
sensors

Article

A Simulation Framework for the Integration of Artificial
Olfaction into Multi-Sensor Mobile Robots

Pepe Ojeda * , Javier Monroy and Javier Gonzalez-Jimenez

����������
�������

Citation: Ojeda, P.; Monroy, J.;

Gonzalez-Jimenez, J. A Simulation

Framework for the Integration of

Artificial Olfaction into Multi-Sensor

Mobile Robots. Sensors 2021, 21, 2041.

https://doi.org/10.3390/s21062041

Academic Editor: Santiago Marco

Received: 17 February 2021

Accepted: 11 March 2021

Published: 14 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Machine Perception and Intelligent Robotics Group, System Engineering and Automation Department,
Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Campus de Teatinos,
29071 Málaga, Spain; jgmonroy@uma.es (J.M.); javiergonzalez@uma.es (J.G.-J.)
* Correspondence: ojedamorala@uma.es

Abstract: The simulation of how a gas disperses in a environment is a necessary asset for the
development of olfaction-based autonomous agents. A variety of simulators already exist for this
purpose, but none of them allows for a sufficiently convenient integration with other types of
sensing (such as vision), which hinders the development of advanced, multi-sensor olfactory robotics
applications. In this work, we present a framework for the simulation of gas dispersal and sensing
alongside vision by integrating GADEN, a state-of-the-art Gas Dispersion Simulator, with the Unity
3D, a video game development engine that is used in many different areas of research and helps
with the creation of visually realistic, complex environments. We discuss the motivation for the
development of this tool, describe its characteristics, and present some potential use cases that are
based on cutting-edge research in the field of olfactory robotics.

Keywords: artificial olfaction; computer vision; simulation engine; mobile robotics; CFD; gas dispersion

1. Introduction

Gas-sensing technology offers a powerful tool for environmental monitoring. Nu-
merous problems are caused by uncontrolled or illicit emissions of polluting gases that
contribute to global warming [1] or even cause direct harm to human health [2]. Due to
the abundance of sources of pollution in many areas (such as combustion-based vehicles,
landfills, or fossil fuel power plants), many governments around the world have, in re-
cent times, invested in implementing systems for the measurement and control of such
emissions, including large-scale sensor networks that monitor air quality in big cities [3].

The detection and location of accidental emissions is also an important task that
needs to be addressed. The detection and identification of these released volatiles is a
challenging task. As well as developing better sensors, research on how to use current
sensing technology in ways that overcome its limitations has received significant interest
in recent years [4–6]. Fugitive gas leaks are common and can have devastating effects,
not only because of the pollution that they cause, but because of their high flammability
being a potential explosive hazard [7]. Even smaller-scale indoors gas emissions can have
pernicious effects [8] and must be promptly detected and controlled. These problems have
also been tackled through olfaction-based approaches, both in the form of fixed sensor
networks [9] and mobile robotic agents [10,11].

Despite the usefulness of such approaches, the development of techniques (commonly
referred to as gas distribution mapping [12,13] or gas source localization [14]) to tackle
these issues is a challenging task. Because of the limitations of the characteristics of
the sensors themselves (such as long response times [15]) and the complexity of gas
dispersion phenomena under turbulent airflow conditions, extensive experimentation is
often required to design and refine these techniques, as well as to validate any proposed
solution [16]. However, carrying out these experiments is far from trivial, as there are many
environmental variables (temperature, humidity, wind) that may escape the control of

Sensors 2021, 21, 2041. https://doi.org/10.3390/s21062041 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2326-5269
https://orcid.org/0000-0001-7869-7811
https://orcid.org/0000-0003-3845-3497
https://doi.org/10.3390/s21062041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21062041
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21062041?type=check_update&version=2


Sensors 2021, 21, 2041 2 of 13

researchers, hindering the reproducibility of experiments. Furthermore, there is no way to
obtain a reliable ground-truth of the gas dispersion, which greatly complicates the analysis
of any results obtained. For these reasons, the use of simulation tools (often referred to as
Gas Dispersion Simulators or GDS) is of great aid.

Such simulators already exist, with a wide variety of focuses (e.g., some GDS are
designed specifically for robotics applications [17]) and different compromises between the
fidelity and computational complexity of the dispersion models employed [18]. However,
as the development of olfaction-based techniques advances and evolves, new requirements
arise for these tools. A prime example of this is how, in recent years, research into solutions
that combine olfaction with other types of sensing (mostly vision) has begun to be carried
out [19–22]. Thus, the development of simulation tools that allow for a proper integration
of different sensing systems becomes necessary.

