofluorescence images.
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Figure 9.  MyoView is comparable with manual quantification for analyzing myonuclei and satellite cell 
numbers. (A) Myonuclear numbers determined by MyoView are on the y-axis and numbers determined 
manually are on the x-axis. (B) Myonuclear numbers were not different when determined with MyoView or by 
manual quantification (P > 0.98). (C) The effect of HIIT on myonuclear numbers (measured with MyoView). (D) 
Satellite cell numbers determined by MyoView are on the y-axis and numbers determined manually are on the 
x-axis. (E) Satellite cell numbers were not different when determined with MyoView or by manual quantification 
(P > 0.95). (F) The effect of HIIT on satellite cell numbers (measured with MyoView). †P < 0.05 as compared 
with D0. Bar = 25 μm.
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