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ABSTRACT
Nitrogen oxides (NOx, the sum of nitric oxide (NO) and N dioxide (NO2)) emissions and deposition have
increased markedly over the past several decades, resulting in many adverse outcomes in both terrestrial
and oceanic environments. However, because the microbial NOx emissions have been substantially
underestimated on the land and unconstrained in the ocean, the global microbial NOx emissions and their
importance relative to the known fossil-fuel NOx emissions remain unclear. Here we complied data on
stable N isotopes of nitrate in atmospheric particulates over the land and ocean to ground-truth estimates of
NOx emissions worldwide. By considering the N isotope effect of NOx transformations to particulate
nitrate combined with dominant NOx emissions in the land (coal combustion, oil combustion, biomass
burning and microbial N cycle) and ocean (oil combustion, microbial N cycle), we demonstrated that
microbial NOx emissions account for 24± 4%, 58± 3% and 31± 12% in the land, ocean and global
environment, respectively. Corresponding amounts of microbial NOx emissions in the land
(13.6± 4.7 Tg N yr−1), ocean (8.8± 1.5 Tg N yr−1) and globe (22.5± 4.7 Tg N yr−1) are about 0.5, 1.4
and 0.6 times on average those of fossil-fuel NOx emissions in these sectors. Our findings provide empirical
constraints on model predictions, revealing significant contributions of the microbial N cycle to regional
NOx emissions into the atmospheric system, which is critical information for mitigating strategies,
budgeting N deposition and evaluating the effects of atmospheric NOx loading on the world.
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INTRODUCTION
Atmospheric nitrogen oxides (NOx) loading in-
fluence human health (e.g. respiratory and car-
diovascular diseases, acute bronchitis) [1], tropo-
spheric chemistry (e.g. precipitation acidity, aerosol
and ozone formation) [2–4], climate [4] and eco-
nomic development [5]. In past decades, anthro-
pogenic NOx emissions have significantly increased
the fluxes of atmospheric NO3

− deposition [6–8],
altered N cycles in both terrestrial and marine
ecosystems [9–12] and thus affectedmicrobial NOx
emissions to the atmosphere [13]. Hence, it is piv-
otal to accurately constrain land and ocean NOx
emissions to the atmosphere to mitigate human-
induced NOx emissions, budget NO3

− deposition
fluxes and evaluate the eco-environmental and cli-
matic effects of atmosphericNOx loading.However,

it has long been challenging to accurately constrain
land- and ocean-to-atmosphere NOx emissions due
to uncertainties overmicrobial N cycles in both land
and ocean.

In marine environments, the oil combustion of
marine traffic transportation is a known source of
NOx emissions [14–20]. According to the Euro-
pean Monitoring and Evaluation Programme Me-
teorological Synthesizing Centre West model, NOx
emissions from oil combustion in the ocean aver-
aged 6.4 ± 0.8 Tg N yr−1 (5.0–7.8 Tg N yr−1)
[14–20]. However, the microbial N cycle occur-
ring in the ocean is the other significant source of
NOx emissions [21–24]. First, earlier studies based
on molecular analysis and lab culture experiments
have confirmed that multiple kinds of bacteria asso-
ciated with several processes of microbial N cycles
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Figure 1. The distribution of study sites with δ15Np-NO3- observations. Red and blue circles represent land sites (n= 91) and
ocean sites (n= 134), respectively.

can produce NO, e.g. ammonium-oxidizing bacte-
ria, nitrite-oxidizing bacteria, methanotrophic bac-
teria and denitrifying bacteria [25–29]. Second, ni-
trification in the oxic layer of the ocean is a signifi-
cant source of NO [22] and NO can be produced
in biofilms and marine sediments [30]. Third, Ulva
prolifera (forming a belt on a vertical concretewall in
theupper intertidal zone at low tide)was theprimary
contributor to the high NO concentrations during
the late-bloom period [31]. Meanwhile, the photol-
ysis ofNO2

− andNO3
− (in the surfacewater andon

particles) or alkyl nitrates or dissolved organic mat-
ter may also be the sources of atmospheric NO in
the ocean [32–35]. However, due to its high reac-
tivity [36], NO would be involved quickly into the
NOx cycle in the atmosphere [34]. Accordingly, it
has long been difficult to accurately observe micro-
bial NO emissions in the ocean [24]. Until now, mi-
crobialNOx emissions from the ocean and their frac-
tional contribution to total NOx emissions from the
ocean have not been quantified [21–24]. Hitherto,
owing to the lack of microbial NOx emissions, the
NOx from oil combustion has long been assumed as
the total ocean NOx emissions in reports of the In-
tergovernmental Panel on Climate Change (IPCC)
[20].

