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It is well known that repeated projective measurements can either slow down (the Zeno effect) or 
speed up (the anti-Zeno effect) quantum evolution. Until now, studies of these effects for a two-level 
system interacting with its environment have focused on repeatedly preparing the excited state via 
projective measurements. In this paper, we consider the repeated preparation of an arbitrary state of 
a two-level system that is interacting strongly with an environment of harmonic oscillators. To handle 
the strong interaction, we perform a polaron transformation and then use a perturbative approach 
to calculate the decay rates for the system. Upon calculating the decay rates, we discover that there 
is a transition in their qualitative behaviors as the state being repeatedly prepared continuously 
moves away from the excited state and toward a uniform superposition of the ground and excited 
states. Our results should be useful for the quantum control of a two-level system interacting with its 
environment.

By subjecting a quantum system to frequent and repeated projective measurements, we can slow down its tem-
poral evolution, an effect referred to as the quantum Zeno effect (QZE)1–24. Contrary to this effect is the quantum 
anti-Zeno effect (QAZE), via which the temporal evolution of the system is accelerated due to repeated projective 
measurements separated by relatively longer measurement intervals25–38. Both these effects have garnered great 
interest not only due to their theoretical relevance to quantum foundations but also due to their applications to 
quantum technologies. For example, the QZE has shown to be a promising resource for quantum computing and 
quantum error correction39,40. The QAZE, on the other hand, has interestingly been useful in, say, accelerating 
chemical reactions, suggesting the possibility of quantum control of a reaction41.

By and large, studies of the QZE and the QAZE have focused on population decay25–30,42–47 and pure dephasing 
models31. A few works have gone beyond these regimes. Reference48, for instance, presents a general framework 
to calculate the effective decay rate for an arbitrary system–environment model in the weak coupling regime 
and finds it to be the overlap of the spectral density of the environment and a filter function that depends on the 
system–environment model, the measurement interval, and the measurement being performed. This approach, 
however, fails in the strong coupling regime where perturbation theory cannot be applied in a straightforward 
manner31. For a single two-level system coupled strongly to an environment of harmonic oscillators, Ref.49 
makes the problem tractable by going to the polaron frame and finding that for the excited state, the decay rate 
very surprisingly decreases with an increase in the system–environment coupling strength. This effect is further 
investigated in Ref.50, which studies a two-level system coupled simultaneously to a weakly interacting dissipative-
type environment and a strongly interacting dephasing-type one. It is found that even in the presence of both 
types of interactions, the strongly coupled reservoir can inhibit the influence of the weakly coupled reservoir on 
the central quantum system.

To date, the role of the state that is repeatedly prepared remains relatively unexplored, especially in the strong 
coupling regime. We emphasize that Ref.49 considers the relatively simple case of the repeated measurement of 
the excited state only. As such, it remains unanswered whether increasing the coupling strength with a strongly 
coupled reservoir would lead to the decay rate decreasing for any general (or arbitrary) state. This forms the 
basis of our investigation in this paper. We work out the decay rates for a two-level system strongly interacting 
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with a bath of harmonic oscillators and that is repeatedly prepared via a projective measurement in an arbitrary 
quantum state, that is, any arbitrary linear combination of the ground and excited states. To make the problem 
tractable, we first go to the polaron frame, where the system–environment coupling is effectively weakened, and, 
thereafter, use time-dependent perturbation theory to evolve the system state and find its decay rate. Compared 
to the treatment in Ref.49, this is a far more complicated task since the polaron transformation also modifies 
the projection operators, thereby making the trace over the environment considerably more involved. From the 
decay rate, we are able to observe a stark difference when we perform projective measurements onto a uniform 
superposition of the excited and ground states. As we explain later, the qualitative variation of the decay rate 
with the system–environment coupling gets “inverted.” To describe these results, we coin the terms “z-type” and 
“x-type,” identifying the behavior displayed by Ref.49 (where increasing the coupling strength leads to smaller 
decay rates) as the “z-type” behavior and the “inverted” behavior as the “x-type” one. It is found that projections 
onto the excited or ground states on the Bloch sphere exhibit “z-type” behavior whereas projections onto states 
lying close to the equatorial plane in the Bloch sphere exhibit “x-type” behavior. This provides the motivation for 
the names “z-type” and “x-type” since it is typical to take the excited and ground states as up and down along the 
z axis, respectively, and denote their superposition as being either up or down along the x axis. We also investi-
gate the transition between these z and x behaviors. Our results should be useful in the study of open quantum 
systems in the strong coupling regime.

