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High-density lipoprotein (HDL) is a key component of circulating blood and plays
essential roles in regulation of vascular endothelial function and immunity. Clinical data
demonstrate that HDL levels drop by 40–70% in septic patients, which is associated
with a poor prognosis. Experimental studies using Apolipoprotein A-I (ApoAI) null mice
showed that HDL deficient mice are susceptible to septic death, and overexpressing
ApoAI in mice to increase HDL levels protects against septic death. These clinical and
animal studies support our hypothesis that a decrease in HDL level is a risk factor for
sepsis, and raising circulating HDL levels may provide an efficient therapy for sepsis. In
this review, we discuss the roles of HDL in sepsis and summarize the efforts of using
synthetic HDL as a potential therapy for sepsis.
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INTRODUCTION

Sepsis is a major health issue in the U. S., claiming over 215,000 lives and causing a financial burden
exceeding $17 billion annually (Martin et al., 2003; Riedemann et al., 2003; Angus and van der Poll,
2013). The prognosis for sepsis remains grim, with a mortality rate exceeding 30%, due to poor
understanding of the disease and a lack of efficient therapy (Sessler et al., 2004; Lagu et al., 2012;
Dellinger et al., 2013).

A major contributor to sepsis mortality is the breakdown in the function of vascular endothelial
cells (EC; Aird, 2003; Martin et al., 2003; Riedemann et al., 2003; Deanfield et al., 2007; Angus and
van der Poll, 2013). As shown in Figure 1, this breakdown is caused by a cascade of inflammatory
events-induced by infections, which includes three major factors/steps: (1) upon infections,
bacteria release endotoxin; (2) endotoxin activates immune effector cells to produce inflammatory
cytokines and chemokines; (3) inflammatory cytokines and chemokines activates EC, resulting
in endothelial dysfunction manifested by vascular leakage, increased leukocyte adhesion, altered
vascular tone and a shift in the hemostatic balance toward a pro-coagulant phenotype, which
eventually leads to irreversible multi-organ failure and septic death (Aird, 2003; Martin et al.,
2003; Riedemann et al., 2003; Deanfield et al., 2007; Angus and van der Poll, 2013). Thus, targeting
endothelial dysfunction has been proposed as a potential sepsis therapy. A great challenge is that
multiple factors/steps contribute to endothelial dysfunction in sepsis and simply targeting one
of the regulatory factors/steps may have limited effect. Indeed, extensive efforts to block one or
another component of the inflammatory or coagulation pathways have had little impact on patient
survival (Fink andWarren, 2014).
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FIGURE 1 | Schematic model of vascular endothelial dysfunction in sepsis and high-density lipoprotein (HDL) protection against sepsis.

We believe that targeting an endogenous factor with multi-
protective effects against endothelial dysfunction may present a
novel approach for sepsis therapy. Emerging evidence suggests
that High-density lipoprotein (HDL) is likely such a candidate. In
this review, we discuss the roles of HDL in sepsis and summarize
the efforts of using synthetic HDL (sHDL) as a potential therapy
for sepsis.

LOW HDL IS A RISK FACTOR FOR
SEPSIS

High-density lipoproteins (HDL) are nanosized protein-lipid
particles that circulate throughout the body as a major
component of the blood (Navab et al., 2011; Hewing et al., 2012;
Zhu and Parks, 2012). Of its physiological functions, HDL is
most notably known for its role in cholesterol mobilization and
inflammation. HDL, via reverse cholesterol transport, removes
cholesterol from peripheral cells and transports it to the liver
for excretion in the bile or transport to the adrenals, testes,
or ovaries for hormone production (von Eckardstein et al.,
2001; Lewis and Rader, 2005; Ohashi et al., 2005; Vickers
and Remaley, 2014). In several clinical investigations, plasma
HDL levels was shown to be inversely correlated with the
occurrence of cardiovascular diseases (CVDs), andmany patients
with severe CVD have very low levels of circulating HDL
(Nofer et al., 2002; Barter et al., 2004; Remaley et al., 2008).
Thus, HDL has long been sought after as a possible therapy
for the reversal of atherosclerosis and other CVDs. However,
HDL is also an important player in inflammation and acute
inflammatory disorders. Specifically, HDL has been shown to
exert anti-inflammatory properties both in vitro and in vivo
(Harris et al., 2002; Barter et al., 2004; Mineo et al., 2006;
Argraves and Argraves, 2007; De Nardo et al., 2014; Lüscher
et al., 2014) and levels of HDL in patients with inflammatory
disorders, such as sepsis, have been proven to be prognostic
of clinical outcomes (Gordon, 2004; Riwanto and Landmesser,
2013).