In the land environment, NOx emissions are
mainly derived from coal combustion, oil combus-
tion, biomass burning andmicrobial N cycles in sub-
strates such as waters, soils and wastes [3,37–40].
Currently, emission amounts ofNOx fromcoal com-
bustion [10,41], oil combustion [42] and biomass
burning [43,44] have been reported explicitly in na-
tional statistic yearbooks and emission inventories

[45–47]. However, land NOx emissions from mi-
crobial N cycles have been observed chiefly for soils
under natural vegetation and agriculture [40,43,48].
Therefore, estimates ofNOx emissions from the land
are based on limited empirical observations com-
bined with process and statistical models and satel-
lites used to scale up emissions [40,49,50]. Based on
IPCC reports, microbial NOx emissions were bud-
geted at 5.6 Tg N yr−1 before 2001, increasing to
11.0 Tg N yr−1 when incorporating more observa-
tional data in the report of 2013 [40,49,50]. This
doubling of emissions highlights a substantial under-
estimation of microbial NOx emissions in the land,
which has shiftedwith additionalmeasurements and
better models. New methods are strongly needed
to comprehensively constrain microbial NOx emis-
sions from soils and many other unconsidered sub-
strates (such as the surface water of rivers, lakes,
swamps, etc.) and emission sources (such aswastew-
ater, water treatment systems, solid wastes).

Here we provided a unique evaluation of the rel-
ative importance of the microbial NOx emissions in
the land and ocean to the known fossil-fuel NOx
emissions and then made a new budget for global
microbial NOx emissions. First, we compiled stable
N isotopes (δ15N values) of NO3

− in atmospheric
particulates (denoted as δ15Np-NO3- hereafter) in the
land and ocean, respectively (detailed in ‘Materi-
als and methods’ section) (Fig. 1 and Supplemen-
taryTable S1). Second, basedon concentrations and
δ15N of NOx, HNO3 and p-NO3

− over the land, we
estimated the δ15N of the initial NOx mixture from
different emission sources in the atmosphere (de-
noted as δ15Ni-NOx, Supplementary Fig. S1) and the
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Figure 2. δ15Np-NO3- values observed at land sites, observed at ocean sites and derived
from ocean NOx emissions. Circles around each box show mean values of replicate
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1−72 for land and ocean sites, respectively). The box encompasses the 25th to 75th
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difference between δ15Np-NO3- and δ15Ni-NOx values
(denoted as 15�i-NOx→p-NO3-) (detailed in ‘Materi-
als andmethods’ section). By using 15�i-NOx→p-NO3-
(Supplementary Fig. S2), δ15Np-NO3- (Fig. 2) and
δ15N of dominant sources of NOx emissions (coal
combustion, oil combustion, biomass burning and
microbialN cycles, SupplementaryTable S2),we es-
timated the relative contributions of dominant NOx
sources from the land and ocean, respectively, by
developing a model of Stable Isotope Analysis in R
code (detailed in ‘Materials and methods’ section).
Finally, combining fractional contributionswith cor-
responding amounts of fossil-fuel NOx emissions
from the land and the ocean, we calculated the
amount of microbial NOx emissions in the land and
ocean, respectively (detailed in ‘Materials andmeth-
ods’ section).

RESULTS AND DISCUSSION
Different δ15N signatures of atmospheric
p-NO3

− between the land and ocean
Mean δ15Np-NO3- observed over terrestrial sites
(4.7 ± 3.6�; n = 91) was significantly higher
(p < 0.05) than that observed for ocean sites
(–3.5 ± 3.9�; n = 134) (Fig. 2). This finding
implied that human activities contributed relatively
more 15N-enriched NOx to atmospheric NOx load-
ing on the land than in the ocean.