Results
Effective decay rate for strong system–environment coupling.  We start from the paradigmatic 
spin-boson model51–53 with the system–environment Hamiltonian written as (we work in dimensionless units 
with � = 1 throughout)

where HS,L = ε
2
σz + �

2
σx is the system Hamiltonian, HB =

∑
k ωkb

†
kbk is the environment one, and 

VL = σz
∑

k

(
g∗k bk + gkb

†
k

)
 is the system–environment coupling. Note that L denotes the lab frame, ε is the 

energy splitting of the two-level system, � is the tunneling amplitude, and the ωk are the frequencies of the 
harmonic oscillators in the harmonic oscillator environment interacting with the system. The creation and 
annihilation operators of these oscillators are represented by the b†k and bk , respectively. The term ‘tunneling 
amplitude’ for � is especially appropriate since it is this term that leads to transitions between the ground and 
excited states; if � = 0 , the excited state remains the excited state and the ground state remains the ground state. 
In the strong system–environment interaction regime, we cannot treat the interaction perturbatively. Moreover, 
the initial system–environment correlations are significant and thus cannot be neglected to write the initial state 
as a simple product state54,55. To make the problem tractable thus, we perform a polaron transformation56–62, 
which yields an effective interaction that is weak. More precisely, the transformation to the polaron frame is 
given by H = UPHLU

†
P , where UP = e

χσz
2  and χ =

∑
k

(
2gk
ωk

b†k −
2g∗k
ωk

bk

)
 . We then get the transformed 

Hamiltonian

For future convenience, we define H0 = ε
2
σz +

∑
k ωkb

†
kbk . Now, if � is taken as being small (that is, much 

smaller than the other energy scales such as ε and gk ), the system and environment interact effectively weakly 
in the polaron frame despite interacting strongly in the lab frame. Let |0� represent the excited state of our 
two-level system and |1� its ground state. Then, writing an arbitrary initial state of the two-level system as 
|ψ� = ζ1|0� + ζ2|1� with ζ1 = cos

(
θ
2

)
 and ζ2 = eiφ sin

(
θ
2

)
 , where θ and φ are the standard angles on the Bloch 

sphere, we find the time-evolved density matrix by means of time-dependent perturbation theory. It is important 
to note that while the initial system–environment state cannot simply be taken as a simple uncorrelated prod-
uct state in the lab frame54,55, we can do so in the polaron frame since the system and its environment interact 
effectively weakly in it. We subsequently perform repeated measurements after time intervals of duration τ to 
see if the system state is still |ψ� . The survival probability at time τ is s(τ ) = TrS,B

{
Pψρ(τ)

}
 , where ρ(τ) is the 

combined density matrix of the system and the environment at time t = τ in the polaron frame just before a 
projective measurement, Pψ = UP |ψ��ψ |U†

P , and S and B denote traces over the system and the bath of harmonic 
oscillators respectively. The survival probability can then be written as

with Z = TrS,B{P�e−iHτP�} being a normalization factor and β representing the inverse temperature. Until 
now, the treatment of the survival probability is completely general. Ref.49 proceeds by considering only the 
simplest case where [UP , |ψ��ψ |] = 0 , which means that the polaron transformation leaves the projector |ψ��ψ | 
untouched. This is only true for the states |0� and |1� . The assumption that [UP , |ψ��ψ |] = 0 greatly simplifies the 
subsequent calculation since the projection operator Pψ in the polaron frame contains no environmentoperators. 
In the more general case of |ψ� = ζ1|0� + ζ2|1� that we are considering in the current paper with arbitrary ζ1 and 
ζ2 , the presence of the additional environment operators in Pψ makes the calculation far more complicated. The 
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details of this calculation are presented in the “Methods” section, and the rather extensive general expression is 
given in the Supplementary information. In order to digest this and to introduce the environment functions that 
appear, it is useful to first consider the limited case with the initial state |ψ� = |0� and the projector Pψ = |0��0| . 
For this case, our general expression reduces to