High-density lipoprotein is a strong indicator of both the
onset and progression of sepsis. Clinically, HDL levels drop
markedly in septic patients, and whether or not these levels rise
or continue to fall is often foretelling of their chance of survival
(van Leeuwen et al., 2003; Chien et al., 2005; Tsai et al., 2009).
In a study of 63 patients, investigators found that those with
plasma HDL concentrations exceeding 25 mg/dl at the time of

intake had a 100% survival rate (Chien et al., 2005). Additionally,
the investigators assessed the power of HDL to predict mortality
rate by compartmentalizing patients into two groups: “low”
(<20 mg/dl) and “high” (>20 mg/dl) HDL. Using these cutoff
values, HDL had a sensitivity of 92%, a specificity of 80%, and
an accuracy of 83% for predicting the overall 30-day mortality
rate (Chien et al., 2005). The same was done for ApoA1 levels
using a cutoff value of 100 mg/dL, however, ApoA1 showed an
overall lower predictive value with an accuracy of 73% (Chien
et al., 2005), aligning well with other studies showing that HDL,
rather than lipid alone, is a better defender against septic shock
(Levine et al., 1993).

Other investigations have also been carried out to determine
whether low HDL causes septic death. Using ApoA1-null mice as
a model for low circulating HDL, it was found that a deficiency in
HDL leads to susceptibility to cecal ligation and puncture (CLP)-
induced septic death, as well both decreased LPS neutralization
and LPS clearance(Guo et al., 2013). Alternatively, increasing
HDL levels by over expression of ApoAI improved the survival
in both CLP and LPS-induced sepsis models (Li et al., 2008;
Guo et al., 2013). Given these clinical and experimental data, we
propose that low HDL is a risk factor for sepsis and that targeting
HDL may provide an efficient and effective therapy for sepsis.

MECHANISMS OF HDL PROTECTION
AGAINST SEPSIS

High-density lipoprotein is a potential multi-protective factor
in sepsis. HDL has a broad spectrum of activity, including
regulating both immunity and vascular EC functions (Singh
et al., 2007; Navab et al., 2011). While most of the existing
knowledge of HDL has been acquired in non-sepsis conditions,
extensive evidence suggests that HDL likely plays pivotal
protective roles in all the steps of endothelial dysfunction
(Figure 1), including detoxification of endotoxin, suppression of
inflammatory signaling in immune effector cells and inhibition of
EC activation.