In this work, we present our proposal for integrating gas dispersion in a more sophis-
ticated and graphically realistic simulation framework, offering the integration of visual
and olfactory sensing (see Figure 1). We rely on GADEN [17] to perform the gas dispersion
simulation and on the Unity Engine [23] to render the visuals. These tools have been
chosen for their ability to accurately reflect the complexity of real environments and their
ease of integration with other functionalities such as robotic control, path-finding, machine
learning, etc.

Our contribution comprises:

• A project in Unity that reads and processes the results of GADEN simulations, making
them available to other Unity software.

• The implementation of several models of simulated gas and wind sensors that provide
a realistic interface with these data through noisy measurements.

• Three separate models to render the visual representation of a gas plume, according
to the desired compromise between computational complexity and visual realism.

• Additional format conversion utilities to facilitate the creation of new simulated
environments from pre-existing Unity assets.

We provide a description of the integration of both simulations into one framework
and the process of creating a new simulation, as well as examples of use cases that show how
it can be applied to improve existing techniques. All the source code of the implementation
is made available in a public online repository (https://github.com/MAPIRlab/GADEN_
Unity (accessed on 13 March 2021)).

(a) (b) (c)

Figure 1. Illustration of the integration of artificial vision and gas sensing systems in a realistic simulated environment. (a) Recre-
ation of a small flat including a wide variety of objects. (b) Simulated image captured by a virtual camera, where objects have
been detected and localized (blue bounding boxes). (c) Visualization of a gas plume within a similar environment.

2. Related Work

In this section, we will briefly discuss the characteristics and functionalities of GADEN
and the Unity Engine, as well as some state-of-the-art alternatives that could be considered
for their respective parts of the simulation.

2.1. GADEN

GADEN offers the ability to accurately simulate the dispersion of gases in realistic
three-dimensional environments by using computational fluid dynamics (CFD) to simulate

https://github.com/MAPIRlab/GADEN_Unity
https://github.com/MAPIRlab/GADEN_Unity


Sensors 2021, 21, 2041 3 of 13

the airflow (e.g., OpenFoam [24]) and employing the filament model to disperse the desired
volatiles. Implemented with the tools of the robotic operating system (ROS), GADEN is
mainly designed for the development of robotics applications, though not limited to them
(i.e., it can be used with networks of simulated gas sensors). The environment topology is
defined through CAD models, serving for a good degree of detail and enabling an easy
setup of new testing scenarios.

Despite its ROS implementation, GADEN itself only handles the computation of the
gas dispersion simulation, not the robotic control, the visualization of the gases (e.g., the
plume), or other types of sensing such as virtual cameras. Yet, it does offer external tools
to visualize the environment and the obtained gas dispersion results through Rviz (see
Figure 2); however, this is not a realistic visual representation of the simulated environment,
but merely a visual aid for the user. The latter implies that GADEN alone cannot be used to
integrate other simulated sensing modalities, such as cameras, hindering its applicability
as a simulation test bench when designing advanced, sensor-fusion based alternatives.

Other notable options for gas dispersion simulation include PlumeSim [25], developed
for the Player/Stage framework [26], and pure CFD tools such as OpenFOAM [24] or
ANSYS [27]. PlumeSim also offers a straightforward integration of the gas simulations
with the deployment and control of autonomous agents, but it is limited in terms of the
complexity of the environments that can be simulated—e.g., the plume models that can be
simulated in it do not take obstacles into account. On the other hand, CFD tools allow for a
great deal of precision in the simulation of the gas dispersion, but at a high computational
cost, requiring a certain level of CFD expertise from the user and lacking the ability to
easily integrate the results of the simulation with other software, such as robotics platforms
(see Table 1).

Table 1. Comparison of the features offered by the different alternatives for gas dispersion simulation.
Adapted from [17].

PlumeSim GADEN CFD

Environment Dimensions 2D 3D 3D
Obstacles No Yes Yes

Gas dispersion Model Gaussian/meandering
plume

Filament
model Numerical

Number of sources 1 Multiple Multiple

Integration Sensors MOX PID & MOX No
Robotics platform ROS pkg ROS pkg No

Figure 2. Currently, the results of GADEN simulations have only been integrated for visualization
with Rviz. Despite its clarity for user feedback, this visualization does not allow for a high degree of
realism and is not suitable for testing image-based algorithms.

