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With the great progress made recently in next generation sequencing (NGS) technology,
sequencing accuracy and throughput have increased, while the cost for data has
decreased. Various human leukocyte antigen (HLA) typing algorithms and assays have
been developed and have begun to be used in clinical practice. In this study, we
compared the HLA typing performance of three HLA assays and seven NGS-based
HLA algorithms and assessed the impact of sequencing depth and length on HLA typing
accuracy based on 24 benchmarked samples. The algorithms HISAT-genotype and HLA-
HD showed the highest accuracy at both the first field and the second field resolution,
followed by HLAscan. Our internal capture-based HLA assay showed comparable
performance with whole exome sequencing (WES). We found that the minimal depth
was 100X for HISAT-genotype and HLA-HD to obtain more than 90% accuracy at the
third field level. The top three algorithms were quite robust to the change of read length.
Thus, we recommend using HISAT-genotype and HLA-HD for NGS-based HLA
genotyping because of their higher accuracy and robustness to read length. We
propose that a minimal sequence depth for obtaining more than 90% HLA typing
accuracy at the third field level is 100X. Besides, targeting capture-based NGS HLA
typing may be more suitable than WES in clinical practice due to its lower sequencing cost
and higher HLA sequencing depth.

Keywords: human leukocyte antigen, accuracy, next-generation sequencing, algorithms, benchmark
INTRODUCTION

The human leukocyte antigen (HLA), commonly referred as major histocompatibility complex
(MHC) which is often found in all jawed vertebrates (1), is located within a region of approximately
4 M in length on the short arm of human chromosome 6 (6p21.3), with more than 200 protein-
coding genes (2). Except for identical twins, no two individuals have exactly the same HLA.
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Therefore, HLA is also known as the “identity card” of the
human cell. It is a marker for the mutual recognition of immune
cells in different individuals. HLA gene products are expressed
on different cell surfaces and play a key role in antigen
presentation and immune signaling. HLA mainly includes
three regions, namely HLA class I, HLA class II, and HLA
class III. HLA class I genes include HLA-A, HLA-B, and HLA-
C, which are distributed on almost all nucleated cell surfaces with
the highest lymphocyte surface density (3). HLA class II genes
include the HLA-D family, mainly HLA-DP, HLA-DQ, and
HLA-DR, which are mainly distributed on the surface of
professional antigen-presenting cells such as B lymphocytes,
macrophages, and dendritic cells. The HLA class III gene
contains approximately 75 genes, most of which are of
unknown function. HLA class I and HLA class II genes are
molecules that encode binding and presenting antigens, allowing
cytotoxic T lymphocytes to bind to mature HLA cell surface
proteins via antigen-binding channels. HLA class I genes mainly
encode antigens to CD8+ T cells, and HLA class II genes mainly
encode antigens to CD4+ T cells.