Detoxification of Endotoxin
Bacterial infections are major causes of sepsis (Vincent et al.,
2009). Upon infections, the Gram-negative bacteria release
lipopolysaccharides (LPS) which bind to its receptor TLR4 to
initiate a downstream signaling cascade. TLR4 binding leads
to activation of proinflammatory genes to produce high levels
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of cytokines such as TNF-α and IL-6, resulting in cell damage
(Raetz and Whitfield, 2002; Carmody and Chen, 2007). HDL
is well known as a LPS neutralizer (Van Lenten et al., 1986;
Flegel et al., 1989; Harris et al., 1990, 1993; Read et al., 1993;
Eggesbo et al., 1996; Munford, 2005; Lee et al., 2007; Murch
et al., 2007). Most LPS in circulation exist in HDL-bound form
(Ulevitch et al., 1979, 1981), and HDL-LPS binding attenuates
LPS-TLR4 inflammatory signaling in macrophages (Munford
and Dietschy, 1985; Flegel et al., 1989; Baumberger et al.,
1991; Emancipator et al., 1992). It is worth noting that simply
neutralization of LPSmay not provide efficient protection against
sepsis which is shown by the failure of anti-LPS monoclonal
antibodies in clinical trials (Cohen, 1999). We speculate that
the failure of anti-LPS monoclonal antibodies in clinical trials
could be attributed to: (i) the apparent inability of antibodies
to block LPS-induced cytokine production in human monocytes
in vitro (Warren et al., 1993; Cohen, 1999); and (ii) the fact
that antibody partially sequester LPS, thus delaying rather than
facilitating its clearance (Van Amersfoort et al., 2003). Recent
studies including ours suggest that HDL acts together with its
receptor, the scavenger receptor BI (SR-BI), to promote LPS
clearance (Vishnyakova et al., 2003; Cai et al., 2008; Guo et al.,
2009). In vitro, HDL promotes SR-BI-mediated LPS uptake by 4-
fold in SR-BI-transfected HEK cells and by twofold in primary
hepatocytes (Cai et al., 2008). In vivo, mice deficient in SR-BI
or HDL display impaired LPS clearance in LPS or CLP animal
models (Cai et al., 2008; Guo et al., 2009, 2013). These findings
suggest that HDL neutralizes LPS and promotes LPS clearance
via SR-BI-mediated LPS uptake, which presents a more efficient
mechanism for LPS detoxification relative to neutralization by
anti-LPS antibodies.

Lipoteichoic acid (LTA), released by Gram-positive bacteria,
activates the TLR2/6 pathway to generate high levels of
inflammatory cytokines, causing cell injury. Similar to LPS, most
LTA are associated with HDL in circulation and this HDL-LTA
binding neutralizes LTA (Grunfeld et al., 1999; Levels et al.,
2001). Given the structural similarity between LPS and LTA, it
is likely that HDL neutralizes LTA and promotes LTA clearance
via SR-BI-mediated LTA uptake.

Regulating Inflammatory Response in
Macrophages
Macrophages are major immune effector cells responsible for
inflammatory cytokine production in sepsis (Su, 2002). The
inflammatory response in macrophages is required for fighting
against infections. However, dysregulation of macrophages
produces too many cytokines, leading to vascular endothelial
dysfunction and organ injury in sepsis. A body of evidence
indicates that HDL is a key modulator of inflammatory response
in macrophages (Yvan-Charvet et al., 2008; Zhu et al., 2008;
Suzuki et al., 2010; Mineo and Shaul, 2012; Zhu and Parks,
2012; De Nardo et al., 2014): (i) HDL promotes the efflux of
free cholesterol from macrophages, resulting in suppression of
LPS-induced inflammatory response in macrophages (Mendez
et al., 2001; Puff et al., 2005); and ii) HDL upregulates
the transcriptional regulator ATF3 which down regulates the

expression of inflammatory molecules, resulting in suppression
of the inflammatory response in sepsis (De Nardo et al.,
2014).

Regulating Endothelial Cell Function
Endothelial cells are activated by LPS and inflammatory cytokines
(Aird, 2003; Deanfield et al., 2007; Shapiro et al., 2010). As
discussed above, HDL can attenuate EC activation through
its roles in promoting LPS detoxification and suppressing
inflammatory cytokine production in macrophages. In addition,
earlier studies demonstrated that HDL has a variety of activities
that modulates EC functions, including: (i) inhibition of adhesion
molecule expression stimulated by TNF-α, IL-1β or thrombin
(Cockerill et al., 1995, 1999); (ii) activation of eNOS. NO
generated by eNOS at small blood vessels is critical for promoting
blood supply to small blood vessels and for inhibiting thrombosis
in sepsis. Earlier studies including ours demonstrated that HDL
activates eNOS to release NO in a SR-BI-dependent manner
(Yuhanna et al., 2001; Li et al., 2002; Gong et al., 2003; Mineo
et al., 2003); and (iii) prevention of endothelial thrombotic
activation by promoting prostacyclin and Cox2 production and
suppressing tissue factor and adhesion molecule expression
(Ming et al., 2004; Viswambharan et al., 2004; Riwanto and
Landmesser, 2013).

