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ABSTRACT

The Hawaiian Islands offer a unique opportunity to test how changes in the properties
of an isolated ecosystem are propagated through the organisms that occur within that
ecosystem. The age-structured arrangement of volcanic-derived substrates follows a
regular progression over space and, by inference, time. We test how well documented
successional changes in soil chemistry and associated vegetation are reflected in
organisms at higher trophic levels—specifically, predatory arthropods (spiders)—
across a range of functional groups. We focus on three separate spider lineages: one
that builds capture webs, one that hunts actively, and one that specializes on eating
other spiders. We analyze spiders from three sites across the Hawaiian chronosequence
with substrate ages ranging from 200 to 20,000 years. To measure the extent to which
chemical signatures of terrestrial substrates are propagated through higher trophic
levels, we use standard stable isotope analyses of nitrogen and carbon, with plant
leaves included as a baseline. The target taxa show the expected shift in isotope ratios
of 81°N with trophic level, from plants to cursorial spiders to web-builders to spider
eaters. Remarkably, organisms at all trophic levels also precisely reflect the successional
changes in the soil stoichiometry of the island chronosequence, demonstrating how the
biogeochemistry of the entire food web is determined by ecosystem succession of the
substrates on which the organisms have evolved.

Subjects Biochemistry, Biogeography, Ecology, Biosphere Interactions

Keywords Nutrient cycling, Stable isotopes, Chronosequence, Arthropods, Spiders, Nitrogen,
Trophic niche

INTRODUCTION

Evolutionary processes are determined in large part by the ecosystems within which they
take place. While connecting the processes of evolutionary biology and ecology remains
a critical frontier in biological sciences (Matthews et al., 2011), there are few studies that
demonstrate how mechanisms driving processes of evolutionary biology and ecosystem
science are linked. The current study seeks to understand how organismal diversity may
reflect successional shifts in soil chemistry by testing the extent to which organisms at
different trophic levels reflect the properties of the substrates on which they occur.
The Hawaiian Archipelago presents a highly suitable system for studying the link

between evolutionary processes and ecosystem properties. The current high islands of
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Hawaii are arranged sequentially from oldest to youngest, with Kauai, at 5.1 million years,
in the far northwest, and Hawai’i Island, at <1 million years, in the southeast (Carson &
Clague, 1995). This sequential order is a consequence of the archipelago being located on a
volcanic hot spot, where magma upwelling from the earth’s mantle has formed into large
shield volcanoes. At the same time, the tectonic plate on which the islands are situated
is moving toward the northwest such that each newly emerging island has appeared to
the southeast of its next-oldest neighbor. The resultant, nearly-linear age gradient makes
Hawaii an ideal chronosequence: a temporally varied system in which the ecosystems of the
younger sites are currently developing in a manner assumed to reflect the developmental
history of the older sites (Walker et al., 2010). Given fairly precise information on the
age of formation and subsequent history across a chronosequence, these systems can
provide unprecedented insights into ecosystem development. Thus, chronosequences have
added significantly to our understanding of how nutrients change over time (Vitousek,
2004) and the impact of changes in soil nutrient availability on plants (Wardle et al.,
2008), decomposers (Williamson, Wardle & Yeates, 2005; Doblas-Miranda et al., 2008),
above-ground and below-ground ecosystem processes (Wardle, Walker ¢ Bardgett, 2004),
and entire arthropod communities (Gruner, 2007).

Hawaii has served as a chronosequence for detailed studies on the ways in which
ecosystem properties and functions change over extended time (Vitousek, 2004). Nutrient
flow and its impacts on primary producers (trees) have been well characterized in this
system. Studies have examined the evolution of soils on substrates of different surficial
age (300 y—4.1 Mya), controlled for elevation, climate, land use history, and canopy
vegetation (Metrosideros polymorpha), with all minerals derived from volcanic ash. An
important finding of this work was that soil nitrogen, foliar nutrient availability and
productivity start off very low, increase rapidly with substrate age, peak on substrates of
intermediate age (ca. 20,000 y) on the youngest island, and then decline rapidly on older
islands before all but disappearing on the oldest (Vitousek, Shearer ¢ Kohl, 1989; Vitousek,
Turner ¢ Kitayama, 1995; Vitousek et al., 1997). A more recent study found that tree height
and canopy nitrogen also peak on intermediate-aged (20,000 y) substrates on the youngest
island (Vitousek et al., 2009). Nitrogen isotopes follow a similar pattern, with foliar §°N
very low at the youngest sites, increasing with substrate age, and highest at a 67,000 y site
(Vitousek, Shearer ¢ Kohl, 1989).

