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Abstract: (1) Background: Automated blood culture headspace analysis for the detection of volatile
organic compounds of microbial origin (mVOC) could be a non-invasive method for bedside rapid
pathogen identification. We investigated whether analyzing the gaseous headspace of blood culture
(BC) bottles through gas chromatography-ion mobility spectrometry (GC-IMS) enables differentiation
of infected and non-infected; (2) Methods: BC were gained out of a rabbit model, with sepsis induced
by intravenous administration of E. coli (EC group; n = 6) and control group (n = 6) receiving sterile LB
medium intravenously. After 10 h, a pair of blood cultures was obtained and incubated for 36 h. The
headspace from aerobic and anaerobic BC was sampled every two hours using an autosampler and
analyzed using a GC-IMS device. MALDI-TOF MS was performed to confirm or exclude microbial
growth in BCs; (3) Results: Signal intensities (SI) of 113 mVOC peak regions were statistically
analyzed. In 24 regions, the SI trends differed between the groups and were considered to be useful
for differentiation. The principal component analysis showed differentiation between EC and control
group after 6 h, with 62.2% of the data variance described by the principal components 1 and 2. Single
peak regions, for example peak region P_15, show significant SI differences after 6 h in the anaerobic
environment (p < 0.001) and after 8 h in the aerobic environment (p < 0.001); (4) Conclusions: The
results are promising and warrant further evaluation in studies with an extended microbial panel
and indications concerning its transferability to human samples.

Keywords: bloodstream infections; gas chromatography-ion mobility spectrometry (GC-IMS);
microbial diagnostics; volatile organic compounds (VOCs); rapid pathogen identification; bacteremia

1. Introduction

Bloodstream infections (BSI) are defined as the presence of pathogens in blood. This
serious condition is a major cause of sepsis. Sepsis is a “life-threatening organ dysfunction
caused by a dysregulated host [immune] response” and associated with high morbidity
and mortality [1]. Rapid diagnosis and adequate treatment with antimicrobial substances
strongly correlate with a favorable outcome in sepsis [2]. The diagnostic reference standard
for the detection of BSI is still the microbiological culturing of whole blood. However,
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blood cultures (BC) require 24–48 h before positive results are present and five or more
days to confirm a negative culture [3].

Early knowledge of the causative agent and its potential antimicrobial resistance
allows a targeted antibiotic therapy that is less likely to induce bacterial resistance [4].
Faster methods for pathogen identification in blood cultures use molecular techniques,
such as multiplex polymerase chain reaction (PCR) or matrix-assisted laser desorption
ionization time-of-flight mass spectrometry (MALDI-TOF MS), are commercially available
and can accelerate microbial diagnostics from positive blood cultures [5]. However, both
methods require positive blood cultures, and the time before positivity remains unused
to gain any information on potentially growing pathogens. Furthermore, most of these
methods demand specialized personnel and the expensive, voluminous devices need
to be operated in central laboratory facilities [6,7]. Further delays might be caused by
sample transport and standard working hours of microbiological laboratories. Thus, there
is an urgent need in rapid and reliable diagnostic methods for the identification of the
causative microorganism.

To address this task, the time interval in which extracted blood cultures wait to being
processed could be utilized to gain information through microbiological point-of-care (POC)
diagnostics. Such methods require ease of use and data interpretation, as well as speed
and automatization in processing for application [8]. Thereby, it provides rapid actionable
information and can lead to a different management of BSI treatment and facilitate antibiotic
stewardship. In particular, resource-limited settings such as hospitals without their own
microbiological department or health care systems in low-income countries may profit [9].

The fact that organisms release substances during their growth has been known for
a long time [10,11]. These are substances with low molecular mass, high vapor pressure,
and low boiling points, so called microbial volatile organic compounds (mVOCs) [12].
Different methods, such as an electric nose (e-nose), colorimetric sensor arrays (CSA), and
gas chromatography/mass spectrometry (GC/MS) are described for VOC detection [13–15].
GC-MS is the analytic gold standard for the detection and identification of mVOCs. This
method is expensive, time-consuming, difficult in interpretation and of large proportion,
so that the application is only possible in specialized laboratories. Instead, a bed side and
rapid identification method for mVOCs could lead to advances in the detection of BSI and
sepsis with pathogen identification. Suitable bed side mVOC detection methods like e-nose
and CSA come with some challenges because they do not allow substance identification
and quantification of VOCs.