meaning that we reproduce the expression given in Ref.49. Here, C(t2 − t1) is the environment correlation func-
tion given by C(t2 − t1) = e−�∗

C(t2−t1) , �C(t) = �R(t)− i�I (t) with �R = 4
∫∞
0

dωJ(ω) 1−cosωt
ω2 coth(

βω
2
) and 

�I = 4
∫∞
0

dωJ(ω) sinωt
ω2  .  The environment spectral  density J(ω) has been introduced as 

∑
k

∣∣gk
∣∣2(· · · ) →

∫∞
0

dωJ(ω)(· · · ) . Since the system–environment coupling in the polaron frame is weak, we 
can neglect the accumulation of correlations between the system and the environment and write the survival 
probability at time t = Nτ , or s(t = Nτ) , as [s(t)]N , where N denotes the number of measurements performed 
after time t = 0 . Now, we may write s(t = Nτ) = e−Ŵ(τ)Nτ to define an effective decay rate Ŵ(τ) for our quantum 
state. It follows that Ŵ(τ) = − 1

τ
ln s(τ ) . Expanding ln(s(τ )) up to second order in � , we see that the decay rate 

works out to be 1−s(τ )
τ

 . Furthermore, in order to numerically investigate how the decay rate varies with the 
measurement interval τ , we model the spectral density as J(ω) = Gωsω1−s

c e−ω/ωc , where G is a dimensionless 
parameter characterizing the strength of the system–environment coupling, ωc is the cut-off frequency, and s is 
the so-called Ohmicity parameter. Throughout, we present results for a super-Ohmic environment with s = 2 . 
For this case, we get �R = 4G

(
1− 1

1+ω2
c t

2

)
 and �I = 4Gt

ωc

(
1

ω2c
+t2

) , and we choose to work at zero temperature 

for the sake of simplicity. We thus obtain

and note that the same decay rate is found if we repeatedly prepare the ground state instead (that is, we set ζ1 = 0 
and ζ2 = 1 instead in our general expression).

Now, consider the repeated preparation of an arbitrary quantum state of the two-level system. As noted before, 
for this case, the projection operator, in the polaron frame, contains environment operators. Consequently, taking 
the trace over the environment is much more complicated. Here, we present the results for the case ζ1 = 1√

2
 and 

ζ2 = 1√
2
 , that is, |ψ� = 1√

2
|0� + 1√

2
|1� , although we emphasize that our developed formalism allows us to work 

out the effective decay rate for any arbitrary state—see the “Methods” section and the supplementary informa-
tion. Working at zero temperature again, we find the effective decay rate to be

where W and W ′ comprise further bath correlation terms and are given in the supplementary information. In 
Eqs. (5) and (6), what we have essentially found are the decay rates for initial states corresponding to two extremes 
characterized by the positions of the states on the Bloch sphere. Whereas Eq. (5) gives the decay rate for the state 
|ψ� on a pole of the Bloch sphere, Eq. (6) does so for a state that is the farthest from the poles. Note that the 
effective decay rate is independent of φ when θ is chosen to be π

2
 in |ψ� = cos

(
θ
2

)
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)
|1� , so Eq. (6) 

may be seen as catering to all states lying in the equatorial plane of the Bloch sphere. The states |0� and 
1√
2
|0� + 1√