HLA has been widely used in hematopoietic stem cell
transplantation (HSCT), detection of susceptibility genes in
immune-related diseases, and drug allergy testing. HSCT was
treated as the last resort therapeutic approach for a wide range of
malignant and non-malignant diseases and suitable donor
selection is determined with the utilization of HLA typing and
highly similar HLA alleles improve the clinical outcome and
reduce the risk of rejection (4). According to USA standards, 8/8
match for the loci HLA-A, HLA-B, HLA-C, and HLA-DRB1 is
necessary for a allele-matched donor selection, and single
mismatch for these regions are associated with 25% increase in
post-transplant complications (5). But in most European centers
the gold standard is to look for 10/10 match for HLA-A, HLA-B,
HLA-C, HLA-DRB1, and HLA-DQB1 (6). The definition of
“HLA matching” depends on the HLA typing resolution,
mainly include: Low resolution typing or first field typing,
which is equivalent to serological typing and refers to a group
of alleles (alleles family); High resolution typing, or second field
typing, which refers to one or a set of alleles for the same antigen
binding site; Allele level typing, or all field typing, which refers to
the exact nucleotide sequence of a HLA gene; Other levels of
resolution, which refers to intermediate level of typing and could
define specific subtypes. Currently, high resolution typing of
HLA genes were recommended by National Marrow Donors
Program (NMDP) (5). Thus, HLA typing at the high resolution
level is of great clinical significance.
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Recent studies have demonstrated that HLA typing
complexity is associated with the efficacy of cancer immune
checkpoint blockade (ICB) (7). Furthermore, the combined effect
of HLA class I heterozygosity and tumor mutation burden
(TMB) on improved survival is greater as compared with
mutation load alone (7, 8). Researchers have also sequenced
the CDR3 of the hypervariable region of the T cell receptor
(TCR) and found that the TCR CDR3’s tumor-associated clones
are significantly elevated in patients with greater heterogeneity of
the HLA class of molecular sites (7). That is to say, in the
treatment of ICB, the diversity of HLA molecules in patients will
affect the clonal expansion of T cells against new tumor antigens
and thus affect the therapeutic effect (9). The highly polymorphic
HLA genes present unique challenges for the development of
molecular approaches to genotype HLA alleles. According to the
traditional method, both alleles of a particular HLA locus are
PCR amplified and Sanger-sequenced together, resulting in
multiple heterozygous positions in the electropherogram
tracing. With the development of next-generation sequencing
(NGS) technology, each fragment of HLA DNA is amplified and
sequenced independently, dramatically reducing the phase
ambiguities encountered with Sanger sequencing. Since 2009,
many different approaches for HLA genotyping by the NGS
method have been reported using a variety of capture strategies
and sequencing platforms (10–15). While whole exome
sequencing is the gold standard in some case, such as
measurement of TMB in clinic, targeted next-generation
sequencing panels might be ideal for HLA typing which allows
us to customize probes that only include genomic regions of
HLA genes, and sequence HLA gene at a much higher depth but
lower input amounts than WES. Many bioinformatics
approaches have also been developed to produce HLA
genotyping information from amplicon-based NGS, targeted
capture (e.g., whole-exome sequencing) and non-targeted
whole-genome sequencing (16–23) (software used in this study
are listed in Table 1). All these algorithms can be generally
divided into two categories: alignment-based methods and
assembly-based methods. The former category aligns the
sequencing data to the HLA reference database IPD-IMGT/
HLA (24, 25) and predicts HLA genotypes using probabilistic
models (26), whereas the latter assembles reads into contigs and
aligns those to the known HLA allele reference sequences.
Several studies have been conducted to compare the accuracy
of different software (26–30). Bauer et al. evaluated the HLA
typing accuracy of five computational methods on three different
data sets, finding that PHLAT has the highest accuracy, and
March 2021 | Volume 12 | Article 652258
TABLE 1 | HLA-typing software used in this study.

Software Resolution Programming Year Journal Cited

HLAminer 4 Perl 2012 Genome Medicine 83
seq2HLA 4 Python, R 2012 Genome Medicine 93
HLAforest 8 Perl 2013 PLOS ONE 28
HLA-VBSeq 8 Java 2015 BMC Genomics 36
HLA-HD 6 Shell 2017 Human mutation 15
HLAscan 8 Python 2017 BMC Bioinformatics 22
HISAT-genotype 8 C++, Python 2019 Nature Biotechnology 81
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sequencing coverage has a weak correlation with accuracy (26).
However, no conclusions have been made regarding several
critical questions: Which HLA typing assay is more suitable in
a clinical context? Whether HLA typing algorithms were biased
towards a specific NGS assay? What are the basic sequencing
requirements for accurate HLA genotyping? To answer these
questions, we evaluated the performance of different
combinations of HLA NGS typing assays and software using
our in-house benchmarking dataset.
MATERIALS AND METHODS

Sample Preparation
A total of 24 samples were collected, and genomic DNA was
extracted from white blood cell samples using a QIAamp DNA
Blood Mini Kit (QIAGEN, Cat. No. 51106). DNA fragments of
approximately 200 bp were selected from sheared genomic DNA
for library preparation and sequencing. Another 998 Chinese
patient samples were collected from Apr. 3, 2018, to Jan. 27,
2019, for HLA typing by an internally developed HLA assay.

HLA Genotyping Assays
HLA genotyping from the amplicon assay NGSgo-AmpX was used
as the benchmark reference. NGSgo-AmpX consists of dedicated
primer sets for the amplification of individual HLA genes, enabling
the amplification of the following HLA genes: Class I: HLA-A,
HLA-B, and HLAC-C; and Class II: HLA-DRB1 and HLA-DQB1
(GenDx, Utrecht, Netherlands). Three capture-based assays
include 1) Agilent SureSelect Human All Exon V5+UTR kits and
paired-end sequencing (150PE) strategies were carried out using
standard Illumina protocols on an Illumina HiSeq X10 system
(WES for short). Each sample met the average depth over 100X and
capture on-target ratio >50%. 2) IDT xGen® Exome Research
Panel kits and paired-end sequencing (150PE) strategies were
carried out using standard Illumina protocols on an Illumina
HiSeq X10 system (Bofuri for short). Each sample met the
average depth over 100X and capture on-target ratio >60% (10
samples were not available). 3) 3DMed Inc. in-house designed and
developed HLA specific probes and paired-end sequencing
(150PE) was carried out using standard Illumina protocols on an
Illumina HiSeq X10 system (Internal for short). Each sample met
the average depth over 100X and capture on-target ratio >60%. The
raw fastq files fromMiseq sequencing were subsequently processed
and validated by the vendor independently, and used as the
benchmarked result for HLA typing.