In this context, ion mobility spectrometry (IMS)—an analytical method with high
sensitivity for volatile organic compounds in the gas phase—could be a suitable alternative.
The molecules are ionized and separated in an electric field by collisions with drift gas
molecules for their mass, size, and shape [16]. Different application fields of VOC detection
by ion mobility spectrometry are established in industrial areas like food quality control [17]
as well as in medicine [15,18]. The method provides high sensitivity with detection limits
from nanograms per liter down to picograms per liter (ppb to ppt respectively) within a
few milliseconds [19,20]. By coupling IMS with gas chromatographic pre-separation (gas
chromatography-ion mobility spectrometry, GC IMS), it is even possible to analyze complex
and humid gas samples within seconds to minutes [21]. Coupled with a multi-capillary
column (MCC) for pre-separation, GC-IMS can differentiate bacteria and fungi in both
in vitro and in vivo settings [22–24]. GC-IMS showed to be appropriate to discriminate
in-vivo infected BC bottles between three different clinically relevant bacteria within six
hours [25]. Up to now, it remains unclear whether these findings can be transferred to
samples derived from infected mammals with potential interference through host response
mechanisms in the blood. Automated sampling of incubated standard BC bottles could
enable a point-of-care application of the method. Subsequent rapid recognition of mVOCs
via GC-IMS could be a feasible method for the identification of growing microorganisms.
Therefore, we hypothesized that GC-IMS allows for the differentiation of E. coli-infected
BC bottles from uninfected BC bottles in an animal model of sepsis.
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2. Results
2.1. Grade of Inflammation

E. coli (EC) group animals showed different signs of relevant inflammatory conditions
compared to control animals. EC group animals had an increase in and high peak con-
centrations of serum inflammatory cytokines at 1.5 h (TNF-α) and 3 h (IL-6). Moreover
leukopenia, thrombocytopenia, and fever were observed in EC group animals (Figure 1).
The measurements of the mean, systolic, diastolic arterial blood pressure, heart rate, and
blood gases did not differ significantly in means among the groups.
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Figure 1. Development of inflammatory markers in animal blood against time for control (green,
n = 6) and EC group (red, n = 6) (mean with corresponding 95%-CI). EC group shows an increase in
inflammatory serum cytokines (IL-6, TNF-α) and development of leukopenia and thrombocytopenia.

2.2. Volatile Background/mVOCs

At the first step, all GC-IMS measurements were investigated for arising VOC signals.
The SI threshold to detect an existing peak was assumed to be three times higher than the SI
in the IMS spectra of the baseline measurements. In total, we found 113 VOC peak regions.
We considered VOC signals which occurred in blood culture bottles of the control group
to belong to the volatile background. This volatile background contained substances like
siloxanes, presumably produced by the plastic vial and the septum of the blood culture
bottles. Further origins of the background signals may have also been the metabolism of
the blood cells and the blood culture media.

To identify the mVOC signals provided by bacterial metabolism, we searched for
signals which significantly increased or decreased in the EC group blood cultures only,
compared to the control group. We identified 24 peak regions that showed a substantial
change in the EC group but did not change in the control group (Table 1 and Figure 2).
Background-related signals were neglected for subsequent analysis.
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Table 1. List of mVOC detected by GC-IMS in the headspace of the EC group blood cultures. IMS
drift time (Dt [reactant ion peak relative]); additionally, the inverse mobility (1/K0) and GC retention
time (Rt) are displayed.