2.2. Unity Engine

The Unity engine is a software designed for the development of video games, although
its use for other purposes (including architecture, robotics, animation, artificial intelligence,
etc.) has been reported [28–33]. Because of being designed for video game development,



Sensors 2021, 21, 2041 4 of 13

the engine offers powerful tools for creating complex, interactive environments that may
be modified at run-time, as well as handling the underlying physics and collisions involved
in the simulation of moving objects. Because of the large number of projects that have been
developed with the Unity engine, there is also a wide variety of ready-made assets (such as
buildings, furniture, etc.) that can be used to quickly set up a new simulated environment
with a high degree of visual fidelity.

Furthermore, the engine also provides numerous tools to implement the behaviour of
autonomous or controllable agents (such as path-planning, exchange of messages, etc.),
allowing the development and testing of algorithms in-platform.

Other similar tools that may be considered as an alternative to the Unity engine exist,
including robotics-oriented simulators such as Gazebo [34] and other video game devel-
opment tools, such as Unreal Engine [35]. Gazebo is available as a ROS meta-package
(https://wiki.ros.org/gazebo_ros_pkgs (accessed on 13 March 2021)), which greatly sim-
plifies its integration with GADEN; however, we believe that game engines are a more
interesting option for our purposes because of the greater degree of visual realism and
computational optimization that they offer and because of their promising future with
continuous improvements and notable results.

3. Simulation Framework

Our proposed framework divides the simulation into several phases: defining the
environment, simulating the airflow with an external CFD tool, simulating and recording
the gas dispersion with GADEN, and integrating the results of the gas dispersion with
visual sensing in Unity (Figure 3).

Figure 3. Flow diagram that shows the different steps of the simulation. Most of the work is conducted offline to keep the
computational load of the online phase low. (A) shows the mesh model that defines the environment, (B) shows the airflow
vector field computed by CFD , (C) shows the filament dispersion simulation in GADEN, and (D) shows the integration
and visualization of the result in Unity.

3.1. Environment Definition and Airflow Simulation

In order to perform a gas dispersion simulation, GADEN requires as input data both
a mesh that defines the environment and a pre-computed 3D map of the airflow (wind
vectors). Once an appropriate mesh has been generated, there exist many CFD tools—for
example, Simscale [36]—that can be used to generate the needed airflow data.

https://wiki.ros.org/gazebo_ros_pkgs


Sensors 2021, 21, 2041 5 of 13

The mesh that defines the environment in which the simulation is to take place can
be generated in several ways (see Figure 3A). This model may be generated with CAD
software (as per the traditional workflow of GADEN simulations), or exported from
Unity assets. This last option allows for a much more convenient definition of complex,
detailed environments, although it must be taken into account that models generated
from pre-existing assets do not always conform to the standards of quality required by
CFD simulation.

To solve any such problems with exported meshes (e.g., self-intersecting meshes, slit
facets), we include in the source code a program that simplifies the model, decreasing the
resolution but fixing any defects that impede its use for CFD. A short tutorial on how to
achieve similar results with other state-of-the-art mesh manipulation tools is also included,
should it become necessary.

3.2. Gas Dispersion Simulation

The dispersion of the gas through the environment is simulated in GADEN. The mesh
model generated for the CFD simulation is also used in this step to define the topology of
the environment, and the simulated airflow data are imported to guide the movements
of the gas filaments. The simulation can be configured with a number of parameters,
including the location of the gas source (or sources), the types of gas that these sources emit,
the rate of emission, etc. The simulation uses the filament model [37], where each “puff”
of gas is modelled as a normal distribution of gas concentration around the center point
of the filament and the location and size of these puffs is modified over time by diffusion,
advection, and buoyancy. The simulated airflow obtained in the previous step is the main
factor determining this movement, although turbulence on a scale smaller than the cell size
itself can be approximated by adding noise to the movement of the gas filaments. For more
details, see [17].

The result of this step is a number of log files that register the gas concentration and
wind vectors in each region of the 3D environment for every time step. Both the spatial
resolution and the length of the time step employed can be configured by the user, so that
an appropriate compromise between precision, computational complexity, and memory
usage can be achieved.

3.3. Graphics and Sensing Simulation

Lastly, the results of the gas simulation are imported into the Unity engine, where
any on-line parts of the simulation are to take place. The Unity Engine handles all the
graphical elements of the environment, such as texturing, lighting, etc., which are rendered
on GPU. A custom script, also available in the online repository, reads and processes the
gas simulation data, making them accessible for any other Unity script that requires them.
For this purpose, we provide different models of simulated gas and wind sensors that
retrieve these data (Figure 4a).