Geologic history and nutrient flow evidently have important effects on the lowest
trophic level—plants—but little is known about how these effects might be propagated
through higher trophic levels, i.e., higher-level consumers. At the same time, work on
the effects of substrate age on above-ground systems, including whole communities,
has shown that community traits such as population species diversity (Gillespie ¢
Baldwin, 2010; Lim ¢ Marshall, 2017), genetic structure (Roderick et al., 2012), and network
modularity (Rominger et al., 2016) change in a predictable manner across the Hawaiian
chronosequence. However, although these community-level studies have markedly
enhanced our understanding of the changes in community ecology over time, there has
as yet been no attempt to link chemical changes during the evolution and development of
soils (and associated ecosystem properties) with the abundance, diversity, and evolutionary

Kennedy et al. (2018), PeerdJ, DOI 10.7717/peer|.4527 2118


https://peerj.com
http://dx.doi.org/10.7717/peerj.4527

Peer

histories of above-ground organisms. The current study begins to address this question by
testing the effects of substrate age on the biochemistry—isotopic signatures—of secondary
consumers (predators) across a Hawaiian chronosequence.

The application of stable isotope information has revolutionized studies of nutrient
flow and niche ecology in a wide range of organisms (e.g., Fry, 1988; Hobson & Welch,
1992; Muschick, Indermaur & Salzburger, 2012). In particular, nitrogen and carbon stable
isotopes have been found to reflect trophic position: both §1°N and §'°C tend to increase
in a predictable manner with each successive trophic level (Post, 2002, but see De Vries et
al., 2015). Stable isotopes have also been used to track nutrient flow, climatic shifts, and
migration patterns in a variety of ecological systems (Best & Schell, 1996; Chamberlain et
al., 1997; Iacumin, Davanzo ¢ Nikolaev, 2005; McMahon et al., 2016). The current study
uses stable isotopes of N and C to assess the extent to which entire food webs are influenced
by the chemistry of their habitats. We chose to focus on spiders because they are mobile
generalist predators and encompass multiple trophic levels, from feeding on herbivorous
insects to specializing on the highest predator levels among Hawaiian arthropods (other
spiders). This substantial variation in trophic ecology allows us to test how functional
and trophic differences are reflected in isotopic signatures, and the extent to which the
biogeochemistry of a food web is determined by the chemistry of the immediate substrate.
The use of N and C stable isotopes is especially well suited to this study because of the
predictable manner in which both elements can reflect trophic position, and because of
the importance of nitrogen in ecosystem development (Boring et al., 1988).

We analyzed Hawaiian spiders belonging to two lineages within the adaptive radiation
of long-jawed orb-weavers (Tetragnatha, Tetragnathidae) and one lineage within the stick
spiders (Ariamnes, Theridiidae). The Tetragnatha radiation includes ca. 60 species, which
display a spectacular array of colors, shapes, sizes, behaviors, and ecological affinities not
observed elsewhere in the range of this genus (Blackledge ¢ Gillespie, 2004; Gillespie, 2004;
Gillespie, 2015). The radiation consists of two major clades: one that spins webs for prey
capture (“web builders”), and another that has lost the web-spinning behavior and instead
hunts actively (the “Spiny Leg” clade; Gillespie, 1991; Gillespie, 2002). Observational data
indicate that both web-building and Spiny Leg Tetragnatha feed on a mixture of insect
herbivores and predators (Binford, 2001), although the exact composition of these spiders’
diets has not yet been fully characterized. The Hawaiian Ariamnes, currently represented
by 11 known species across the Hawaiian Islands (Gillespie ¢ Rivera, 2007), are also
ecologically diverse and largely araneophagic (i.e., preying on other spiders) (Gillespie et
al., 2018). Like Tetragnatha, these spiders are exclusively nocturnal, and like the Spiny Leg
Tetragnatha, they hunt without the use of a web.

Given the contrasting hunting strategies (web-building versus active hunting) and
trophic positions (generalist versus araneophagic) across these spider lineages, the
three groups vary predictably in their position in the food web, from largely feeding
on primary consumers (i.e., insect herbivores) to exclusively feeding on secondary and
higher consumers (i.e., spiders). Within this system, we tested the hypothesis that isotopic
signatures of spiders should reflect the biogeochemistry of their respective habitats, from
young to older in the Hawaiian chronosequence. Thus, not only should the different spider
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lineages illustrate now-standard expectations for isotope signatures associated with rising
trophic levels, but the trophic ecology of the entire food web should reflect changes in soil
chemistry across the chronosequence. In particular, given that §'>N in the soil increases
during the building phase of the Hawaiian ecosystems (Vitousek et al., 1997), we expect
8'°N to be lowest in the spiders at the youngest (200-750 y) site and highest in the spiders
at the oldest (20,000 y) site.