Peak Dt [RIP Rel] 1/K0 [Vs/cm−2] Rt [s]

P_1 1.564 0.779 213.49
P_2 1.483 0.738 212.75
P_3 1.458 0.726 216.07
P_4 1.436 0.715 209.53
P_5 1.322 0.658 241.95
P_6 1.254 0.625 237.36
P_7 1.238 0.616 215.91
P_8 1.346 0.670 289.96
P_9 1.628 0.811 416.53

P_10 1.291 0.642 570.18
P_11 1.345 0.670 312.51
P_12 1.461 0.727 591.79
P_13 1.281 0.638 259.62
P_14 1.342 0.668 215.85
P_15 1.051 0.523 229.73
P_16 1.324 0.659 209.89
P_17 1.263 0.629 312.43
P_18 1.317 0.656 263.64
P_19 1.147 0.571 229.73
P_20 1.418 0.706 218.46
P_21 1.295 0.645 219.22
P_22 1.266 0.630 282.26
P_23 1.266 0.630 274.07
P_24 1.266 0.630 266.21
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Figure 2. Pattern (GC retention time vs. IMS drift time) of the detected 24 mVOCs in the headspace
of E. coli-infected blood cultures. The peaks are numbered according to Table 1 and listed there with
their particular retention-/drift times and 1/K0.

GC-IMS SI of these bacterial-specific peaks were determined every two hours. Figure 3 ex-
emplarily shows the SI trends of P_1 and P_15 in both groups over 36 h of incubation in aerobic
and anaerobic media (SI kinetics of all 24 peaks can be seen in the Supplementary Material).
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Figure 3. Development of SI (mean with corresponding 95%-CI) for control (green, n = 6) and EC
group (red, n = 6) of two exemplary peaks (P_1; P_15) in aerobic (left) and anaerobic (right) media
against time. An SI increase can be observed after 6–8 h.

In the control group, most of the peaks showed no substantial change or only a
minimal increase of SI over 36 h of incubation.

In the EC group, all examined peaks showed increasing SI over time with respect to
baseline. The range of maximum SI displayed in between the various peaks is high (P_15
anaerobic max. 3.24 V; P_12 aerobic max. 0.12 V), but even peaks with low maximum SI
can differentiate early in between the two experimental groups (P_12). In both, the aerobic
and the anaerobic media, the majority of significant SI changes was observed after 6–8 h of
incubation. Different dynamics in the development of SI were observed. Predominantly,
the SI of most peak regions increased after 6–8 h of incubation and was followed by linear
increases (e.g., P_1; P_12). Some peaks, primarily those with high maximum SI values,
presented with a pronounced SI increase at 6–8 h, which was followed by a plateau with
minor losses of SI after 12–14 h (P_7; P_15). This may be due to the formation of dimer
signals, which show a delayed SI increase at 12–14 h (P_15 [monomer]; P_19 [dimer]).

Regarding the time resolution for a single peak, for example P_15, a significant dif-
ference between control and EC group BC bottles occurred after 8 h in aerobic media and
already after 6 h in anaerobic media (Figure 4).
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2.3. Multivariate Analysis

Based on the analyses of the single peak regions, the recognition of significant differ-
ences between the EC and control groups were possible. However, in clinical routine, it
is mandatory to identify the causing pathogen as early as possible. Hence, the aim is to
investigate the complete set of the bacterial-specific mVOCs, with the goal of gaining more
information for a fast differentiation. Therefore, multivariate analysis (principal component
analysis [PCA]) was performed for every time point throughout 36 h incubation using the
data of the 24 selected specific mVOCs. Figure 5 presents PCA biplots at 0, 6, 8, 12, 24,
and 36 h incubation time. After 6 h incubation time, 62.2% of total data variance could
be explained by PC1 and PC2; after 8 h, 69.4%; after 12 h, 74.5%; after 24 h, 81.3%; and
after 36 h, the maximum of 84.2% was achieved. With advancing incubation time, the
differentiation between control and EC group was enhanced, indicated by a separation
along the x-axis with the formation of clusters due to PC1. After 6 h was the first timepoint
where a group difference could be displayed under anaerobic growth conditions. Under
aerobic growth conditions, the EC group clustered after 8 h. At that time point, all the