First, the δ15Np-NO3- signal observed at land sites
can represent land NOx emissions without a signif-
icant overprinting of marine sources. The net water
vapor flux transported from the ocean to the land ac-
counted for only 10% of the total water evaporation
over the ocean [51,52]. According to the existing
oceanic NOx emissions (6.4± 0.8 Tg N yr−1 based
on the known oil combustion) [14–20] and the land
NOx emissions (53.3± 4.6 TgN yr−1) [43,53–58],
the ocean-to-land atmospheric transport of NOx ac-
counts for only 1.2%of landNOx emissions and thus
is often assumed negligible [35]. Accordingly, the
δ15Np-NO3- values observed at land sites can be di-
rectly used to differentiate dominant sources ofNOx
emissions (Equation 5 in the online Supplementary
Data).

However, the δ15Np-NO3- signal observed at
ocean sites cannot represent the NO3

− purely de-
rived from ocean NOx emissions. Because the land
has much higher NOx emissions and a smaller area,
and thus a higher concentration than the ocean
[57,59,60], the net transportation of atmospheric
NOx occurs from the land to the ocean. The mod-
eled NOy (the sum of NOx, inorganic and or-
ganic nitrates in the atmosphere) transportation
(11.0 TgN yr−1) [61] is about 1.7 times the oceanic
and accounts for 21% of land NOx emissions. Ac-
cordingly, the δ15N signals of p-NO3

− derived from
the land-to-ocean NOy transportation should be ex-
cluded (Equation 2 in the online Supplementary
Data) to obtain the δ15N values of p-NO3

− derived
only from the ocean NOx emissions (Supplemen-
tary Fig. S1) to differentiate the relative contribu-
tions between oil combustion and microbial NOx
emissions (Equation 6 in the online Supplementary
Data). Besides, the land-derived NOx and p-NO3

−

are the dominant form of the land-to-ocean NOy
transportation andbetween them, thep-NO3

− is the
main type to be transported because the lifetime of
NOx is much shorter [35,61,62]. So far, no substan-
tial isotope effect was assumed for the physical pro-
cesses of atmospheric transportation [63,64]. Thus,
we thought that the ocean p-NO3

− produced by the
land-derivedNOx didnot differ isotopically from the
land p-NO3

− and used isotope mass-balance calcu-
lations to obtain the δ15N values of p-NO3

− derived
only from the ocean NOx emissions (Equation 2 in
the online Supplementary Data).

The calculated results revealed that the δ15N
of p-NO3

− purely derived from ocean NOx emis-
sions averaged –12.5 ± 8.2� (Fig. 2), which was
much lower than the δ15Np-NO3- observed for the
land sites (4.7 ± 3.6�; Fig. 2). The increase in
15 N/14N of p-NO3

− over the land should bemainly
influenced by 15N-enriched NOx sourced to coal
combustion, which was distinctly elevated in δ15N
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Figure 3. Emissions of significant land and ocean NOx sources (in black and blue) based on natural isotope methods (de-
tailed in ‘Materials and methods’ section). Data of the NOy deposition and transportation (in red) were cited from Refs
[35,61,62,70,89,90].

values (mean = 14.2 ± 5.1�, Supplementary
Table S2). However, the lower 15 N/14N of
p-NO3

− derived from ocean NOx emissions
revealed a microbial NOx source with dis-
tinctly lower δ15N values than other sources
(mean = −37.0 ± 13.5�, Supplementary
Table S2). Our findings demonstrated the contrast-
ing δ15N pattern between p-NO3

− derived from the
land andoceanNOx emissions.Moreover, the newly
constrained δ15N of p-NO3

− sourced to oceanNOx
emissions provided a more accurate and straightfor-
ward opportunity to constrain source contributions
and emission amounts via isotope modeling.