In conclusion, HDL likely plays critical roles in promoting
LPS/LTA detoxification, suppressing inflammatory response in
macrophages and inhibiting EC activation, which may present
HDL a multi-protective factor against endothelial dysfunction in
sepsis.

SYNTHETIC HDL IS A POTENTIAL
EFFECTIVE THERAPY FOR SEPSIS

Reconstituted or sHDL made from ApoAI protein or ApoAI
mimetic peptide presents a new strategy for promoting the
biological activity of HDL (Krause and Remaley, 2013).
Experimental and clinical investigations, including phase 2
clinical trials for treatment of CVD, have shown that infusion
of sHDL raises circulating HDL levels, improves endothelial
function and reduces platelet aggregation (Patel et al., 2009;
Krause and Remaley, 2013), and with HDL levels at the time
of hospitalization being positively correlated with increased
survival rates among septic patients (Barlage et al., 2009), it
is reasonable that HDL replacement therapy has been a well
sought-after area of sepsis research. Not only does HDL confer
cardio-protection via maintaining endothelial barrier integrity
and reverse cholesterol transport, it is also able to combat
inflammation and oxidization, as shown both in vitro and in vivo
(Pajkrt et al., 1996). Several studies have been carried out in order
to investigate the protective ability of administered HDL against
endotoxemia, a few of which are discussed below, and can be
found summarized in Table 1.

ApoA1
Since ApoA1 is the main protein component of HDL, it makes
sense that administering additional ApoA1 protein can increase
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TABLE 1 | Experimental high-density lipoprotein (HDL) therapies in animals models of sepsis and their outcomes.

HDL Dose and administration Sepsis model Main findings Reference

18A:Egg PC
(1:2 wt/wt)
sHDL

80 mg/kg; prophylactic tail vein IV
infusion

Swiss Webster mice;
LPS (salmonella) 10 mg/kg; IP
injection; within 15 min of HDL

Three–fourfold increase in 48-h
survival rate vs control (p < 0.05)

Levine et al., 1993

L-4F Peptide 25 mg/kg, IP, concurrently with
lipopolysaccharide (LPS)

Sprague-Dawley rats; 10 mg/kg
LPS; IP injection

Reduction in VCAM-1 expression in
excised aortae

Gupta et al., 2005

4F Peptide 10 mg/kg; IP injection post-LPS
challenge

Sprague-Dawley rats; LPS
10 mg/kg or 30 mg/kg; IP injection

10 mg/kg LPS: 4F slowed LPS
plasma clearance; reduced
hypotension at 6 h;
30 mg/kg LPS: 4F increased plasma
HDL levels; increased 24-h survival

Dai et al., 2010

4F Peptide 10 mg/kg, IP, 6 h post-CLP Sprague-Dawley rats; CLP Reduced IL-6; restored CO, right
atrial pressure, and plasma volume;
improved 2-day survival rate;
reversed sepsis-induced changes in
lipoprotein profile

Zhang et al., 2009

4F Peptide 10 mg/kg; IP injection 6 h
post-cecal ligation and puncture
(CLP)

Wistar Rats; CLP Restored renal, hepatic, and cardiac
functions; reduced renal tubule
damage; restored expression levels
of Slit2, Robo4, and eNOS;
increased plasma HDL; improved
4-day survival; no change in MAP

Moreira et al., 2014

D-4F Peptide 20 μg daily for 9 days; IP injection C57BL/6J mice; nasally
innoculated with 105 PFU influenza
virus A/WSN/33

Prevented lymphoid hyperplasia;
increased PON activity; prevented
drop in core body temperature;
suppressed plasma IL-6 levels;
increased plasma HDL and inhibited
lipoprotein alteration; reduced viral
titers by >50% at all time points