NGS-Based HLA Genotyping Algorithms
We compared seven publicly available algorithms for HLA
typing: seq2HLA (16), HLAminer (17), HLAscan (20), HLA-
VBSeq (21), HLA-HD (22), HLAforest (30), and HISAT-
genotype (31). The algorithms were chosen considering their
accessibility and number of citations. For HLAscan, raw
sequence data were first mapped to the human reference
genome UCSC hg19, and reads from chr6 of the BAM files were
then generated as an input, the database file was directly
Frontiers in Immunology | www.frontiersin.org 3
downloaded along with the program from github, and
other parameters were set to default; for HLA-VBSeq, HLA v2
database and the same instruction on the website were used
for HLA typing (http://nagasakilab.csml.org/hla/); for
HISAT-genotype, we used raw sequence files as an input,
and two program “hisatgenotype_extract_reads.py” and
“hisatgenotype.py” was used to HLA typing; for HLAminer,
seq2HLA, HLA-HD and HLAforest, raw fastq file was used as
input, and all these algorithms were run with default parameters;
HLA typing accuracy was defined as the percentage of correctly
identified alleles among all the reference alleles. We tested the HLA
typing accuracy of all seven algorithms and selected the top three
with the highest overall accuracy for our read depth and
length evaluation.

Linux Server Hardware Configuration
All software were run on a Linux server (CentOS6.5, kernel
version: 2.6.32-431.11.2) with the hardware configuration as
follows: Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30 GHz/250
GB RAM/more than 10 TB disk space. R software was used for
statistical analysis and plot creation (version: 3.6.1).
RESULTS

HLA Typing Workflow
Our HLA typing workflow is outlined in Figure 1, including DNA
isolation, library preparation, high-throughput sequencing, and
bioinformatics analysis. Three HLA typing NGS assays—whole-
exome sequence (WES), IDT xGen® Exome Research Panel
(Bofuri), and 3DMed internal panel (Internal)—were selected to
generate benchmarked HLA sequencing libraries. Genomic DNA
of 24 samples was collected, and then libraries were prepared and
sequenced using PE150bp on an Illumina HiSeq X10 system. For
the NGS-based HLA genotyping, each sample was determined by
seven software, namely seq2HLA, HLAminer, HLAscan, HLA-
VBSeq, HLA-HD, HLAforest, and HISAT-genotype, and
default parameters were used for all software. Benchmarking
HLA results of the 24 samples (Supplementary Table 1)
were produced by amplicon assay NGSgo-AmpX plus
Miseq sequencing.

HLA Typing Accuracy for All Assay-
Software Combinations
As a preliminary screening, we first compared the HLA typing
accuracy of all possible assay-software combinations at the first,
second, and third field levels. The results were much more
discordant among different algorithms than among the capture
assays used. At the first field level, six of the seven algorithms had
an overall accuracy of higher than 75% no matter which assay
was used (Figure 2A). HLA-HD and HISAT-genotype had
almost perfect accuracy, whereas the accuracy of HLAVBseq
was lower (the accuracy was 68, 65, and 50% for Internal, WES,
and Bofuri, respectively). As the HLA resolution increased from
the first field to the second field levels, the accuracy of HLA tying
gradually decreased (Figures 2B, C; HLA typing results for
March 2021 | Volume 12 | Article 652258
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HLAminer and HLAseq2HLA at the third field level were not
available). Only HLA-HD and HISAT-genotype showed greater
than 75% accuracy at the third field level. Among all three assays
used, the overall accuracy of Bofuri was the lowest, and our
internal NGS assays showed comparable performance compared
with WES when other algorithms than HISAT-genotype and
HLA-HD were used. On the other hand, HISAT-genotype and
HLA-HD are quite robust to the assays and resolutions. Above
all, our research showed that the choice of the HLA typing
algorithms contribute most to the accuracy and target-captured
panel could match performance of WES.