METHODS
Study sites

Hawaii’s sequential age structure has made it an ideal system for previous studies on soil
evolution and nutrient cycling, wherein the Long Substrate Age Gradient (LSAG) was
established (Crews er al., 1995; Vitousek, 2004). This study focuses on Hawai’i Island, the
youngest in the archipelago, because the largest possible range of N availabilities is expected
to be found there: soil nitrogen is lowest in the youngest substrates and peaks in the older
substrates on Hawai’i Island before declining on the older islands (Vitousek, Turner ¢
Kitayama, 1995).

Specimens were collected on the windward side of Hawai’i Island under permits from the
State of Hawaii Department of Land and Natural Resources (endorsement # FHM14-349)
and the National Park Service (study # HAVO-00425). Three sites of different substrate age,
chosen for their comparable elevations and climates as well as the overlap of two of the sites
("Ola'a and Laupahoehoe) with those characterized based on soils (Vitousek et al., 1997),
were sampled (see Fig. 1). Substrate ages were determined based on data from the United
States Geological Survey (Sherrod et al., 2007) and from the LSAG (Crews et al., 1995;
Vitousek, 2004). All three sites are wet/mesic forest dominated by Metrosideros polymorpha
and Acacia koa in the canopy, with Cibotium spp. dominating the understory. The sites
range from 1,180 to 1,390 m in elevation, with mean annual temperatures of 13.9 to 15.4
degrees Celsius and mean annual rainfall of 3,035 to 3,090 mm (Giambelluca et al., 2014).

Upper Waiakea is a very young site on a 200- to 750-year-old lava flow in a stratified
matrix of differently-aged substrates within the Upper Waiakea Forest Reserve, off of
Stainback Highway on Mauna Loa. 'Ola'a Forest is on an older lava flow on Kilauea,
situated within Hawai’i Volcanoes National Park. The trees in 'Ola'a are rooted in a thick
layer of tephra of approximately 2,100 years old (Vitousek, 2004), beneath which is an older
flow of 5,000-11,000 y (see Fig. 1). Although the United States Geological Survey (USGS)
classifies this substrate as 5,000—11,000 y, we consider its biota to be influenced by the
chemical properties of the 2,100-year-old tephra in which the forest is rooted. 'Ola'a is
therefore approximately one order of magnitude older than Upper Waiakea, yet is located
just 11.5 km S of the younger site. This proximity makes the two sites especially useful for
measuring effects of habitat age on a small geographical scale. The oldest site in this study
is Laupahoehoe, located in the Laupahoehoe Experimental Forest Unit on Mauna Kea.
While USGS data (Sherrod et al., 2007) estimate the lava flow age at 5,000-11,000 y, the
sampling locality overlaps with an LSAG site which has been studied in great detail and
whose forest is rooted in a layer of soil believed to be approximately 20,000 y old (Vifousek,
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Figure 1 Map showing field sites where samples were collected. Colors represent geology and lava flow

age, determined by United States Geological Survey (Sherrod et al., 2007). Where applicable, substrate age

classifications determined by the Long Substrate Age Gradient (LSAG, Crews et al., 1995) are included.
Full-size Gl DOI: 10.7717/peer;j.4527/fig-1

20045 Vitousek et al., 2009). We therefore follow the LSAG classification of 20,000 y for
Laupahoehoe.

Collections at each site were centered at the following coordinates, with searches
extending up to 100 m in any direction:

e Upper Waiakea: 19.562°N, 155.272°W
e 'Ola'a: 19.462°N, 155.248°W
e Laupahoehoe: 19.922°N, 155.301°W