2
|1� were chosen as simple representatives of the poles and the equatorial plane, respectively. These 

regions comprise the said extremes since we find that the respective variations of the effective decay rate with 
the system–environment coupling in these regions are markedly opposite. While increasing the coupling strength 
leads to a decrease in the decay rate for states on the poles, the opposite occurs when the coupling strength is 
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increased for states lying in the equatorial plane. To make this claim concrete, we work out the integrals in Eqs. (5) 
and (6) numerically and plot the effective decay rate Ŵ(τ) in Fig. 1 for various system–environment coupling 
strengths. As Fig. 1a clearly shows, increasing the coupling strength effects a general increase in the decay rate 
if the initial state is 1√

2
|0� + 1√

2
|1� . Precisely the opposite is seen in Fig. 1b; that is, increasing the system–envi-

ronment coupling decreases the effective decay rate when the initial state is |0� . It might therefore be said that 
uniform superpositions essentially “invert” the inhibiting effect that an increase in the coupling strength has on 
the decay rate in Fig. 1b. The behavior of Ŵ(τ) as a function of τ also allows us to identify the Zeno and anti-Zeno 
regimes. The Zeno regime is the region where decreasing τ leads to a decrease in Ŵ(τ) . The anti-Zeno regime, 
alternatively, happens to be the region where decreasing τ leads to an increase in Ŵ(τ)25,31,37,43,46,48. With these 
criteria, whereas we observe only the QZE for G = 1 in Fig. 1b, we also see the QAZE for G = 2 and G = 3 . In 
Fig. 1a, however, we see both the QZE and the QAZE for all the coupling strengths shown. Increasing G thus 
bears forth a significant qualitative change in the QZE/QAZE behavior of the central quantum system if the 
initial state is on the poles of the Bloch sphere, but the same is not true for uniform superpositions. This also tells 
us that the aforementioned two regions on the Bloch sphere are characterized by significantly different variations 
of the decay rate with the system–environment interaction. Finally, it is worth noting that for uniform superposi-
tions, the decay rates are generally much higher than the ones corresponding to the ground or excited states (see 
Fig. 1a,b). This result makes sense because in the strong coupling regime, the system–environment coupling acts 
as a protection for its eigenstates, meaning that the eigenstates of the interaction term actually benefit from an 
increased coupling with the environment in that they remain alive for longer times49. This protection, however, 

(a) (b)

Figure 1.   Variation of the effective decay rate with system–environment coupling strength. (a) Graph of Ŵ(τ) 
(at zero temperature) as a function of τ with G = 1 (dashed, red curve), G = 2 (dot-dashed, blue curve), and 
G = 3 (solid magenta curve). The initial state is cos (θ/2)|0� + e

ιφ sin (θ/2)|1� with θ = π/2 and φ = 0 , but any 
other φ would give the same results here. We have also used a super-Ohmic environment ( s = 2 ) with ωc = 1 , 
ε = 1 , and � = 0.05 . (b) Graph of Ŵ(τ) (at zero temperature) as a function of τ with G = 1 (dashed, red curve), 
G = 2 (dot-dashed, blue curve), and G = 3 (solid magenta curve). The initial state is given by θ = 0 and π = 0 . 
We have used a super-Ohmic environment ( s = 2 ) with ωc = 1 , ε = 1 , and � = 0.05.

(a) (b)

Figure 2.   Variation of the effective decay rates with the initial state of the two-level system. (a) The effective 
decay rate Ŵ(τ) (at zero temperature) as a function of τ for different initial states. θ takes values from 0 through 
π , but φ is kept 0 for the sake of simplicity. (b) Ŵ(τ)-τ cross-sections of (a) for θ = 0 (dashed, red curve), 
θ = π/8 (dashed, blue curve), θ = π/4 (dot-dashed, black curve), and θ = π/2 (solid magenta curve). We have 
used a super-Ohmic environment ( s = 2 ) with G = 1 , ωc = 1 , ε = 1 , and � = 0.05.
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is lost as we move away from a pole on the Bloch sphere and toward the equatorial plane as is apparent in Fig. 2, 
where we plot the decay rates against τ for varying polar angles.