Computer Resource Consumption
All HLA programs were run on a Linux server with eight threads
if possible. As expected, with the increase in panel sizes of NGS
capture assays, the running time for all the software increased
(Figure 3). Unsurprisingly, the running time for WES increased
exponentially compared with the other two assays (median
running time: WES, 77 min; Internal, 4 min; Bofuri, 3 min).
For the other two assays, the most time-consuming algorithms
were HLA-HD and HISAT-genotype.

Discordant HLA Typing Patterns Across
Algorithms
We investigated the specific patterns of discordance in each
algorithm. Among all the algorithms, HLA-VBSeq had the
highest number of miscalled HLA typing at the second field
level, followed by HLAminer (Figure 4A). Out of the five HLA
genes, HLA-A gene was the most frequently miscalled gene, and
the most discordant pattern was HLA-A*02:07 to HLA-A*02:01
(Figure 4B). Each algorithm had biases on ratios of miscalled
HLA typing within specific serological allele groups. For
example, 81% (57 out of 70) HLA-A miscalled errors observed
Frontiers in Immunology | www.frontiersin.org 4
in HLAforest were within the same serological allele group,
whereas the ratio decreased to less than 15% for HLAscan,
HLA-HD, and HISAT-genotypes (Supplementary Table 2).

The Impact of Sequence Depth and
Length on HLA Typing Accuracy
Based on the above evaluations, we focused on the three
algorithms with the highest accuracies, that is, HISAT-
genotype, HLA-HD, and HLAscan, to investigate the impact of
read length and read depth on HLA typing.

Regarding the depth evaluation, when the sequencing data of
Bofuri were down-sampled from 700X to 10X, the accuracies of
HLA-HD and HISAT-genotype at the second field level were still
above 95% at 50X, and then they decreased gradually when the
sequence depths were less than 50X (Figure 5A). The overall
accuracy of HLAscan was lower than the other two algorithms.
The required sequence depth for HLA-HD and HISAT-genotype
to get more than 90% HLA typing accuracy was above 100X at
both the second and the third field levels (Figure 5B).

Regarding the read length evaluation, we manually generated
paired-end 100 bp (PE100) and paired-end 75 bp (PE75)
sequence data based on paired-end 150 bp (PE150) using an
in-house pipeline which trimmed the sequence from both sides
randomly. When the read length decreased from PE150 to PE100
and PE75, the overall HLA typing accuracy was quite similar for
each algorithm, except that HLAscan had lower accuracy
(Figures 5C, D), which demonstrated that the selected three
HLA typing algorithms were robust to the read length.

HLA Typing Performance in Validation
Datasets
We selected another 998 Chinese population samples sequenced
by the 3DMed internal developed assay. The reference HLA
FIGURE 1 | Workflow of HLA typing using benchmarked data sets. All HLA typing algorithms were run with default parameters.
March 2021 | Volume 12 | Article 652258
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typing results were defined as the most concordant HLA types
called by these seven algorithms. To verify this approach, we
compared the most concordant HLA genotypes predicted by
different algorithms of the 24 benchmark samples with their
reference HLA types at the second field level, and found relatively
good consistency between them (The overall accuracy is 0.974,
0.965, 0.970 for internal, WES, and Bofuri respectively), which
demonstrated the feasibility of this strategy. For the 998
validation samples, HISAT-genotype, HLA-HD, and HLAscan
showed higher accuracy than other algorithms again, and no
obvious difference was found for the five HLA genes when
HISAT-genotype, HLAscan, and HLA-HD were selected
(Figures 6A, B), reaffirming our comparison results on HLA
typing accuracy.
Frontiers in Immunology | www.frontiersin.org 5
DISCUSSION

In this study, we performed a benchmarked analysis of HLA
typing based on seven algorithms and three capture-based
sequencing methods. As we stressed, the aim of this study is
to identify the best technical combination of NGS-based HLA
genotyping in clinical context, rather than to evaluate different
algorithms. The algorithms which performed not well in this
study could be the best choice in a different application context.
We found that the choice of NGS-based HLA typing algorithm
and the sequencing depth contributed most to the overall HLA
typing accuracy. Among the seven algorithms tested, HLA-HD
and HISAT-genotype displayed the highest overall accuracies at
both the second field and the third field resolutions, which is of
A B