Two main types of gas sensors are included in the simulation: metal oxide sensors
(MOX) and photoionization detectors (PID). Five different models of MOX sensors are
included, as well as their response to the presence of gas modelled according to the
specifications of the manufacturer and simulating the rise and decay of the measured gas
concentration over time. Similarly, the PID sensors are emulated by using the technical
specification of the manufacturer of the simulated model to estimate the “weight” of each
gas type to the final measured concentration. For more details on the implementation, see
the original GADEN publication [17].



Sensors 2021, 21, 2041 6 of 13

(a)

(b)

Figure 4. (a) Measurements obtained with a simulated photoionization detector at a given point over
time. (b) RGB and depth images obtained from Unity’s simulated camera.

Visual sensing is easily simulated through Unity’s camera objects, which can be
placed on fixed locations or attached to a moving GameObject and provide an image
of the environment as observed from the location of the camera. These images can be
accessed through code, either for on-line processing or for storage and later analysis. Unity
offers ways to access both the RGB image captured by the camera and a depth image that
represents the distance from the camera to the nearest object for every pixel, which can be
used to simulate an RGB-D camera (Figure 4b).

The visuals of the gas plume can be rendered in several ways (Figure 5), depending on
the desired compromise between visual fidelity and computational complexity. Methods
that rely on analyzing the shape and movement of the plume itself (i.e., plume imaging;
see Section 4.2) will require a higher degree of realism, while in other cases the rendering
of the plume only serves as a visual reference for the user.

• The simplest method is to use Unity’s Particle System objects to represent the gas
filaments with billboarded (i.e., always facing towards the camera) pre-existing 2D
assets. The user can choose several parameters to configure this effect (color, opacity,
etc.). An important feature we introduce in this implementation is the ability to control
the visibility of the gas as a function of the existing concentration (gas may only be
observable above a certain concentration threshold, or not at all).
This method requires little work from the user, and represents a significant improve-
ment from previous versions of GADEN, but is not sophisticated enough to achieve a



Sensors 2021, 21, 2041 7 of 13

realistic visualization of the gas plume. Therefore, it is appropriate for providing the
user a way to visualize the data of the simulation, but should not be employed for
plume imaging methods.

• Another option, still based on Unity’s Particle Systems, is to use procedurally gener-
ated textures to represent the gas puffs. This allows the asset to change over time, and
be modified as the parameters of the filaments change. In practice, since each gas fila-
ment is modelled as a gaussian distribution of gas particles, the texture will have that
same shape, but be corrupted with some type of coherent noise—the implementation
we include in the project uses OpenSimplex noise [38]—to model low-scale turbulence.
These assets can be computed on-line, but we include in the source code a script to
configure and pre-compute the noise effects, reducing the on-line computational load
to a simple texture lookup. In order to produce animations that can loop seamlessly,
the textures are generated by moving a 2D plane along a circular path through 4D
noise, in such a way that the position of the plane for the last recorded frame lines up
with its initial position.

• The last option for gas visualization included in the simulator uses a method to
perform volumetric rendering through ray marching [39,40].
For every pixel in the screen, a ray is sent forwards and a number of gas concentration
samples are taken along the ray to calculate the optical depth along the ray. This value
is then used to compute the transmittance along the ray, simulating the absorption
and scattering of light (Figure 6).

Figure 5. The same gas plume, as visualized with each of the presented methods: (A) billboarded
2D assets, (B) procedural textures from OpenSimplex noise, and (C) volumetric rendering through
ray marching.

Beer–Lambert’s Law [41] is used to compute the transmittance through the gas cloud
as a function of the optical depth along the ray, the molar absorptivity of the gas or aerosol
(α), and its scattering coefficient (β):

τ(x, x′) = e−dx,x′ ·(α+β) (1)

In this expression, x and x′ denote the origin and end of the ray, and dx,x′ is the
optical depth along the ray, calculated by sampling the gas concentration distribution
that models the filament d = ∑p Concentration(p) · l. The resulting transmittance value is
then multiplied by the color of the background to simulate light being attenuated when
travelling through the cloud. The gas concentration is expressed in mol·L−1, and the
distance between sampling points (l) in cm, therefore the optical depth is expressed in
mol·L−1·cm. The sum of α and β, often referred to as the molar attenuation coefficient, has
the units L·mol−1·cm−1.

Simulating the effect of lighting on the gas plume requires an extra step for every
sampling point. For a point p along the ray where a gas concentration sample is taken, it
must be calculated how much light reaches p from the light source position s, how much
of that light is scattered towards the camera, and what proportion of that scattered light
actually reaches the camera:

Light(x) = Light(s) · ∑
p∈samples

τ(p, s) · Concentration(p) · l · β · τ(x, p) (2)



Sensors 2021, 21, 2041 8 of 13

The final color for the pixel is thus:

Color_pixel(x) = τ(x, x′) · Color(x′) + Light(x) (3)

Here, x is the position of the pixel in world coordinates and x′ is the point where the
view ray intersects the objects in the scene.