Specimen collection
Six species of Tetragnatha spiders (Tetragnatha anuenue, T. brevignatha, T. hawaiensis, T.
perkinsi, T. quasimodo and the undescribed species T. “golden dome”) and two species of
Ariamnes spiders (Ariamnes hiwa and A. waikula) were collected in the field from 11 March
to 18 April 2015, and from 6 to 15 February 2016. All study species are morphologically
distinct and can be easily identified in the field. Plant samples were leaves of dominant
or common forest vegetation (Metrosideros polymorpha, Cibotium spp. and Cheirodendron
spp.), all of which are also easily identified on sight. After a preliminary analysis, it was
determined that leaf litter should be added to the study in order to help explain differences
in carbon isotope values. Unfortunately, permitting and time constraints only allowed for
leaf litter to be collected from the youngest site (Upper Waiakea) on 15 October 2016.
Spiders were individually hand-captured into clean plastic snap-cap vials which were
labeled on the outside with unique identifiers, while plant leaves were clipped off with
scissors and stored in labeled paper envelopes. In Upper Waiakea, leaf litter was also
collected from the bases of M. polymorpha trees and placed in paper envelopes. Leaves
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were air-dried in their envelopes in a sealed container of silica for three weeks prior to
processing. Leaf litter was dried in a 60 °C oven overnight.

Spiders were photographed up close using a Nikon D5200 with an AF-S DX Micro-
NIKKOR 40 mm £/2.8 g lens and a Speedlight SB-400 flash from both dorsal and lateral
angles. This created a photographic voucher and allowed for visual identification of species,
sex, and maturity. Spiders were killed overnight in a freezer and air-dried in separate snap
cap vials, each with one clean bead of silica gel, before being transferred to individual 2-mL
centrifuge tubes.

Stable isotope analysis

Individual dried spiders were weighed into 9 x 5 mm pressed tin capsules for isotopic
analysis. To optimize N content for isotopic analysis, a 1.5-mg mass was recommended
for each sample (S Mambelli, UC Berkeley Center for Stable Isotope Biogeochemistry,
pers. comm., 2014). Due to the spiders’ small body size (ranging from ca. 0.4 to 5 mg dry
weight for the majority of specimens), it was not feasible to obtain sufficient material from
individual body parts, although it has been found that different spider tissues can undergo
different isotopic turnover rates (Belivanov ¢» Hambiick, 2015). Therefore, in order to
control for possible variation in isotopic turnover among tissue types, the spiders’ entire
bodies were analyzed. When spiders exceeded 2.5 mg dry weight, they were homogenized
(powdered and mixed) with a mortar and pestle, and a 1.5-mg sample of the homogenized
tissue was used. For smaller spiders (<2.5 mg), the whole intact body was packed into
the tin capsule in order to avoid excessive loss of material. Plant leaves were individually
homogenized in a Mini-Beadbeater (BioSpec Model 8) in 7-mL tubes with stainless steel
ball bearings, then weighed into 9 x 5 mm tin capsules. Due to the relatively low N:C ratio
of plants, 6 mg of material was weighed out for each leaf sample. Leaf litter was processed
in the same manner as plant leaves.

Samples were analyzed for nitrogen and carbon content (% dry weight) and nitrogen
and carbon stable isotope ratios via elemental analyzer/continuous flow isotope ratio
mass spectrometry using a CHNOS Elemental Analyzer (model: Vario ISOTOPE cube;
Elementar, Hanau, Germany) coupled with an IsoPrime 100 mass spectrometer (Isoprime
Ltd, Cheadle, UK). The isotope ratio is expressed in “delta” notation (in parts per thousand,
or %o units). The isotopic composition of a material relative to that of a standard on a
per mill deviation basis is given by §°N (or §!°C) = (Rsample/Rstandard — 1) x 1,000, where
R is the molecular ratio of heavy to light isotopes. The standard for nitrogen is air. The
standard for carbon is V-PDB. The reference material NIST SMR 1547 (peach leaves)
was used as calibration standard (long-term precision [since 2000] using this standard
is £0.07%0 for both N and C isotope analyses). All isotope analyses were conducted at
the Center for Stable Isotope Biogeochemistry at the University of California, Berkeley.
Long-term external precision based on reference material NIST SMR 1577b (bovine liver)
is 0.15%0 and 0.10%o , respectively, for N and C isotope analyses.

Data analysis
Results from the isotopic analysis were categorized into the following functional groups:
“plant” (foliar samples of the genera Metrosideros, Cibotium and Cheirodendron); “Spiny
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Table 1 2-way ANOVA results. Results of 2-way ANOVA testing for effects of site, functional group, and
site x functional group interaction on stable isotopes of samples. Significant effects are indicated in bold.