Relative contributions of dominant NOx
sources to p-NO3

−

δ15Np-NO3- values are determined by the δ15N of
sources and their relative contributions to total
NOx emission and isotope effects of the NOx trans-
formation to p-NO3

− (15�i-NOx→p-NO3- values)
[65]. Accordingly, we compiled δ15N values of
dominant sources of NOx emissions (Supplemen-
tary Table S2), constrained 15�i-NOx→p-NO3- values
(Supplementary Fig. S2) and thereby constructed
isotope mass-balance models to further evaluate
the contribution of dominant NOx sources to
p-NO3

− in the land and ocean, respectively
(detailed in ‘Materials and methods’ section).

For source δ15N end-members, we considered
coal combustion, oil combustion, biomass burning
and the microbial N cycle as dominant NOx sources
of p-NO3

− over the land [65], while oil combus-
tion and the microbial N cycle are dominant NOx
sources to p-NO3

− over the ocean [2,20].The δ15N
of such sources differ significantly from each other
(p< 0.05, Supplementary Table S2), which is a pre-
requisite to differentiating their relative contribu-
tions isotopically. We assumed the same δ15N value

of eachNOx source for both land andocean sites due
to no δ15N observations on NOx from oil combus-
tion and microbial N cycle in the ocean (detailed in
‘Materials and methods’ section). We did not con-
sider lightning a dominant NOx source because the
NOx produced by lightning in the land and ocean at-
mosphere is negligible. First, the globalNOx produc-
tion from lighting is 5.2 ± 1.0 Tg N yr−1 (Supple-
mentary Text S1), which accounted for ∼9.7% and
∼7.2% of global NOx emissions by modeling meth-
ods (51.9–58.0 Tg N yr−1) and by isotopic meth-
ods in this study (Fig. 3). Moreover, the meridional
distribution of global lightning in the atmosphere
shows three main lightning centers of the Amer-
icas, Africa and the maritime continent in South-
east Asia.The minima represent the oceanic regions
where little lightning is observed [66]. This baseline
assumption of the dominant NOx sources is sup-
ported by emission inventory and deposition mod-
eling [10,41,42,45–47].

Regarding isotope effects, we estimated
15�i-NOx→p-NO3- values under two independent sce-
narios (detailed in ‘Materials and methods’ section)
and found no significant differences between them
(11.3± 2.1� and 13.1± 3.8�, respectively) (Sup-
plementary Fig. S2). Accordingly, we used themean
15�i-NOx→p-NO3- estimate (12.2 ± 2.2�) in our
subsequent isotopemass-balance calculations (Sup-
plementary Fig. S2). The mean 15�i-NOx→p-NO3-
value in this study (12.2± 2.2�) did not differ from
the εNO→p-NO3- value estimated by Li et al. [67]
(∼15�) and was also comparable with the global
mean 15�i-NOx→p-NO3- value (16.7 ± 2.3�) [65].
The calculation of the global mean 15�i-NOx→p-NO3-
value by Song et al. [65]was based on the theoretical
framework of computation established by Walters
and Michalski [68,69], which combined natural
15N and 17O isotopes with environmental param-
eters relating to the NOx oxidization to p-NO3

−.
Relative contributions of dominant NOx sources
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were calculated using the Stable Isotope Analysis
model in R programming language (detailed in
‘Materials and methods’ section). Results showed
that theNOx from coal combustion, oil combustion,
biomass burning and microbial N cycle accounted
for 23 ± 7%, 27 ± 11%, 26 ± 10% and 24 ± 4%
on the land, respectively (Supplementary Fig. S3a).
In contrast, the NOx from oil combustion and
microbial N cycle accounted for 42 ± 3% and
58 ± 3% in the ocean, respectively (Supplementary
Fig. S3a). Generally, high fractions of microbial
NOx emissions revealed the vital contribution of
this pathway to both land and ocean NOx emissions
into the global atmosphere.