Figure 6. The volumetric rendering of the gas plume is based on taking concentration samples at
several points along the view ray to compute the optical depth, and with it the transmittance of the
gas puff. Additional rays are cast towards the light source at each sampling point to simulate the
scattering of light towards the camera.

This method has a significant computational complexity because of the high number
of gas concentration samples needed to render the image of the plume. The number of
samples that must be taken in total is N ·M, where N is the number of marching steps
along the main view ray and M is the number of steps along the rays cast towards the
light source. In each sampling position, it is necessary to iterate over the entire list of F
gas filaments to check which ones are close enough to contribute gas concentration to the
sampled point. Thus, the number of operations necessary to calculate the color of each
pixel is O(N ·M · F).

Despite this high computational load, it is possible to run it in real time (https://
youtu.be/MN9QuFyRQt0 (accessed on 13 March 2021)), since the main ray marching
functionality is highly parallelizable, and has been implemented to be run on the GPU as a
Compute Shader, in such a way each ray is handled by a separate thread.

Still, the computational load grows quickly as the simulation advances and a higher
number of filaments is present in the scenario at once, which can make the rendering too
demanding for real-time applications. For that reason, we have introduced some extra
optimizations, such as:

• Dividing the space in a grid of cells and assigning to each cell a list of the filaments
it contains [42]. This way, when sampling the gas concentration at a given point, it
is only necessary to iterate over that smaller list, as opposed to over the list of all
filaments. This spatial division is done on the CPU, and can be done in parallel to the
GPU rendering, using the time during which the CPU would be idle waiting for the
GPU to finish the calculations of the previous step.

• Allowing the ray marching to finish early if the transmittance goes below a certain
threshold, since at that point extra steps will not change the visual appearance of
the plume. This can be done on both the main view ray, and the secondary rays cast
towards the light source.

It should be noted that these optimizations, despite having a noticeable effect on the
computation time, do not affect the asymptotic complexity, as the worst-case scenario—

https://youtu.be/MN9QuFyRQt0
https://youtu.be/MN9QuFyRQt0


Sensors 2021, 21, 2041 9 of 13

when all filaments are in the same space subdivision and the transmittance does not fall
below the established threshold—is still O(N ·M · F).

3.4. ROS Interaction and Robotic Control

The Unity engine itself offers many tools for the creation and management of autonomous
agents, which may be used to exploit these simulated environments, but on-line communica-
tion with other ROS tools to handle the simulation of mobile robotics is also possible.

The ROS package Rosbridge [43] offers communication between any external appli-
cation and ROS by exchanging JSON messages through web sockets, making it possible
for the external program—in our case, a Unity C# script—to access any ROS functionality
(subscribe or publish to topics, communicate with action servers, etc.).

On the Unity side, the library ROSUnity [44] implements many examples of com-
munication through rosbridge, as well as a class structure that can easily be extended to
meet the requirements of a new application. Other works that use this project to perform
communication between Unity and ROS have already been published [30,45].

4. Use Cases

In this section, we discuss a series of applications that benefit of the proposed simula-
tion framework, simplifying their testing and analysis.

4.1. Gas/Volatile Source Localization with Semantics

Previous works have proposed the exploitation of ontologies to tackle the problem of
Gas Source Localization [46]. The advantage of this strategy over traditional, olfaction-only
algorithms is the possibility to introduce pre-existing knowledge to guide the search (e.g.,
knowing what types of objects can emit the specific type of gas that is being measured).

Given the fact that information obtained purely through gas sensing is limited due to
the characteristics of the sensors (response and recovery times, single-point measurements,
etc.), this extra knowledge can be of great aid in directing the navigation of the robot to
areas of interest in a much more effective way than plume-tracking or similar strategies
(e.g., if the sensors detect carbon monoxide, it is not necessary to track the gas plume
step by step; the robot can directly move to the kitchen and check the burner). Further-
more, the identification of objects that are known to be potential emission sources for the
measured gas offers a powerful tool for tackling the otherwise very complex problem of
source declaration.