C

FIGURE 2 | Performance of HLA typing algorithms and the three different HLA assays. Accuracy of HLA alleles typed at (A) the first field level; (B) the second field
level; (C) the third field level based on the seven algorithms and three capture assays. Accuracy was calculated by the fraction of total number alleles that were
correctly typed.
March 2021 | Volume 12 | Article 652258
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great importance in clinic, especially in HSCT where a matched
donor was found mainly by HLA typing. When no 10/10
(European standard) or 8/8 (USA standard) matched donor is
found, looking for 9/10 or 7/8 matched donor is necessary for
HSCT (6). Thus, the NGS based HLA typing accuracy for HSCT
should be no less than 90% at the high-resolution level. In this
case, HISAT-genotype and HLA-HD may be a good choice.
HLA-HD constructed an extensive dictionary of HLA alleles
and calculated a score based on weighted read counts to select
the most suitable pair of alleles (22). The high accuracy of HLA-
HD was more likely related to its elaborate reference database.
For HISAT-genotype, it had not only higher HLA typing
accuracy but also could be used in CYP (cytochrome P450)
typing and V(D)J [variable (V), diversity (D), and joining (J)
recombination] typing, which have broad clinical applications.
Besides, it could provide fourth field level HLA genotyping,
although no reference HLA genotype was available to evaluate
the accuracy. A recent study showed that the HLA matched
status changed in 29% of pairs after ultra-high resolution (UHR)
HLA typing using Pacific Biosciences Single Molecule Real-
Time sequencing (Menlo Park, CA, USA), and had significant
improved clinic benefit (32), demonstrating that allele level
typing (or all field typing) using NGS or other technologies
might be an important trend in the field of HSCT. Thus, HISAT-
genotype may be a good choice in the HSCT field because of its
high accuracy and high resolution.
Frontiers in Immunology | www.frontiersin.org 6
NGS-based HLA typing can type HLA alleles on each
homologous chromosome and can function at higher HLA
resolutions, but it is also limited by read length and read depth
because of the highly polymorphic nature of the HLA system
(26). For example, Ka et al. (20) found that read depth is a critical
factor for successful HLA typing by HLAscan and recommended
a coverage depth over 90X to ensure 100% predictive accuracy
for clinical use, whereas in another accuracy evaluation study of
five HLA typing methods, only a weak Pearson correlation
between HLA typing accuracy and coverage was found (26). In
this study, we evaluated the impact of read depth and read length
on the HLA typing accuracy of three algorithms, and the result
showed that HLA typing accuracy decreased gradually when the
sequence depth was down-sampled from 700X to 10X regardless
of which algorithm was used, demonstrating that read depth was
a critical factor for accurate HLA typing. To achieve more than
90% HLA typing accuracy at the second field level, the minimal
read depth was 50X for the three algorithms used, whereas 100X
read depth was needed for HLA-HD and HISAT-genotype to
obtain 90% overall accuracy at the third field level.

Though HLA genotyping accuracy was generally concordant
among the three NGS assays, our internal capture-based assay
showed comparable performance compared with WES, no
matter which algorithms were used. Our internal assay
designed exon probes of 10 HLA genes (HLA-A, HLA-B,
HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1,
FIGURE 3 | Running time for different HLA typing software. Y axis is plotted in log10 scale.
March 2021 | Volume 12 | Article 652258
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HLA-DRA, HLA-DRB1, and HLA-DRB5). The geographic
range is the union of the coding regions of all possible
transcripts of the gene. Design rationale included but were not
limited to the following (1): For exons longer than the length of
the probe, the target area is completely covered by overlapped
probes, and the overlaps are larger than 60 nt (2). Each probe was
aligned to the whole genome by BLAT (33). The total score was
calculated based on the number of hits. The higher the score, the
worse the probe specificity. Probes with scores greater than 2
were not considered (3). Probes were not considered in regions
of homologous repeats (e.g., SINE, LINE, LTR, etc.). A well-
designed probe may improve probe specificity and HLA exon
coverage, thus contributing to the accuracy of NGS-based HLA
genotyping. Though the accuracy of HLA typing was similar
between WES and capture-based assay, capture-based assay is
more cost-effective than WES since it only sequence HLA gene.
Besides, the sequencing and data analysis speed of capture-based
assay is much faster, which shorten the overall turnaround time
and more feasible in clinic.