Antibiotics 2022, 11, 992 7 of 14

data points of the EC group clustered and did not overlap with the data points of the
control group.
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Another approach for distinguishing complex GC-IMS datasets during serial BC
headspace measurements could be an algorithm recognizing microbial-specific patterns.
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Therefore, we used hierarchical clustering of the peak SI from the 24 specific mVOCs.
Hereby, after 8 h incubation two clusters were formed, in which one cluster could be
assigned to the control BC, and the other cluster represents the EC group (see Figure 6).
Regarding growth conditions, five out of six anaerobic EC group BC formed a cluster after
only 6 h (see Supplementary Material).
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represents a single BC measurement (# = measurement ID; ae = aerobic; an = anaerobic) with the
color-coded logarithmic peak SI [V] for each mVOC area. Two clusters representing Control and
EC group (green and red box on the left-hand side respectively) are shown, assigning the single
measurements (right) correctly to the two groups.

2.4. Microbiological Reference

After 36 h incubation, all EC group BC indicated a color change of the colorimetric
sensor included in the BacT/ALERT® culture flasks. The microbiological reference diagnos-
tic for the verification of the BC bottles used in the experiment confirmed missing microbial
growth in the control group and the detection of E. coli in all samples of the EC group.
Furthermore, no contaminations with other microbial species were detected.

3. Discussion

In the present study, we describe changes of volatile organic compounds (VOCs) in
the headspace of commercially available BC, inoculated with blood of E. coli-infected or
non-infected rabbits. We performed automated GC-IMS headspace analyses every two
hours over 36 h of incubation.

Several studies described and proved IMS-based VOC analyses to be suitable for differ-
entiating between bacteria and fungi [22–26]. These studies recognize characteristic mVOC
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peaks by a significant difference compared to the background measurement. Subsequently,
a substance identification using GC-MS for reference measurements can be performed.
Databases of microbial volatiles are able to correlate mass spectra with compounds and
emitter species [12]. In a further step, reference measurements with pure samples of the
identified substances have to be performed with GC-IMS to determine the peak position.

Complex growth media cause complex volatile backgrounds. Additionally, the com-
position of growth media has a specific influence on the occurrence of VOCs over Staphylo-
coccus aureus bacterial cultures as the VOC-production is subtrate-dependent [27]. Even
though O’Hara and Mayhew [27] were unable to show changes in VOC composition, there
were changes in the timing of occurrence and SI of detected VOCs. Similar effects could be
expected in E. coli cultures.

Our results show that the differentiation of E. coli from the control group in a BC is
possible after 6 h incubation time in anaerobic media and after 8 h in aerobic media. Since
the transition point for statistically significant differences between BC in aerobic media
was found between 6–8 h, a higher resolution of measurements should be considered to
identify the earliest possible time for the detection of E. coli.

Some detected peaks (P_7; P_15; P_18) did show SI trends that were comparable to
typical bacterial growth curves, including lag phase, logarithmic phase, and the stationary
phase, as mentioned in earlier studies as well [25]. We could not detect bacterial-specific
mVOCs with decreasing SI. Such effects might be explained by the anabolic processes of
bacteria consuming substances of the growth media.

The observed speed of the SI rise may be a “Biomass-dependent” release of mVOCs [28],
by which the amount of bacteria at the start of incubation and growth rates could affect
mVOC SI. Hereby, the dynamics of SI itself seem to be pathogen-dependent. Chen et al. [29]
showed germ-dependent heterogeneous starting times of mVOC increase with E. coli
O157:H7 increasing after 6 to 10 h (comparable to our results), and Staphylococcus aureus
increasing after 10 to 14 h.

The set of mVOCs contains several dimer peaks (P_19 [dimer of P_15]; P_14 [dimer
of P_7]) that arise at 12–14 h incubation, noticeably later than the other peaks. This fact
could tempt the exclusion of these peaks to achieve higher values of discrimination in
multivariate analysis with more selectivity in the phase between 6 and 8 h of incubation. In
our opinion, dimers should also have a positive diagnostic value if their corresponding
monomers do, as these dimers only appear when the corresponding monomers reach
high levels.