Isotope Effect F daf p-value
Site 692.1 2 <0.001

SN Functional group 113.6 4 <0.001
Site:functional group 8.615 6 <0.001
Site 55.51 2 <0.001

sBC Functional group 95.15 4 <0.001
Site:functional group 1.841 6 0.092

Leg” (Spiny Leg Tetragnatha species: T. anuenue, T. brevignatha and T. quasimodo); “web”
(Tetragnatha hawaiensis, T. perkinsi, and the undescribed species nicknamed T. “golden
dome”); and “Ariamnes” (Ariamnes hiwa and A. waikula, the two species found on Hawai’i
Island (Gillespie ¢» Rivera, 2007)). Although all spider species were initially analyzed
separately, the results showed that the data grouped taxa together, largely in accordance
with functional group. Because members of one group (e.g., web-builders) were closer to
one another than to other groups (e.g., Spiny Leg), we chose to focus on these broader
ecological categories—functional groups—rather than species.

Effects of site and functional group on §'°N and §'°C were tested using a 2-way Anova
allowing for interaction (with site and functional group as factors) on R statistical software
(version 3.2.2, 64-bit). Main effects were then analyzed separately: we tested (1) effect of
site within each functional group and (2) effect of functional group within each site. When
significant differences were found, pairwise comparisons were made using Tukey’s honest
significant difference test (Tukey, 1949).

RESULTS

We found a significant interaction between site and functional group for §1°N (F = 8.615,
p <0.001), but not for §'*C (F = 1.841, p =0.092; Table 1). Significant main effects were
found for all variables tested: site for §'°N (F = 692.1, p < 0.001), functional group for
SN (F =113.6, p < 0.001), site for §1°C (F = 55.51, p < 0.001), and functional group for
813C (F =95.15, p < 0.001).

Main effects: site
For 8'°N, a significant site effect was found within all functional groups (plants: F = 78.74,
p <0.001; Spiny Leg: F =446.9, p < 0.001; web-builders: F =216.6, p < 0.001; Ariamnes:
F =80.87, p <0.001; Table 2 and Fig. 2). We performed a Tukey’s HSD test to reveal
pairwise differences among sites. §1>N showed a clear pattern of stepwise increase with
substrate age (lowest in Upper Waiakea (200-750 y), intermediate in 'Ola'a (2,100 y), and
highest in Laupahoehoe (20,000 y)). This pattern held true for every functional group; the
only comparison not found to be significant was 'Ola'a vs. Laupahoehoe within Ariamnes
(Tukey’s adjusted p =0.203).

For 813C, a significant site effect was found within every functional group except for
plants (plants: F =0.7997, p = 0.482; Spiny Leg: F = 5.681, p = 0.005; web-builders:
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Table 2 Main effects of site within functional group. Main effects of site (substrate ages: Upper Wa-
iakea, 200-750 y; 'Ola'a, 2,100 y; Laupahoehoe, 20,000 y) within each functional group of spiders and
plants. Site was found to have a significant effect on both C and N isotope ratios of every functional group,
with the exception of §°C in plants.

Isotope Comparison F df p-value
Plants 78.74 2 <0.001
S15N Spiny Leg 446.9 2 <0.001
Web-builders 216.6 2 <0.001
Ariamnes 80.87 2 <0.001
Plants 0.7997 2 0.482
s8¢ Spiny Leg 5.681 2 0.005
Web-builders 31.91 2 <0.001
Ariamnes 36.62 2 <0.001
. LoE
T - mplants
o E - 3 | leaf litter
o | - . | == 0 B Spiny Leg
‘ —— O web-builders
61 5N - E - . B Ariamnes
Upper Waiakea | ‘Ola’a | Laupahoehoe
200-750 y 2,100 y 20,000 y

Figure 2 Boxplots showing nitrogen isotope ratios of functional groups across sites. Nitrogen isotope
ratio (8N in %o units) of plant leaves (green), leaf litter (purple), Spiny Leg (brown), web-building (yel-
low) and Ariamnes (blue) spiders across sites of different ages.

Full-size Gl DOL: 10.7717/peer;j.4527/fig-2

F=31.91, p <0.001; Ariamnes: F =36.62, p < 0.001; Table 2 and Fig. 3). Among the three
groups of spiders, 8'>C was significantly lower in Laupahoehoe (20,000 y) than in 'Ola'a
(2,100 y).

Main effects: functional group
A significant functional group effect was found in all sites for §"°N (Upper Waiakea:
F =68.38, p <0.001; 'Ola'a: F =34.23, p < 0.001; Laupahoehoe: F =28.90, p < 0.001;
Table 3 and Fig. 2). A Tukey’s HSD test found significant differences among every pair
of groups except for the following pairs in Upper Waiakea: web-builders vs. Ariamnes
(Tukey’s adjusted p-value = 0.071), web-builders vs. leaf litter (Tukey’s adjusted p-value
= 0.998), and Ariamnes vs. leaf litter (Tukey’s adjusted p-value = 0.512).