If Ŵ(τ) is plotted against τ for different values of θ , it is found that for any coupling strength, all the initial 
states have decay rates with one maximum. If we now assume two different coupling strengths, say, G1 and G2 , and 
we consider G2 > G1 without loss of generality, we notice that the decay rates exhibit either “z-type” or “x-type” 
behavior, depending on the initial state of the quantum system. For states we term as having “z-type” behavior, 
the maximum of Ŵ(τ) corresponding to G1 is greater as is characteristic of the state |0� in Fig. 1b. Similarly, we 
term states as showing “x-type” behavior if the maximum of Ŵ(τ) corresponding to G1 is smaller. Hence, for any 
G1 and G2 , there has to exist a value of the angle θ at which we see a transition between these two behaviors. To 
show the existence of this critical value of θ , which we label as θc , we plot the difference between the respective 
maxima of decay rates corresponding to G1 and G2 against θ (see Fig. 3) and find the value of θ such that this dif-
ference becomes approximately zero. To show that θc is actually the said critical value of θ , we plot the decay rates 
against τ for values of θ less than θc , equal to θc , and greater than θc as illustrated in Fig. 4. It is clear that when 
θ = θc (approximately π/225 for the case chosen), the peaks of the curves corresponding to G1 and G2 are at the 
same height above the τ axis. When θ < θc , the peak for G2 wins, showing that the “x-type” behavior dominates, 
and when θ > θc , the peak for G1 wins, showing that the “z-type” behavior dominates. It is interesting to note 
that θc is φ dependent. While we have presented our analysis with φ = 0 , we have found that it is always possible 
to find θc regardless of the value of φ.

Modified decay rates for strong and weak system–environment coupling.  In investigating the 
effect of changing the initial state on the QZE and the QAZE, we have used the complete Hamiltonian so far. This 
means that the evolution of the system state depends on the system Hamiltonian as well as the system–environ-
ment interaction. However, if we intend to study solely the effect of the dephasing reservoir on the QZE and the 
QAZE via its interaction with the system, we would like to remove the evolution due to the system Hamiltonian. 
We can do so by performing, just before each projective measurement, a reverse unitary time evolution due to 
the system Hamiltonian on the fully time-evolved density matrix as has also been done in Refs.31,48,49,63—such a 
reverse unitary time evolution can be realized by applying suitable control pulses to the central two-level system. 
The survival probability then becomes

(7)s(τ ) = TrS,B

{
PψU

†
S,I (τ )U

†
S,0(τ )U0(τ )UI (τ )Pψ

e−βH

Z
PψU

†
I (τ )U

†
0 (τ )US,0(τ )US,I (τ )

}
,

Figure 3.   Difference between the maxima of the effective decay rates corresponding to G1 and G2 against π/θ.

0.0007

(a) (b) (c)

Figure 4.   Transitory behavior in the effective decay rates. (a) Graph of Ŵ(τ) (at zero temperature) with the 
initial state corresponding to θ = π/200 for G = 1 (solid magenta curve) and G = 3 (dashed, red curve). (b) 
Same as (a) with the initial state corresponding to θc = π/225 , showing critical behavior. (c) Same as (a) except 
that θ = π/250.
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where US,0(τ ) = e−iHSτ and HS = ε
2
σz + �

2
σx . As before, we can simplify this further by operating in the polaron 

frame (see the “Methods” section for details). This procedure yields the decay rate

Equation (8) shows that upon removing the system evolution, the decay rate works out to contain both the 
earlier found effective decay rate and some additional terms represented by Ŵmod(τ ) . This follows from the further 
application of the perturbative approach. We present in the supplementary information a general expression for 
the modified decay rate for an arbitrary state |ψ� . Using this expression, we show the behavior of the modified 
decay rate as a function of the measurement interval for different states in Fig. 5. We again find that the decay 
rate increases as we move toward the circle of uniform superpositions on the Bloch sphere. Moreover, Fig. 6a 
shows that increasing the system–environment coupling strength generally increases the decay rate for θ = π

2
 . 