Despite these advantages, the development and testing of semantics-based techniques
poses important challenges. In [46], authors test the algorithm with a number of simulated
experiments, and a real-world validation. The simulated experiments, which due to their
reproducibility and ease of setup are more extensive than the real ones, were carried out
using GADEN alone. Because of this, the simulation did not include visual sensing, and the
part of the search that corresponds to object recognition had to be assumed to have been
carried out off-line prior to the search itself. Even though this assumption is acceptable
for some applications, in which the environment where the search is to take place is
known in advance, it still limited the environmental configurations that could be tested
(e.g., dynamically changing environments, finding unknown objects at runtime), thus
making the simulated experiments less effective at representing the actual performance of
the algorithm.

Using the framework that we propose in this work, it is possible to run both parts of
such algorithms (olfactory sensing and object recognition) simultaneously, thus allowing for
a more realistic simulation of the enviromental situations the robot might encounter during
an actual search (Figure 7a). This makes it possible to obtain more accurate results about
the performance of the algorithm than would be possible with the previous, simplified
simulated experiments, while maintaining the reproducibility and quick set-up that made
simulations more convenient than real experimentation.



Sensors 2021, 21, 2041 10 of 13

(a)

(b)

Figure 7. Examples of simulations carried out in with the proposed framework, as represented in
the Unity engine. (a) The high degree of visual fidelity of the environments is specially relevant for
semantics-based applications. In this example, the YOLO neural network [47] is able to recognize
relevant items that could be sources of certain gas emissions. (b) Simulating the visuals of the gas
plume is key for testing methods where the robots rely on vision to locate a gas release.

4.2. Pipe Leak Detection with Plume Imaging

Numerous techniques have been proposed to detect and track gas plumes through
computer vision [21,48,49]. The tracking of a gas plume with a camera, whether on its own
or complementing an olfactory sensor, offers interesting advantages. Namely, it makes it
possible to observe the gas plume from far away before it can be detected by gas sensors
(Figure 7b), and it allows for the tracking of the plume in a more efficient manner by
observing its shape and movement instantaneously, rather than trying to infer them from
sparse gas concentration and wind measurements.

For the reasons previously discussed (repeatability of the experiments, ease of setup,
etc.), a simulation environment such as the one we propose, which delivers an accurate
simulation of the dispersion of the gas and offers tools for a realistic visual representation
of the plume, is an important asset for the development and testing of these techniques.

An important limitation of the simulator when applied to these methods is that it
does not currently include a way to properly simulate the use of an infrared or ultraviolet
cameras. Since many of the gases that need to be monitored or controlled are not observable
in the visible spectrum (e.g., CH4 is observed in the infrared spectrum, while SO2 is tracked
with UV cameras), this issue limits the range of substances that can be appropriately
simulated. This is an interesting direction for any future work that aims to expand the
capabilities of the simulation framework.



Sensors 2021, 21, 2041 11 of 13

5. Conclusions and Future Work

In this work, we have presented a new framework for the integration of simulated
olfaction and simulated vision. We rely on GADEN to carry out the simulation of gas
dispersion, and use the Unity Engine to simulate graphically complex environments and
camera vision. By combining these tools, we achieve a level of realism in the simulation
that would not be possible with the existing, state-of-the-art alternatives.

We believe our proposal to be a useful asset in the development of multi-sensor olfac-
tory techniques (source localization, distribution mapping, etc.), which are an interesting
direction for future research, given that they provide a way to make up for the sparsity of
olfactory measurements with other sensory information.

Several directions exist for future work: first, the implementation of new
functionalities—such as the implementation of simulated infrared cameras—to broaden
the spectrum of applications for which this simulation framework is useful; second, the
optimization of the computational aspects of the simulation, which can still be demanding
for the real-time rendering of the gas plume; lastly, the usage of the simulation framework
to develop and test specific robotics applications that exploit the characteristics it provides.

Author Contributions: Conceptualization, J.M.; Funding acquisition, J.G.-J.; Software, P.O.; Supervi-
sion, J.M. and J.G.-J.; Writing—original draft, P.O.; Writing—review & editing, J.M. and J.G.-J. All
authors have read and agreed to the published version of the manuscript.

Funding: This work has been funded by the Spanish Ministry of Economy under projects WISER
(DPI2017-84827-R) and ARPEGGIO (DPI2020-117057GB-I00).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Satterthwaite, D. The Contribution of Cities to Global Warming and their Potential Contributions to Solutions. Environ. Urban.