Van Lenten et al.,
2002

ApoA1 10 mg/kg; IP injection 1 h post-LPS
challenge

Wistar rats; LPS 1 mg/kg (TNF
analysis) or 5 mg/kg (survival
study); IP injection

Reduced plasma TNF-α levels in rats
given 1 mg/kg LPS; increased 5-day
survival rate from 0 to 90% in rats
given 5 mg/kg LPS

Imai et al., 2003

ApoA1, human plasma
purified

100 mg/kg; IV infusion post-LPS
challenge

Balb/c mice; LPS 5 mg/kg; IP
injection

Increased both survival rate and
average survival time over 3 days

Yan et al., 2006

ApoA1 Milano
ApoA1:Soy PC
(1:3.35 mol/mol)
rHDL

40 mg/kg; prophylactic IV injection Wistar rats; 400 EU/kg
Gram-negative bacterial endotoxin;
IV injection

Increase in HDL-C; improved renal
and hepatic function; inhibition of
cytokines TNF-α, IL-1β, IL-6;
reduced expression of ICAM-1

Zhang et al., 2015

ApoA1:Soy PC
(1:200 mol/mol)
rHDL

75 mg/kg ApoA1; prophylactic
continuous IV infusion over 25 min

NZW rabbits; LPS 25 μg/kg
continuous IV infusion over 6 h;
start 20 min post-rHDL treatment

Complete inhibition of TNF-α;
prevented LPS-induced
hypotension; reduced metabolic
acidosis; no significant effect on
serum LPS levels

Hubsch et al., 1993

ApoA1:Egg PC
(1:2 w/w)
rHDL

500 mg/kg ApoA1; IV infusion at
0.1 g/kg/hr; split into three doses:
0.3, 0.1, and 0.1 g/kg administered
at 0.5, 8, and 16 h post-infection,
respectively

2-year old Beagles surgically
implanted with E. coli-infected fibrin
clot

Reduced plasma endotoxin levels;
decreased plasma TNF-α;
decreased liver function; decreased
2-day survival and average survival
time

Quezado et al.,
1995

CSL-111
ApoA1:Soy PC
(1:150 mol/mol)
rHDL

75 mg/kg ApoA1;
(a) Prophylactic IV infusion over
40 min
(b) Treatment by IV infusion over
20 min, 1 h post-bacterial challenge

NZW Rabbits
(1) Gram (−) Sepsis:
4 × 109 CFU/kg E. coli; IV infusion
over 2 h
(2) Gram (+) Sepsis:
2 × 109 CFU/kg; IV infusion over
2 h

(1 a) Prophylactic rHDL: reduced
plasma LPS and TNF-α; reduction in
metabolic acidosis; no effect on
hypotension or blood bacterial levels
(1 b) rHDL Treatment: reduction in
LPS after 4 h; reduced metabolic
acidosis and creatinine; no effect on
blood bacterial counts or TNF-α; no
effect on hypotension
(2) No effect in Gram (+) sepsis

Hubsch et al., 1995

(Continued)
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TABLE 1 | Continued

HDL Dose and administration Sepsis model Main findings Reference

CSL-111
ApoA1:Soy PC
(1:150 mol/mol)
rHDL

25 or 50 mg/kg ApoA1;
Prophylactic IV infusion over 40 min

NZW rabbits; LPS 10 μg/kg;
continuous IV infusion over 2 h;
start 15 min post-rHDL completion

Reduced TNF-α levels and
increased TNF-α clearance for both
rHDL doses; rHDL 50 mg/kg
reduced hypotension at t = 3–4 h;
no effect on plasma LPS levels; no
effect on blood leukocyte count

Casas et al., 1995

CSL-111
ApoA1:Soy PC
(1:150 mol/mol)
rHDL

40 mg/kg; prophylactic IV infusion
over 4 h

Healthy male volunteers
(20–28 years); Endotoxin 4 ng/kg IV
bolus; given 3.5 h post-rHDL start