As such, the removal of the system evolution does not change the qualitative behavior of the decay rates in any 
significant way, and we can confidently say that the primary contribution to the decay rate comes from the sys-
tem–environment interaction. We arrive at a similar conclusion upon plotting the decay rate corresponding to 
the initial state |0� in Fig. 6b, that is, the qualitative behavior remains the same as before and increasing the 
coupling strength now generally decreases the decay rate. We again emphasize that we could have chosen any 
states other than 1√

2
|0� + 1√

2
|1� and |0� since our general expression for the modified decay rate works for any 

arbitrary state.
To complete our analysis, we can, as before, numerically sample through decay rates corresponding to dif-

ferent points on the Bloch sphere to identify a transitory stage, or θc , and find similar transitions as found before 
(see Fig. 7). As we move toward the poles (see Fig. 8a–c), we observe the shift from the “x-type” behavior to the 
“z-type” behavior.

(8)Ŵn(τ ) = Ŵ(τ)+ Ŵmod(τ ).

(a) (b)

Figure 5.   Variation of the modified decay rates with the initial state of the two-level system. (a) The effective 
modified decay rate Ŵn(τ ) as a function of τ for different initial states. (b) Here we show Ŵn(τ )− τ cross-
sections of (a). The parameters used in (a) and (b) are the same as Fig. 2, except that we are now plotting the 
modified decay rates against the measurement interval.

(a) (b)

Figure 6.   Variation of the modified decay rate with the system–environment coupling strength. (a) Graph of 
Ŵn(τ ) as a function of the measurement interval τ for θ = π/2 and φ = 0 with different environment coupling 
strengths. (b) Graph of Ŵn(τ ) as a function of τ for θ = 0 and φ = 0 with different coupling strengths. The 
parameters used in (a) and (b) are the same as Fig. 1, except that we are now showing the modified decay rates.
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Discussion
To conclude, we have extended the investigation of the QZE and the QAZE for a two-level system interacting 
strongly with a harmonic oscillator bath by presenting a general framework independent of the initial state cho-
sen. We started off by transforming to the polaron frame wherein the perturbative approach was used to make 
the problem tractable. From there on, we proceeded to finding the effective and modified decay rates, obtaining 
the latter after removing the system evolution so that the role of the environment alone may be studied. We found 
that the effective and modified decay rates display the same qualitative behavior; this attests to the dominant 
contribution of the reservoir to the decay rates. Having set up the methodology, we continued to investigate the 
effect of changing the initial state on the QZE and the QAZE, allowing ourselves to identify the “z-type” and the 
“x-type” behaviors. We were also able to locate critical angles about which transition between these behaviors is 
manifested. All these insights can be helpful for quantum control of two-level systems that are strongly interact-
ing with a harmonic oscillator environment.

Methods
Polaron transformation.  Here, we present the polaron transformation for the spin-boson Hamiltonian. 
The transformation is given by the unitary operator UP = e

χσz
2  such that H = e

χσz
2 HLe

− χσz
2  , where 

χ =
∑

k

(
2gk
ωk

b†k −
2g∗k
ωk

bk

)
 . Making use of eθXYe−θX = Y + θ[X,Y ] + θ2

2! [X, [X,Y ]]+ · · · , we first evaluate 
[
χσz
2
,
∑

k ωkb
†
kbk

]
 , 
[
χσz
2
, σz

∑
k

(
g∗k bk + gkb

†
k

)]
 , and all the higher-order commutators. We find that 

[
χσz
2
,
∑

k ωkb
†
kbk

]
= −σz

∑
k

(
gkb

†
k + g∗k bk

)
 and 

[
χσz
2
,

[
χσz
2
,
∑

k ωkb
†
kbk

]]
=

[
χσz
2
, σz

∑
k

(
g∗k bk + gkb

†
k

)]
=

−2
∑

k
|gk|2
ωk

 . Since the latter is only a constant, the higher-order commutators are zero. Moreover, since the tun-
neling term could be written in the form �

2
σx = �

2
(σ+ + σ−) and 

[
χσz
2
, σ+

]
= χσ+ while 

[
χσz
2
, σ−

]
= −χσ− , 

the tunneling term in the polaron frame is �
2
(σ+eχ + σ−e−χ ) . Using these commutators, we get eχσz/2[

ε
2
σz + �

2
σx +

∑
k ωkb

†
kbk + σz

∑
k

(
g∗k bk + gkb

†
k

)]
e−χσz/2 = ε

2
σz +

∑
k ωkb

†
k bk + �

2
(σ+eχ + σ−e−χ ).  