The used BacT/ALERT® BC bottles provide a colorimetric sensor [30]. Due to the BC
bottle tray design, the color changes could not be captured. To ensure constant BC bottle
temperature and headspace generation, we dispensed with any manipulation of the bottles
once incubation was started. A built-in optical scanner could be a feasible optimization
for future research to correlate color changes with mVOC increase. It remains unclear
whether the observed mVOC increase at 6–8 h was slower or faster than the colorimetric
change. Scotter et al. [31] artificially infected human blood in BacT/ALERT® BC bottles and
analyzed with real-time VOC detection by selected ion flow tube-mass spectrometry (SIFT-
MS). They were able to show that E. coli BC were mVOC-positive after 8 h of incubation,
compared with colorimetric time to positivity ranging from 12–13 h in anaerobic media
and 14–15 h in aerobic media. Based on this, we could assume that a time to positivity of
around 6–8 h with our GC-IMS mVOC dataset implies a time advantage compared to the
colorimetric system.

For clinical routine, different problems associated with a lack of standardization must
be considered, such as different blood volumes added, and headspace contaminations
with ambient air or needle insertion through a liquid disinfectant surface. Nevertheless,
BC samples with defined complex growth media offer even higher grades in standardiza-
tion compared to breath analysis, in which patient-specific variations in age, medication,
nutrition, fasting status, and inflammation appear, in particular.
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In comparison to in-vitro studies with artificial infection, this is the first study that inves-
tigated BC headspace analysis with clinically applied, commercially available BC in an animal
model with severe inflammation and host response to microorganism. Thus, the sample
blood collected in BC also contains immune cells which may influence VOC production.

Moreover, mVOC analysis of BC could be an appropriate method to perform rapid
antimicrobial susceptibility testing [32,33]. Kuil et al. [32] compared the results and analysis
time of a colorimetric sensor array to detect VOCs with VITEK® 2. In 96 positive blood
cultures, a categorical agreement was 100% for Gram-negatives and 91% for Gram-positives,
with overall results being available in 3.1 h (±0.9 h) after growth detection. In this context, it
is even conceivable to use a combination of VOC-based methods for microbial identification
and antimicrobial susceptibility testing to achieve results with all the important information
for clinical guidance in antimicrobial therapy in less than 24 h.

The study design underlines the potential of automated sampling for further devel-
opment of bedside use. There is no need for advanced sample preparation, only sterile
installation of a vial adapter is mandatory. In future, it is conceivable that during auto-
mated sampling and measurement, an algorithm is working in the background and alerting
personnel when a microorganism is detected.

For this study, due to the automated sampling approach, we only used the GC-IMS
positive ion mode, which is a certain limitation. We might have detected more bacterial-
specific mVOCs by using the negative ion mode as well.

Substance identification via GC-MS and quantified measurements of the identified
substances with GC-IMS have not been performed in the present study. Therefore, an un-
equivocal metabolic source of observed VOC pattern change is missing. Nevertheless, we
focused on the pattern of mVOCs and, therewith, were able to discriminate the E. coli BC
from control group BC.

Furthermore, this approach is still liable to known disadvantages of BC diagnostics,
such as a small proportion of BC-detecting microorganisms or the unknown influence of
antimicrobial substances in the sample.

Nevertheless, ongoing research with a database of a comprehensive set of clinically
relevant microorganisms is needed. A major drawback of the study is, indeed, that our
conclusion could also be that we can discriminate E. coli-infected from non-infected blood,
but the mVOC pattern might also be characteristic for other related bacteria, which we did
not investigate.

Until then, we must admit that our set of mVOCs is indeed E. coli-characteristic, but
some of these mVOCs may also occur in other bacteria.

4. Materials and Methods
4.1. Bacterial Strains

To simulate clinically relevant BC samples, strains of Escherichia coli (DSM 25944),
were grown in Lysogeny Broth fluid medium (LB, Carl Roth GmbH + Co. KG, Karlsruhe,
Germany) as overnight cultures. To determine the exact amount of bacteria, a quantified
swab culture on blood agar was applied using a dilution series from the overnight culture.
All bacterial strains were purchased from the German Collection of Microorganisms and
Cell Cultures, DSMZ, Braunschweig, Germany. For long term storage, all strains were
stored in aliquots with glycerol (LB w/v 55% glycerol) at −80 ◦C until use.