Elevated HDL levels; reduced
endotoxin-induced clinical
symptoms, i.e., chills, myalgia,
backache, nausea, and vomiting;
reduced plasma cytokine levels of
TNF-α, IL-6, and IL-8; inhibited
early leukopenia, monopenia, and
neutropenia; reduced monocyte
CD14 expression

Pajkrt et al., 1996

circulating levels of HDL, avoiding the need to reconstitute
with lipid, which adds an additional level of complexity.
Administration of naked ApoA1 purified from human plasma
has shown to have some beneficial effects in both rat and
mouse LPS-induced endotoxemia models. When administered
at 10 mg/kg (IP) 1 h post-infection, ApoA1 increased the 5-day
survival rate from 0 to 90% in rats given 5 mg/kg LPS (Imai et al.,
2003). In a similarmodel inmice, ApoA1 dosed 1 h post-infection
via intravenous (IV) infusion at 100 mg/kg increased both 3-
day survival rate and overall survival time versus saline-treated
controls (Yan et al., 2006). Additionally, it was found that ApoA1
overexpressing mice were more resistant to infection than those
with normal or decreased levels of circulating ApoA1 (Li et al.,
2008).

ApoA1 Milano
ApoA1 Milano is a naturally occurring variant of ApoA1
found in a select subset of individuals. Those carrying this
mutation, despite having markedly lower levels of circulating
HDL, have a much lower risk of developing CVD than their
wild-type counterparts (Nissen et al., 2003; Nicholls et al.,
2011). It was since developed as an reconstituted HDL (rHDL)
therapy by Esperion Therapeutics where it entered a Phase
I trial (Nicholls et al., 2011), however, after being licensed
to Pfizer it forewent further clinical trials. While a majority
of research around ApoA1 Milano is focused around CVD,
rHDL using this variant protein (rHDLM) has also been
shown to be efficacious against inflammation (Zhang et al.,
2015). In a Gram-negative bacterial rat model, rHDLM given
prophylactically at 40 mg/kg was effective in suppressing pro-
inflammatory cytokines TNF-α, IL-1β, and IL-6 (Zhang et al.,
2015). Additionally, rats dosed with rHDLM displayed increased
renal and hepatic function as well as a decrease in cardiac tissue
damage when compared to saline-treated controls (Zhang et al.,
2015).

CSL-111
CSL-111 is a rHDL originally produced by CSL Behring for
the intention of treating atherosclerosis, making it through

Phase II Clinical Trial before being superseded by CSL-112,
CSL Behring’s current investigational rHDL therapeutic (Tardif
et al., 2007). Made from purified human ApoA1 and soybean
phosphatidylcholine (PC) at a molar ratio of 1:2 protein to
lipid, CSL-111 has repeatedly shown efficacy in reducing the
burden of LPS-induced endotoxemia both in vitro and in vivo
in rabbit and human models (Casas et al., 1995; Hubsch et al.,
1995; Pajkrt et al., 1996). In doses ranging from 25 to 75 mg/kg
body weight, CSL-111 was able to suppress production of pro-
inflammatory cytokines TNF-α, IL-6, and IL-8 (Hubsch et al.,
1995; Pajkrt et al., 1996), inhibit sepsis-induced hypotension
(Casas et al., 1995; Pajkrt et al., 1996), and markedly decrease the
severity of clinical symptoms when administered prophylactically
(Pajkrt et al., 1996). Although CSL-111 showed less promise when
administered as treatment 1 h post-bacterial challenge, it was still
able to reduce the degree metabolic acidosis and improve kidney
function over saline controls in rabbit models (Hubsch et al.,
1995).

HDL Mimetic Peptides
While HDL therapy may be a feasible solution in the treatment
of sepsis, the ability to produce therapeutic quantities of HDL is
both a rate- and cost-limiting process in its development. For this
reason, the use of ApoA1 mimetic peptides has gained increasing
popularity, as they are a cheaper and easier way tomakeHDL-like
particles.