This gives the polaron transformed Hamiltonian.

Effective decay rate for a strongly interacting environment.  We now describe the procedure for 
deriving the decay rate from the survival probability stated in Eq.  (3). To do so, we first work out the time-
evolved density matrix of the composite system, that is, ρ(τ) = e−iHτPψ

e−βH0

Z Pψ e
iHτ . Since we are in the 

168

168

Figure 7.   Difference between the maxima of the modified decay rates corresponding to G1 and G2 against π/θ.

(a) (b) (c)

Figure 8.   Transitory behavior in the modified decay rates. All is the same as in Fig. 4 except that we have 
modified decay rates, and the θ values for (a), (b), and (c) are θ = π/150 , θc = π/167 , and θ = π/190 , 
respectively.
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polaron frame and we take � as being small, the effective system–environment interaction may be treated per-
turbatively. Now, ρ(τ) = U0(τ )UI (τ )ρ(0)U

†
I (τ )U

†
0 (τ ) , where U0(τ ) is the unitary time-evolution operator cor-

responding to the system Hamiltonian HS = ε
2
σz and the environment Hamiltonian HB =

∑
k ωkb

†
kbk whereas 

UI (τ ) is the unitary evolution due to the system–environment interaction. The survival probability thus becomes 
s(τ ) = TrS,B

{
PψU0(τ )UI (τ )Pψ

e−βH0

Z PψU
†
I (τ )U

†
0 (τ )

}
. Using cyclic invariance, we absorb the system time evo-

lution into the projector Pψ and evolve it to Pψ(τ) = U†
0 (τ )PψU0(τ ) , thereby getting 

Pψ(τ) = |ζ1|2|0��0| + ζ1ζ
∗
2 e

χ(τ)e−iετ |0��1| + ζ2ζ
∗
1 e

−χ(τ)e−iετ |1��0| + |ζ2|2|1��1| . Now, we proceed to find 
UI (τ )Pψ

e−βH0

Z PψU
†
I (τ ) . Recalling that the interaction Hamiltonian is HI = �

2
(σ+eχ + σ−e−χ ) in the polaron 

frame and writing VI (t) = eiH0tHI (t)e
−iH0t , we get VI (t) = �

2

∑
µ(F̃µ(t)⊗ B̃µ(t)) , where F̃0(t) = σ−e−iεt , 

F̃1(t) = σ+eiεt , B̃0(t) = eχ(t) , and B̃1(t) = e−χ(t) . This gives 
UI (τ ) = 1− i

∫ τ

0
dt1VI (t1)−

∫ τ

0

∫ t1
0
dt1dt2VI (t1)VI (t2)+ · · · . Defining A1(τ ) = −i

∫ τ

0
dt1VI (t1) and 

A2(τ ) = −
∫ τ

0

∫ t1
0
dt1dt2VI (t1)VI (t2) , we find that ρ(τ) up to the second order is

It should be noted that ρ(0) as given in the Results section may be written as Pψ e−βH0Pψ/Z =
∑

ijn MijC
n
ijE

n
ij/Z , 

where i, j, and n could be either 0 or 1. Mij = |i�
〈
j
∣∣ , and the Cn

ij and the Enij are given by the following tables:
Using Tables  1 and 2, we find it easy to see that Eq.  (9) may be recast as ρ(τ) =

∑6
i=1 Ti , where 

T1 =
∑

ijn MijC
n
ijE

n
ij , T2 = T1A

†
1 , T3 = T1A

†
2 , T4 = A1T1 , T5 = A1T1A

†
1 , and T6 = A2T1 . Having found ρ(τ) and 

Pψ(τ) , we have s(τ ) = TrS,B{Pψ(τ)ρ(τ)} . Then, since the system-environmnet interaction is weak in the polaron 
frame, we may use Ŵ(τ) = − ln s(τ )

τ
 to find the decay rate for the strongly interacting reservoir given an arbitrary 

initial state, ζ1|0� + ζ2|1� . The detailed expression for Ŵ(τ) is given in the supplementary information.