For §'3C, a significant functional group effect was found at all three sites (Upper
Waiakea: F = 36.42, p < 0.001; 'Ola'a: F =41.29, p < 0.001; Laupahoehoe: F = 41.48,
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Figure 3 Boxplots showing carbon isotope ratios of functional groups across sites. Carbon isotope ra-
tio (8"*Cin %o units) of plant leaves (green), leaf litter (purple), Spiny Leg (brown), web-building (yel-
low) and Ariamnes (blue) spiders across sites of different ages.

Full-size Gl DOI: 10.7717/peer;j.4527/fig-3

Table 3 Main effects of functional group within site. Functional groups were found to differ signifi-
cantly from one another in their isotope ratios of both C and N at all three sites.

Isotope Site F df p-value
Upper Waiakea (200-750 y) 68.38 4 <0.001

SN 'Ola'a (2,100 y) 34.23 3 <0.001
Laupahoehoe (20,000 y) 28.90 3 <0.001
Upper Waiakea (200-750 y) 36.42 4 <0.001

s13C 'Ola'a (2,100 y) 41.29 3 <0.001
Laupahoehoe (20,000 y) 41.48 3 <0.001

p <0.001; Table 3 and Fig. 3). At all sites, plants were significantly lower in §'*C than
the next-lowest trophic level, Spiny Leg spiders (consumers). In 'Ola'a (2,100 y), Spiny
Leg spiders had significantly lower §'°C than either web-builders or Ariamnes (Tukey’s
adjusted p-value < 0.001). In Upper Waiakea (200-750y), although there was no significant
difference between Ariamnes and either of the Tetragnatha functional groups, the Spiny Leg
Tetragnatha were significantly lower in §'*C than web-builders (Tukey’s adjusted p-value
< 0.001). In Laupahoehoe (20,000 y), no significant difference was found between any pair
of spider groups.

DISCUSSION

The results from this study provide a novel perspective on how changes in the substrate
chemistry of the terrestrial land surfaces across a chronosequence of developing ecosystems
are propagated up through an entire food web. To our knowledge, this is also the first
study to characterize the isotopic signatures of different ecological groups represented by
exemplary adaptive radiations of spiders in Hawaii.
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Parallel shifts in isotopic signature across the chronosequence of
ecosystem development

Previous work on the ecological characteristics of forests across the chronosequence
has detailed the evolution of Hawaiian ecosystems in the context of soil properties and
vegetation (Vitousek, Shearer ¢ Kohl, 1989; Vitousek, Turner & Kitayama, 1995; Vitousek
et al., 1997). Our results show that the chemical signatures of nutrient availability that
characterize a given site are borne all the way up to the highest trophic levels—top
predators—on a Hawaiian chronosequence. Indeed, the §!°N values of spiders perfectly
match expectations for their respective habitats. Where nitrogen is most limited—at the
youngest site (Upper Waiakea)—spiders have the lowest values of §!°Nj as substrate
age and nitrogen availability increase, so too does the §!1°N of spiders. This makes sense
physiologically because when nitrogen is very limited, the lighter isotope (1*N) is not

as easily lost in reactions, and is instead retained at a greater rate in an organism’s
tissues (Austin ¢ Vitousek, 1998). Conversely, when biologically available nitrogen is very
abundant, N is readily lost (e.g., in excretion), leaving behind a greater proportion of
the heavier °N in the organism’s tissues. Thus, our results support the hypothesis that the
isotopic signatures of the spiders—as well as the plants—track the changes in the geological
age of the islands (Sherrod et al., 2007) and the associated changes in nitrogen in soils across
the Hawaiian chronosequence measured by Vifousek et al. (1997).