ASIA 2010, 1, 1–12. [CrossRef]
2. Mannucci, P.M.; Franchini, M. Health effects of ambient air pollution in developing countries. Int. J. Environ. Res. Public Health

2017, 14, 1048. [CrossRef]
3. London Air Quality Map. Available online: https://www.london.gov.uk/what-we-do/environment/pollution-and-air-quality/

london-air-quality-map (accessed on 26 October 2020).
4. Szulczyński, B.; Wasilewski, T.; Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Namieśnik, J.; Gębicki, J. Different Ways to Apply

a Measurement Instrument of E-Nose Type to Evaluate Ambient Air Quality with Respect to Odour Nuisance in a Vicinity of
Municipal Processing Plants. Sensors 2017, 17, 2671. [CrossRef] [PubMed]

5. Nicolas, J.; Cerisier, C.; Delva, J.; Romain, A.C. Potential of a network of electronic noses to assess in real time the odour
annoyance in the environment of a compost facility. Chem. Eng. Trans. 2012, 30, 133–138. [CrossRef]

6. Hernandez Bennetts, V.; Schaffernicht, E.; Pomareda, V.; Lilienthal, A.J.; Marco, S.; Trincavelli, M. Combining Non Selective Gas
Sensors on a Mobile Robot for Identification and Mapping of Multiple Chemical Compounds. Sensors 2014, 14, 17331–17352.
[CrossRef]

7. Conley, S.; Franco, G.; Faloona, I.; Blake, D.R.; Peischl, J.; Ryerson, T.B. Methane emissions from the 2015 Aliso Canyon blowout
in Los Angeles, CA. Science 2016, 351, 1317–1320. [CrossRef]

8. Perez-Padilla, R.; Schilmann, A.; Riojas-Rodriguez, H. Respiratory health effects of indoor air pollution. Int. J. Tuberc. Lung Dis.
2010, 14, 1079–1086.

9. Dong, L.; Qiao, Z.; Wang, H.; Yang, W.; Zhao, W.; Xu, K.; Wang, G.; Member, S.; Zhao, L.; Yan, H. The Gas Leak Detection Based
on a Wireless Monitoring System. IEEE Trans. Ind. Inform. 2019, 15, 6240–6251. [CrossRef]

10. Neumann, P.P.; Bennetts, V.H.; Lilienthal, A.J.; Bartholmai, M.; Schiller, J.H. Gas source localization with a micro-drone using
bio-inspired and particle filter-based algorithms. Adv. Robot. 2013, 27, 725–738. [CrossRef]

11. Yang, S.; Talbot, R.W.; Frish, M.B.; Golston, L.M.; Aubut, N.F.; Zondlo, M.A.; Gretencord, C.; McSpiritt, J. Natural gas fugitive
leak detection using an unmanned aerial vehicle: Measurement system description and mass balance approach. Atmosphere 2018,
9, 383. [CrossRef]

12. Gongora, A.; Monroy, J.; Gonzalez-Jimenez, J. Joint Estimation of Gas & Wind Maps for Fast-Response Applications. Appl. Math.
Model. 2020. [CrossRef]

13. Monroy, J.; Blanco, J.L.; Gonzalez-Jimenez, J. Time-Variant Gas Distribution Mapping with Obstacle Information. Auton. Robot.
2016, 40, 1–16. [CrossRef]

14. Ojeda, P.; Monroy, J.; Gonzalez-Jimenez, J. Information-driven Gas Source Localization Exploiting Gas and Wind Local
Measurements for Autonomous Mobile Robots. IEEE Robot. Autom. Lett. 2021. [CrossRef]

http://doi.org/10.1177/097542530900100102
http://dx.doi.org/10.3390/ijerph14091048
https://www.london.gov.uk/what-we-do/environment/pollution-and-air-quality/london-air-quality-map
https://www.london.gov.uk/what-we-do/environment/pollution-and-air-quality/london-air-quality-map
http://dx.doi.org/10.3390/s17112671
http://www.ncbi.nlm.nih.gov/pubmed/29156597
http://dx.doi.org/10.3303/CET1230023
http://dx.doi.org/10.3390/s140917331
http://dx.doi.org/10.1126/science.aaf2348
http://dx.doi.org/10.1109/TII.2019.2891521
http://dx.doi.org/10.1080/01691864.2013.779052
http://dx.doi.org/10.3390/atmos9100383
http://dx.doi.org/10.1016/j.apm.2020.06.026
http://dx.doi.org/10.1007/s10514-015-9437-0
http://dx.doi.org/10.1109/LRA.2021.3057290


Sensors 2021, 21, 2041 12 of 13

15. Monroy, J.; Gonzalez-Jimenez, J.; Blanco, J.L. Overcoming the slow recovery of MOX gas sensors through a system modeling
approach. Sensors 2012, 12, 13664–13680. [CrossRef] [PubMed]

16. Wada, Y.; Trincavelli, M.; Fukazawa, Y.; Ishida, H. Collecting a Database for Studying Gas Distribution Mapping and Gas Source
Localization with Mobile Robots. In Proceedings of the 5th International Conference on Advanced Mechatronic (ICAM), Osaka,
Japan, 4–6 October 2010; pp. 183–188.