Modified decay rate for a strongly interacting environment.  Here, we show how to work out the 
survival probability expressed in Eq.  (7) and derive the general modified decay rate expression. In 
TrS,B

{
PψU

†
S,I (τ )U

†
S,0(τ )U0(τ )UI (τ )Pψ

e−βH0

Z PψU
†
I (τ )U

†
0 (τ )US,0(τ )US,I (τ )

}
 , we have already evaluated 

UI (τ )Pψ
e−βH0

Z PψU
†
I (τ ) in Eq. (9). Moreover, we note that U†

S,0(τ )U0(τ ) = e−iHBt . Now, we only need to work 
out the density matrix after the system evolution has been removed, that is, U†

S,I (τ )e
−iHBτ

[
ρ0 + A1(τ )ρ0

+A2(τ )ρ0 + ρ0A
†
1(τ )+ ρ0A

†
2(τ )+ A1(τ )ρ0A

†
1(τ )

]
e
iHBτUS,I (τ ) . Writing VS,I (t) = eiHS,0tHI(t)e

−iHS,0t , we get 

VS,I (t) = �
2

∑
µ(F̃µ(t)⊗ Bµ) , where F̃0(t) = σ−e−iεt , F̃1(t) = σ+eiεt , B0 = eχ , and B1 = e−χ as before. This 

leads to US,I (τ ) = 1− i
∫ τ

0
dt1VS,I (t1)+ (−i)2

∫ τ

0

∫ t1
0
dt1dt2VS,I (t1)VS,I (t2)+ · · · . Using A

(1)
S

=

−i
∫ τ

0
dt1VS,I (t1) and A(2)

S = −
∫ τ

0

∫ t1
0
dt1dt2VS,I (t1)VS,I (t2) now, we can conveniently write the fully time-

evolved density matrix with the system evolution removed as ρ(τ) =
(
1+ A

(1)†
S + A

(2)†
S

)
e−iHBt

∑N=6
j=1 Tje

iHBt

(
1+ A

(1)
S

+ A
(2)
S

)
 . We work this out to second order, apply the projection operator Pψ , and find the trace over 

the system and the environment in the same way as before. We then arrive at the survival probability that the 
modified decay rate could be found from. Details on its expression could be found in the supplementary infor-
mation.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

(9)ρ(τ) = ρ(0)+ A1(τ )ρ(0)+ A2(τ )ρ(0)+ ρ(0)A†
1(τ )+ ρ(0)A†

2(τ )+ A1(τ )ρ(0)A
†
1(τ ).

Table 1.   The symbols Cn
ij.

n/ij 00 01 10 11

0 |ζ1|4e−βε/2 |ζ1|2ζ1ζ ∗2 e−βε/2 |ζ1|2ζ2ζ ∗1 e−βε/2 |ζ1ζ2|2e−βε/2

1 |ζ1ζ2|2eβε/2 |ζ2|2ζ1ζ ∗2 eβε/2 |ζ2|2ζ2ζ ∗1 eβε/2 |ζ2|4eβε/2

Table 2.   The symbols Enij . Here, HB =
∑

k ωkb
†
kbk.

n/ij 00 01 10 11

0 e
−βHB e

−βHB e
χ

e
χ
e
−βHB e

−χ
e
−βHB e

χ

1 e
χ
e
−βHB e

−χ
e
χ
e
−βHB e

−βHB e
−χ

e
−βHB
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