Total and microbial NOx emissions on the
land
Based on statistical data on quantities and NOx
emission factors of coal and oil combustions in the
land system, previous studies have estimated global
fossil-fuel NOx emissions with a relatively high de-
gree of certainty [7,43,50,70,71]. Global fossil-fuel
NOx emissions averaged 28.4 ± 1.8 Tg N yr−1,
showing a relatively low variation over past decades
(25.6–30.0 Tg N yr−1) [7,43,50,70,71]. By using
the fraction and amount of fossil-fuelNOx emissions
in the land (50 ± 14% and 28.4 ± 1.8 Tg N yr−1,
respectively, Supplementary Fig. S3a), we es-
timated that total land NOx emissions were
56.8 ± 18.6 Tg N yr−1 (Fig. 3 and Supplementary
Fig. S3b). Our estimate falls in the range of the
total land NOx emissions (50.0–61.4 Tg N yr−1;
averaging 55.6 ± 2.9 Tg N yr−1) estimated by
optimized modeling methods by considering more
microbial sources of NOx emissions [54,57,58].
However, our estimate is higher than the total land
NOx emissions (39.7–51.0 Tg N yr−1; averaging
43.8 ± 5.0 Tg N yr−1) estimated using the global
NO2 satellite column concentrations [43,55,56].
Due to no consideration of the influences of atmo-
spheric NO2 transformations, the estimates based
on the satellite data were thought to underestimate
global NOx emissions [72–74].

Based on the fraction and amount of
total land NOx emissions (24 ± 4% and
56.8 ± 18.6 Tg N yr−1, respectively, Fig. 3 and
Supplementary Fig. S3), microbial NOx emissions
on the land were calculated as 13.6± 4.7 Tg N yr−1

(Fig. 3 and Supplementary Fig. S3b). So far, obser-
vations on microbial NOx emissions on the land
showed a relatively lower flux of 7.9± 1.5 TgN yr−1

(5.0–11.0 Tg N yr−1; data compiled from Refs
[43,55,75–84]) than our estimate, because these
observations have been conducted mainly on

fertilized soils and merely on unfertilized soils
and other land substrates. Besides, few modeling
studies showed distinctly higher fluxes of land mi-
crobial NOx emissions ≤20.4 Tg N yr−1 [80] and
23.6 Tg N yr−1 [85] than the observation results
and our estimate, due to overestimated N inputs in
cropland and natural ecosystems and largely over-
looked the influence of NOx sink uncertainties on
the satellite-derived NOx fluxes. However, by con-
sidering more substrates of microbial N cycles on
the land to optimize the modeling methods, some
studies showed the land microbial NOx emissions
as 11.5–13.6 Tg N yr−1 (12.4 ± 0.7 Tg N yr−1)
[53,71,86,87], which is very comparable with our
estimate. The isotopic method in our study offers
a comprehensive and accurate constraining on
microbial NOx emissions.

Total and microbial NOx emissions
in the ocean
Based on statistical data of quantities and NOx
emission factors of oil combustions in the ocean
system, ocean fossil-fuel NOx emissions have been
estimated as 6.4 ± 0.8 Tg N yr−1 on average (5.0–
7.8 Tg N yr−1; compiled from [14–20]). Using
the fraction of the ocean fossil-fuel NOx emissions
in our study (42 ± 3%, Supplementary Fig. S3a),
we estimated the total ocean NOx emissions as
15.2 ± 2.3 Tg N yr−1 (Fig. 3 and Supplementary
Fig. S3b). The ocean NOy deposition averaged
21.3 ± 1.8 Tg N yr−1 (18.0–23.0 Tg N yr−1;
compiled from Refs [35,61,62,88–90]), which
includes the land-to-ocean NOy transportation of
11.0 Tg N yr−1 [61]. Accordingly, the oceanic NOy
deposition derived from oceanic NOx emissions
was 10.3 ± 1.8 Tg N yr−1, which is lower than our
study’s total ocean NOx emissions. The generally
higher NOx emissions than NOy deposition in the
ocean might be attributed to other fates such as
biological NOx uptake and atmosphere retention.
Further, we calculated ocean microbial NOx emis-
sions as 8.8 ± 1.5 Tg N yr−1 on average (Fig. 3 and
Supplementary Fig. S3b). Our results updated the
total and microbial NOx emissions in the marine
environment.