While it might not be surprising that the increase in §'°N in the spiders tracks the
increases in plants across the geological gradient, the fact that the relationship is so
tight is remarkable, as it suggests that even higher-level consumers (predators) reflect
the §!1°N of the immediate site. This result is especially notable because it was found in
cursorial animals, which, because of their mobility, might be expected to show only a weak
association with the substrates on which they were collected. Instead, the spiders carry clear
signatures of their immediate ecosystem. Given that the sites that were sampled are in very
close proximity (11.5 km between 'Ola'a and Upper Waiakea), and not separated by any
significant physical barrier, the results suggest an extraordinary level of isolation among
spider populations. This has implications for the mechanisms by which the Tetragnatha
adaptive radiation may have arisen: Isolation between populations separated by short
distances can serve as a crucible for evolution (Carson, Lockwood ¢~ Craddock, 1990).
Perhaps the same mechanisms that are currently at work on Hawaii’s youngest island
also led to the rise of the approximately 60 endemic Tetragnatha species found across
the archipelago today. Results for Ariamnes were similar, all higher than the other spider
lineages, and values increasing with substrate age (though the increase from 'Ola'a to
Laupahoehoe was not significant, presumably due to a relatively small sample size (1 =9)
at these sites). Ariamnes, like the Tetragnatha, has undergone a substantial, though smaller
at 11-16 species, adaptive radiation across the islands (Gillespie et al., 2018).

The carbon isotope data show a less clear pattern than nitrogen, but nevertheless
indicate site-specific differences among the spiders. Notably, the plant samples did not
differ significantly in §'°C among the three sites, suggesting that perhaps §!°C does not
accurately reflect nutrient differences among the substrates. By contrast, §!°N appears to
strongly reflect nutrient availability at the different sites. However, spiders did consistently
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show higher §1°Cin 'Ola'a (2,100 y) than in Laupahoehoe (20,000 y). Thus, the relationship
between baseline (plant) signatures and higher predator (spider) signatures is weaker in
carbon than in nitrogen. This suggests that spiders at the three sites may not be consuming
exactly the same assemblages of prey, perhaps due to variations in the availability of
different insect (potential prey) species at different sites. A detailed study of the precise
compositions of these spiders’ diets, using either molecular gut content analysis (e.g.,
Krehenwinkel et al., 2017) or an isotopic mixing model with robust sampling of the entire
arthropod community, could greatly enhance our understanding of the processes that
account for the differences in §'°C among spider populations.

Trophic positions

Our stable nitrogen isotope data reflect the different functional roles and trophic positions of
the Hawaiian spiders. Our results are consistent with the enrichment of the heavier isotope,
5N, at higher trophic levels, with plants having the lowest values of §'°N, Tetragnatha
having intermediate values, and the spider-eating Ariamnes having the highest. Additionally,
we found that the §1°N of the Spiny Leg (cursorial) spiders was consistently lower than that
of web-building Tetragnatha. A simple explanation for the difference in §'°N in cursorial vs.
web-building spiders may be that the different functional groups consume different prey.
Cursorial spiders are likely to interact with abundant insect herbivores, while web-builders
may trap a larger proportion of flying insects at higher trophic levels, such as hymenopteran
or dipteran parasitoids, decomposers, or predators. This dietary difference has been used
to explain the phenomenon of a higher §'°N in web-builders compared to cursorial spiders
in a forest hedge community (Sanders, Vogel ¢ Knop, 2015). Another possible explanation
is that the difference is due to the manufacturing of the orb web itself. Given that webs
are an excretory product, and that excretion tends to favor the lighter N, it may be that
the higher levels of “excretion” lead to an enrichment in >N in the bodies of web-builders
compared with cursorial spiders. A number of previous studies suggest such an effect. For
example, across a community of web-building riparian spiders, lower §1°N was found in
Miagrammopes (Uloboridae; Kelly, Cuevas ¢ Ramirez, 2015), a genus characterized by a
reduced capture web (often just a single line; Lubin, Eberhard ¢ Montgomery, 1978), than
in other spiders. Likewise, a study of niche width across a guild of spiders showed that
cursorial spiders consistently had the lowest §'°N, while orb web spiders had the highest
(Sanders, Vogel & Knop, 2015). In each of these systems, the cursorial spiders showed the
highest levels of intraguild predation (i.e., feeding on other spiders), indicating that trophic
position itself is insufficient to explain the lower §'°N of the cursorial spiders relative to the
web spinners. This observation raises the possibility again that the web spinning process
itself leads to 8'°N enrichment. However, further data are clearly needed to determine
which of these explanations best accounts for the now recurring pattern of higher §1°N in
web-builders compared with cursorial taxa.