Different algorithms showed different miscall patterns, with
HLA-A*02:07 to HLA-A*02:01 being the most widely miscalled
allele by HLAforest, seq2HLA, and HLA-VBSeq. It has been
Frontiers in Immunology | www.frontiersin.org 7
reported that the only difference in the peptide sequence
between HLA-A*02:01 and HLA-A*02:07 is the 123rd amino
acid, which is either Tyr or Cys (34), making it difficult to type
HLA accurately by less sensitive algorithms. Researchers have
also demonstrated that HLA-A*02:07 is the most common
HLA-A2 subtype among Chinese (35), and the HLA-A*02:07
peptide binding repertoire is limited to a subset of the HLA-
A*02:01 repertoire (36), so we need to pay more attention to
this allele in practice when these algorithms are used. Except for
HLA-A*02:07 allele, HLA-A*11:01 allele had the second
highest frequency of miscall for HLA-A gene family. We
found that HLAforest was more prone to miscall HLA-
A*02:07 allele, while HLAminer had a higher miscall
frequency for HLA-A*11:01 in our benchmarked samples. As
for HLA-B gene, HLA-B*13:01 is the most frequently miscalled
alleles by HLA-VBSeq and HLAforest, while HLA-B*58:01 is
inclined to be miscalled by HLAminer and Seq2HLA. As for
HLA-C gene, HLA-C*03:02 and HLA-C*03:03 is inclined to be
miscalled by HLAminer and Seq2HLA, while HLA-C*01:02 are
more frequently miscalled by HLAforest and HLA-VBSeq
(the top two miscall patterns for each gene are summarized
in Supplementary Table 3). These miscall patterns
A

B

FIGURE 4 | Distribution of the pattern of genotyping errors in HLA-A genes. (A) The number of miscalled alleles by each algorithm grouped by the HLA genes.
(B) The pattern of discordant HLA-A alleles at the second field level. None, not determined by the algorithms.
March 2021 | Volume 12 | Article 652258
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demonstrated that each algorithm had specific systematical
bias, which need to be taken into account when developing
more accurate algorithm in future.

One of the drawbacks of this study was that only seven HLA
typing algorithms (which were selected considering the ease of use
of the software and the number of citations of the corresponding
articles) were used in this benchmarking evaluation. For example,
Polysolver (37) is not evaluated in this study because it depend on
Novoalign, which requires commercial components and is also
not executable for us because of the incompatible Linux version.
Besides, it is reported that the concordance of HLA typing by the
current gold standard methods (PCR-based) is only 84%,
reflecting the inaccuracy of the laboratory methods as well as
inter-laboratory variability (26). We used NGSgo-AmpX as our
benchmarked assay, which is a Research Use Only (RUO) and the
only one CE-marked IVD product when our study started, and
yielded almost 100% homology results compared to Sanger
sequencing (38). In addition, seq2HLA and HLAforest are
originally used for RNA-seq based HLA typing, they perform
Frontiers in Immunology | www.frontiersin.org 8
best on RNAseq data as the datatype they were designed for,
whereas the performance in WES/WGS data decreased
significantly (26). Finally, all algorithms were run with their
default parameters or the default script without any
modification, which may not represent the best performance of
the algorithms and could affect the accuracy of HLA typing, it may
be the case for HLA-VBseq. There is one more thing that should
not be overlooked, the default HLA reference sequence file used in
our analysis was provided by the software itself and may be
derived from different version of IPD-IMGT/HLA reference
database, which may compromise the performance of these
software. According to the recommendations of American
Society for Histocompatibility and Immunogenetics (ASHI) in
regards to NGS based HLA typing, the database which is used for
HLA typing should be updated at least every 12 months with the
most recent version of the IPD-IMGT/HLA database, and for
accredited laboratories, documents should record which version
of the IPD-IMGT/HLA or other appropriate nucleotide sequence
database was used for allele interpretation. Thus, beside HLA
A B

DC

FIGURE 5 | Accuracy of the three tools for HLA typing at the second field or the third field resolution for different depths and read lengths. Depth evaluation at (A)
the second field level; (B) the third field level. For sequence depth evaluation, alignment files of the 24 Bofuri samples were down-sampled from 700X to 10X based
on the raw depths of HLA genes. (C, D) are the overall HLA typing accuracy at the second field and the third field level, respectively, while the read length decreased
from 150 bp to 76 bp.
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typing accuracy and resolution, selecting a suitable software that
have good version control and could regularly update the HLA
reference database is of great importance and should never be
ignored in clinic.
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