Several mimetic peptides have been synthesized and studied
to date, all of which are structurally similar to the amphipathic
alpha-helices of native ApoA1 (Navab et al., 2005). Both in vitro
and in vivo these peptides are able to bind phospholipids and
associate with native HDL particles (Navab et al., 2005, 2011).
Functionally, these mimetic peptides are able to reproduce the
role of native HDL in their ability to efflux cholesterol (Sethi
et al., 2008; Amar et al., 2010), interact with HDL receptors, i.e.,
ABCA1, ABCG1, and SR-B1 (Sethi et al., 2008), as well as interact
with HDL-associated enzymes LCATand PON (Van Lenten et al.,
2002; Chen et al., 2009; Navab et al., 2011), and most relevant to
sepsis, the ability to bind and neutralize LPS (Gupta et al., 2005;
Remaley et al., 2008).
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18A Peptide
One of the first HDL mimetic peptides to be investigated is the
18 amino acid peptide, 18A (DWLKAFYDKVAEKLKEAF). This
peptide closely mimics the amphipathic alpha-helical structure
of ApoA1, rendering it suitable for sHDL studies. In vivo,
prophylactic infusion of 18A sHDL composed of 18A:Egg PC at
a 1:2 weight ratio increased the survival rate three–fourfold over
saline-treated controls in Swiss Webster mice infected with LPS
from salmonella (Levine et al., 1993). Since, 18A peptide has been
modified to create 4F peptide, which is discussed below.

4F Peptide
4F is an 18 amino acid peptide (DWFKAFYDKVAEKFKEAF)
derived from the sequence of 18A, replacing two lysine residues
with phenylalanine (Navab et al., 2005). 4F peptide has been
the focus of several studies, and is synthesized using either
L- or D-amino acids (L-4F and D-4F, respectively). D-4F is of
particular interest to researchers because it can be delivered orally
due its resistance to enzymatic degradation (Navab et al., 2005).
In a mouse influenza model, D-4F was able to suppress IL-6
production, prevent lymphoid hyperplasia, maintain normal core
body temperatures, and reduce viral titers by >50% over the
entire course of study when administered intraperitoneally at
doses of 20 μg daily (Van Lenten et al., 2002). L-4F has been
more widely studied in the context of sepsis, and has been shown
to be efficacious in both rat CLP and LPS-induced endotoxemia
models at doses as low as 10 mg/kg body weight (Gupta et al.,
2005; Zhang et al., 2009; Dai et al., 2010; Moreira et al., 2014).
In such studies, L-4F administered by IP injection was shown to
block production of cytokines TNF-α and IL-6, reverse sepsis-
induced hypotension, prevent organ damage, and restore renal,
hepatic, and cardiac function, and increase both survival rate and
average survival time in comparison to saline-treated controls
(Gupta et al., 2005; Zhang et al., 2009; Dai et al., 2010; Moreira

et al., 2014). Most notably, L-4F was given after infection, rather
than prophylactically, representing a more clinically relevant
application and meriting its further investigation as a potential
therapeutic.

Prospectives in sHDL Sepsis Therapy
While previous studies have shown encouraging results, the
earlier generation of sHDL and naked ApoAI mimetic peptides
suffer from poor purity, short circulation times, contaminations,
and toxicity (Quezado et al., 1995; DiPiro et al., 1996; Tardif
et al., 2007; Zhang et al., 2009). It is worth noting that
the current literature describing sHDL largely focuses on its
protein/peptide composition and on its capacity in mediating
cholesterol efflux. Considering that sHDL likely plays multi-
protective roles in sepsis and the lipid components significantly
alter the properties of sHDL, further efforts are required to
understand these protective roles and tailor sHDL composition
for increased efficacy in sepsis. Extensive efforts have been
made to understand the roles of HDL/sHDL in CVD and other
chronic inflammatory diseases, and these studies have profoundly
improved our understanding about HDL/sHDL. We may take
these advantages to further determine the roles of HDL/sHDL in
the context of sepsis and develop the new generation of sHDL for
sepsis therapy.
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