4.2. Rabbit Model of Sepsis

All experiments were performed after approval by the commission for animal pro-
tection of the local government (Nds. LAVES AZ 20/3431). This study was part of a
research project on inflammatory response in different models of sepsis. A total of 12welve
adult female New Zealand White rabbits (average weight 3.3 kg; SD 0.24 kg) (Envigo
RMS, Blackthorn, UK) were anaesthetized and mechanically ventilated via a respirator
(Babylog 8000 plus, Dräger, Lübeck, Germany) during the whole experiment [34,35]. The
animals were randomly assigned to one of the following groups (n = 6 per group): (1) the
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negative control group (control), and (2) the E. coli group (EC group). Following a 30-min
stabilization period after anaesthesia induction and intubation, EC group received a stan-
dardized amount of E. coli (2 mL of the overnight culture [approximately 109 CFU] diluted
in 8 mL NaCl 0.9%) intravenously injected over five minutes [36]. Control animals received
equivalent 2 mL of sterile Lysogeny Broth fluid medium diluted in 8 mL NaCl 0.9%.

4.3. Culture Conditions

Nine hours after infection, 8 mL of whole blood was collected by sonography-based
sterile puncture of V. jugularis interna and injected into standard blood culture bottles (BC
bottles). BacT/ALERT® FA Plus (Ref. 410851) and BacT/ALERT® FN Plus (Ref. 410852;
bioMérieux, Nürtingen, Germany) were used as BC bottles. These commercially available
BC sampling bottles consist of polycarbonate material and contain 30 (aerobic) or 40 mL
(anaerobic) of supplemented complex growth media and adsorbent polymeric beads. All
BCs were incubated for 36 h at 37 ◦C and constantly agitated at 150 rpm.

4.4. Gas Chromatography-Ion Mobility Spectrometer

GC-IMS measurements were performed using a commercially available GC-IMS
device manufactured by G.A.S. Dortmund (G.A.S. Gesellschaft für analytische Sensorsys-
teme mbH, Dortmund, Germany). The GC-IMS was equipped with a wide bore (MXT-5
30 m × 0.53 mm × 1 µm, RESTEK, Bellefonte, PA, USA) GC column of non-polar phase
(5%-phenyl)(1%-vinyl)-methylpolysiloxane). A sample volume of 1 mL was introduced
onto the GC column, which was used under isothermal conditions (T = 40 ◦C). To com-
pensate for peak broadening effects, which typically occur and proportionally increase in
isothermal GC with increasing analysis time, flow ramps were used. The program starts
with a carrier gas flow of 150 mL/min for 10 s before it is set to 1.5 mL/min and held for
1 min. After that, a flow ramp starts, increasing the flow from 1.5 mL/min to 60 mL/min
over 20 min. Last, a second ramp was used to increase the flow up to 150 mL/min over 10 s
and held at 150 mL/min for 100 s. The analytes were ionized by a Tritium (3H) ionization
source (specific activity 370 MBq). The 9.8-cm-long IMS drift tube was operated at 45 ◦C
with a constant drift gas flow of 150 mL/min while an electrical potential of 5 kV was
applied. The sample loop (1 mL volume) and the transfer line were held at 80 ◦C. Measure-
ments were performed in the positive ionization mode. The GC sampling rate was 30 ms,
and each spectrum was the average of six scans. Synthetic air was used as carrier and drift
gas in all experiments. A molecular sieve was installed to ensure high purity of the gas.

4.5. Automated Sampling

Sampling was performed by using a hardware and software-wise customized robotic
system (G.A.S. Gesellschaft für analytische Sensorsysteme mbH, Dortmund, Germany) to
take up standard blood culture vials to enable a reproducible headspace sampling. For
headspace sampling, a sterile set consisting of a vial adapter, 0.2 µm sterile filter, and septum
was fixed on top of the BC bottles (G.A.S. Gesellschaft für analytische Sensorsysteme mbH,
Dortmund, Germany). The robotic system used gastight glass syringes for obtaining one-
millilitre headspace samples injecting into GC-IMS. In between two measurements, the
syringe was flushed with 80 ◦C gas flow and the needle was conditioned to 300 ◦C.