Total and microbial NOx emissions
in the globe
By integrating the land and ocean values together
(detailed in ‘Materials and methods’ section),
we calculated global total NOx emissions as
72.0 ± 18.1 Tg N yr−1 (Fig. 3 and Supplementary
Fig. S3b). Before this work, the modeled total land
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NOx emissions (39.7–61.4 Tg N yr−1; compiled
from Refs [43,53–58]) have been assumed as the
global NOx emissions because the ocean NOx
emissions have been unconstrained. Our results
showed that oceanic NOx emissions accounted
for ∼21% of the global NOx emissions. The global
NOx emissions have been underestimated by
15–45% because oceanic NOx emissions have been
unconsidered.

Moreover, we found that microbial NOx
emissions accounted for 31 ± 12% of the to-
tal NOx emissions globally and reached up to
22.5 ± 4.7 Tg N yr−1 (Fig. 3 and Supplemen-
tary Fig. S3b). By comparison, microbial NOx
emissions in the land (13.6 ± 4.7 Tg N yr−1),
ocean (8.8 ± 1.5 Tg N yr−1) and globe
(22.5 ± 4.7 Tg N yr−1) are ∼0.5, 1.4 and 0.6
times fossil-fuel NOx emissions in the land, ocean
and globe, respectively (Fig. 3 and Supplementary
Fig. S3b). Our results highlight a vital role of the
microbial N cycle in global NOx emissions. In addi-
tion to the direct impacts of fossil-fuel combustion
on global NOx emissions, other human activities
such as inefficient fertilizer use in cropping systems,
wastes and sewage discharge and treatments, N de-
position and water N enrichment all can accelerate
microbial NOx emissions in the land, inland water
bodies, estuaries and ocean [13,91].

Our results offer an updated and isotopi-
cally grounded estimate of land- and ocean-to-
atmosphere NOx emissions. Notably, our results
revealed that previous reports have largely under-
estimated land-based microbial NOx emissions,
constrained long-missing uncertainties over ocean
microbial NOx emissions and therefore elevated
the recognition of the substantial contribution of
the microbial N cycle to global NOx emissions.
Moreover, our findings highlight the unique signifi-
cance of natural records of atmospheric N isotopes
for understanding global N biogeochemical cycles.
Currently, reducing NOx emissions to alleviate N
pollution while sustaining economic development
is a major challenge in the twenty-first century.
Owing partly to unclear contributions of microbial
processes to NOx emissions, many countries have
been engaging in developing technologies and
measures for reducing fossil-fuel NOx emissions to
reduce airborne and water N pollution, with a focus
on adjusting energy systems and increasing the
chemical conversion of NOx to reduce emissions
during fossil-fuel combustion. Our findings point to
the need to consider the substantial contribution of
the microbial N cycle to atmospheric NOx loadings
while reducing fossil-fuel NOx emissions. Accord-
ingly, the potential costs and impacts of reducing
fossil-fuel NOx emissions need to be re-assessed
when making more effective emission mitigation

strategies—including the indirect effects of an-
thropogenic N on terrestrial and marine microbial
processes. Moreover, the isotopically constrained
microbial NOx emissions and updated total NOx
emissions we provide are helpful for benchmarking
atmospheric and earth system models that project
the feedback between the biosphere, climate and
global N cycle.

In summary, based on large-scale isotope
observations of p-NO3

− in the atmosphere, we
established a simple but effective approach for
estimating NOx sources in the atmosphere. Be-
fore, isotope mass-balance models have been
constructed to successfully partition continental
hydrologic fluxes and quantify the contributions of
local evaporation and ocean-to-land water trans-
portation to the landmoisture [92,93]. Accordingly,
the framework established in our study enriches the
application of isotopic mass-balance approaches
in quantifying processes and fluxes of global bio-
geochemical cycles. However, our method can
only consider dominant sources of NOx emissions.
Additional work on detailed measurements of
δ15N values for all NOx emission sources could
further refine our estimates. Isotope observations of
p-NO3

− in the atmosphere across more sampling
areas will be critical to reducing uncertainties in
our estimation and offering spatial tools to pinpoint
source regions of great concern.

MATERIALS AND METHODS
Detailed materials and methods are given in the
online supplementary materials.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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