The patterns we found in § 13C were less dramatic than in >N, but matched expectations.
Foliar samples consistently had the lowest §!°C of all functional groups. Spider values were
substantially offset from leaf values—approximately 4-5 per mill higher at all sites—which
suggests a complex food chain consisting of many trophic levels below the spiders. This is
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plausible given that spiders are obligate predators (secondary consumers), and therefore
must be trophically removed from plants by at least two levels. The conventional wisdom
with §1°C is “you are what you eat” (Hobson, Barnett-Johnson ¢ Cerling, 2010), meaning
that most organisms are only slightly enriched in *C relative to their diets, with standard
published offsets of less than 1 per mill for each successive trophic level (Post, 2002).
Indeed, meta-analysis of isotopic studies has found an average discrimination factor of
~0.3 per mill from one trophic level to the next within invertebrates (Caut, Angulo &
Courchamp, 2009), although it should be noted that many of the invertebrates included in
that meta-analysis are aquatic, and no “standard” §'*C offset for spiders or other terrestrial
arthropods has yet been established. In an effort to fill the large gap between plants and
spiders, we added samples of leaf litter from Upper Waiakea. The §'°C of leaf litter fit
neatly between leaves and spiders. This is to be expected given that the lighter >C is lost
as respired 2CO, that is produced at a greater rate during decomposition, leaving the
remaining litter relatively '*C enriched (Dawson et al., 2002). Furthermore, this finding
fits with previous studies of Tetragnatha trophic ecology, wherein it was observed that
tipulid flies comprise a large proportion of the diet of Tetragnatha on Maui (Binford, 2001;
Blackledge, Binford ¢ Gillespie, 2003). Because tipulid larvae often feed on decomposing
leaves (Williams, 1942), it is reasonable to surmise that tipulids’ own 813C values fall close
to those of the leaf litter, and that spiders on Hawai’i Island become relatively enriched in
their §'3C composition when feeding on these insects.

Link between ecosystem properties and evolutionary processes

This study demonstrates that organisms at multiple tropic levels reflect the stoichiometric
changes in soil across the geological chronosequence of the island, from very young (200—
750y) to older (20,000 y). The importance of this result is that it shows that the evolutionary
processes associated with diversification are intimately linked to a landscape that, itself,
changes through time. The detailed work of Vitousek, Shearer ¢» Kohl (1989), Vitousek,
Turner & Kitayama (1995), Vitousek et al. (1997) and Vitousek et al. (2009) documents the
pattern of change in soil chemistry over extended time periods: Nitrogen and phosphorus
increase almost linearly with time in the early stages of substrate development (up to 20,000
y for nitrogen and 150,000 y for phosphorus); this increase then levels off and declines on
the oldest islands (4 my).

At the same time, it is now well established that organismal diversity increases over time
during the early stages of formation of an island archipelago (Whittaker, Triantis & Ladle,
2008; Lim ¢ Marshall, 2017), and that higher trophic levels depend on lower levels in island
community assembly (Simberloff & Wilson, 1970), yet explanations for such patterns have,
as yet, considered only area and age of the landscape. The documentation of peaks of
diversity on middle aged islands of the Hawaiian Archipelago has been explained variously
based on the interaction between age and area (Gillespie ¢ Baldwin, 2010; Lim ¢ Marshall,
2017). Notably missing from these studies is a link between evolutionary processes of
diversification and shifts in nutrient availability associated with ecosystem succession. That
organisms in Hawaii are intimately reflective of the ecosystem properties of their immediate
habitat demonstrates that changes in nutrients associated with the island chronosequence
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are propagated through trophic and functional groups of entire biological communities.
While initial work has begun to address the ecosystem consequences of evolutionary
change (Elser et al., 2003; Laiolo et al., 2015), this study provides preliminary insights into
how ecosystem change may affect processes of evolution.

CONCLUSIONS

Variation in §!°N data indicates that different spider lineages reflect their different
functional roles and trophic positions in Hawaiian food webs, from those feeding largely
on primary consumers to those feeding exclusively on secondary and higher consumers.
Importantly, the relationships between these groups, in terms of their §!°N, remain strong
across the chronosequence. Not only do the spiders’ relative values of §'>N show the same
pattern at each site, but their isotopic signatures also reflect the availability of nitrogen
at different sites from younger to older ecosystems. The tight relationship between N
availability, plant isotopic values, and spider isotopic values strongly suggests that the
spiders are dispersal-limited and their populations are isolated from one another, even
across short distances. Such isolation may be an important mechanism of speciation within
the Tetragnatha adaptive radiation. This study shows that these evolving lineages of spiders
are intimately associated with the properties of their ecosystem, which is also changing. The
tight connection between the organisms and the characteristics of their substrate highlights
the importance of considering the role of soil properties, particularly chemistry, in addition
to age and area, to understand how biodiversity accumulates over time.
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