4.6. GC-IMS Measurements

After inoculation, the two BC were placed on the incubator module and heated
with constant agitation for 30 min to generate sufficient headspace. Then, the automated
sampling and GC-IMS measurement started with the aerobic BC. The aerobic measurement
was completed after further 26 min so that the measurement of anaerobic BC commenced.
This cycle was repeated in two-hour increments until the last measurement after 36 h
was completed.
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4.7. MALDI-TOF MS

In connection to the experiment, all BC samples were sent for microbiological reference
diagnostics. The analysis of BC in the microbiology laboratory was performed according to
the standard diagnostic procedure of positive clinical BC. BC bottles were subcultivated on
two Columbia blood agar plates (bioMérieux, Nürtingen, Germany) incubated at 36 ± 1 ◦C
aerobically for up to 48 h and anaerobically for up to 96 h, respectively, and on a chocolate
agar plate (bioMérieux, Nürtingen, Germany) incubated microaerophilically for up to
48 h. Species identification was performed with MALDI Biotyper (Bruker Daltonics GmbH,
Bremen, Germany).

4.8. Laboratory Analyses

Blood samples from the animals were obtained from an ear artery at the baseline
measurement and 3 h, 6 h, and 9 h after inoculation. Additionally, after 1.5 h, a sample
was drawn for TNF-α analysis because of the estimated peak at this time. Blood count and
blood gas analysis were performed immediately. For evaluation of serum inflammatory
cytokines (IL-6, TNF-α), serum aliquots were stored after centrifugation at −80 ◦C until
use. The concentrations of IL-6 and TNF-α were examined in duplicate using commercially
available rabbit-specific enzyme-linked immunoadsorbent assay kits (DY7984/DY5670)
according to the manufacturer’s instructions (R&D Systems Inc., Minneapolis, MN, USA).

4.9. Data Analyses

GC-IMS data was analyzed using the software VOCal Version 0.2.10 (G.A.S. mbH,
Dortmund, Germany). Peak SI were exported and evaluated for statistical value by Graph-
Pad Prism Version 8.4.3 for Windows (GraphPad Software, San Diego, CA, USA). Principal
Component Analysis and Hierarchical-Clustering were carried out using R, version 4.2.0, R
Core Team (R Foundation for Statistical Computing, Vienna, Austria). If not stated other-
wise, tests were performed two-sided on a significance level of 5%. For parameter estimates,
we provide 95% confidence intervals. These are reported as mean ± 1.96 * standard error
(s. e.) whenever normality of the parameter is deemed reasonable.

5. Conclusions

The present study applied GC-IMS-based headspace analysis for the first time in vivo
for the rapid diagnosis of pathogens in blood cultures. The method enables the identi-
fication of E. coli-infected blood cultures after only 6 h in an anaerobic milieu utilizing
specific peaks. In aerobic growth conditions, identification is possible after 8 h. This makes
it possible to differentiate between the two groups within a few hours. The potential of
this point of care method for blood culture diagnostics should be investigated in further
studies with an expanded spectrum of pathogens, identification of mVOCs, and indications
concerning its transferability to human samples. The work was able to show the potential
of the method as a bedside method for rapid pathogen diagnosis in blood cultures to enable
a more effective and adequate guidance of antimicrobial treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11080992/s1, Figure S1: Development of SI (Mean, 95%
CI) for control and EC group of the bacterial specific peaks P_1 to P_24 in aerobic and anaerobic media
against time; Figure S2: Heatmap of a Hierarchical-Clustering-Dendrogram after 6 h incubation time.
Every row represents a single BC measurement (# = measurement ID; ae = aerobic; an = anaerobic)
with the color-coded logarithmic peak SI [V] for each mVOC area. Two clusters representing control
and EC group (green and red box on the left-hand side, respectively) are shown, assigning 5 out of
6 anaerobic E. coli BC (right) correctly to the EC group.

https://www.mdpi.com/article/10.3390/antibiotics11080992/s1
https://www.mdpi.com/article/10.3390/antibiotics11080992/s1
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