17. Monroy, J.; Hernandez-Bennetts, V.; Fan, H.; Lilienthal, A.; Gonzalez-Jimenez, J. GADEN: A 3D Gas Dispersion Simulator for
Mobile Robot Olfaction in Realistic Environments. Sensors 2017, 17, 1479. [CrossRef] [PubMed]

18. Toja-Silva, F.; Pregel-Hoderlein, C.; Chen, J. On the urban geometry generalization for CFD simulation of gas dispersion from
chimneys: Comparison with Gaussian plume model. J. Wind. Eng. Ind. Aerodyn. 2018, 177, 1–18. [CrossRef]

19. Ishida, H.; Tanaka, H.; Taniguchi, H.; Moriizumi, T. Mobile robot navigation using vision and olfaction to search for a gas/odor
source. Auton. Robot. 2006, 20, 231–238. [CrossRef]

20. Song, K.; Liu, Q.; Wang, Q. Olfaction and hearing based mobile robot navigation for odor/sound source search. Sensors 2011,
11, 2129–2154. [CrossRef]

21. Thomas, H.E.; Prata, A.J. Computer vision for improved estimates of SO2 emission rates and plume dynamics. Int. J. Remote Sens.
2018, 39, 1285–1305. [CrossRef]

22. Monroy, J.; Ruiz-Sarmiento, J.R.; Moreno, F.A.; Galindo, C.; Gonzalez-Jimenez, J. Olfaction, Vision, and Semantics for Mobile
Robots. Results of the IRO Project. Sensors 2019, 19, 3488. [CrossRef]

23. Unity 3D Engine. Available online: https://www.unity.com (accessed on 26 October 2020).
24. OpenFOAM. Available online: https://openfoam.org/ (accessed on 16 February 2021).
25. Cabrita, G.; Sousa, P.; Marques, L. Player/stage simulation of olfactory experiments. In Proceedings of the IEEE/RSJ 2010

International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010. [CrossRef]
26. Gerkey, B.P.; Vaughan, R.; Howard, A. The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems. In

Proceedings of the 11th International Conference on Advanced Robotics, Coimbra, Portugal, 30 June–3 July 2003.
27. ANSYS. Available online: https://www.ansys.com/ (accessed 16 February 2021).
28. Jafri, R.; Campos, R.L.; Ali, S.A.; Arabnia, H.R. Visual and Infrared Sensor Data-Based Obstacle Detection for the Visually

Impaired Using the Google Project Tango Tablet Development Kit and the Unity Engine. IEEE Access 2017, 6, 443–454. [CrossRef]
29. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. arXiv

2017, arXiv:1705.05065.
30. Fernandez-Chaves, D.; Ruiz-Sarmiento, J.R.; Petkov, N.; Gonzalez-Jimenez, J. From Object Detection to Room Categorization in

Robotics. In Proceedings of the 3rd International Conference on Applications of Intelligent Systems, Las Palmas de Gran Canaria,
Spain, 7–9 January 2020; [CrossRef]

31. Wiebrands, M.; Malajczuk, C.J.; Woods, A.J.; Rohl, A.L.; Mancera, R.L. Molecular Dynamics Visualization (MDV): Stereoscopic 3D
Display of Biomolecular Structure and Interactions Using the Unity Game Engine. J. Integr. Bioinform. 2018, 15, 1–8. [CrossRef]
[PubMed]

32. Zhang, J.; Lyu, Y.; Wang, Y.; Nie, Y.; Yang, X.; Zhang, J.; Chang, J. Development of laparoscopic cholecystectomy simulator based
on unity game engine. In Proceedings of the European Conference on Visual Media Production, London, UK, 13–14 December
2018; pp. 1–9. [CrossRef]

33. Rosinol, A.; Abate, M.; Chang, Y.; Carlone, L. Kimera: An Open-Source Library for Real-Time Metric-Semantic Localization and
Mapping. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31
August 2020.

34. Gazebo Simulator. Available online: http://gazebosim.org/ (accessed on 16 February 2021).
35. Unreal Engine. Available online: https://www.unrealengine.com (accessed on 16 February 2021).
36. SimScale. Available online: https://www.simscale.com (accessed on 16 February 2021).
37. Farrell, J.A.; Murlis, J.; Long, X.; Li, W.; Cardé, R.T. Filament-based atmospheric dispersion model to achieve short time-scale

structure of odor plumes. Environ. Fluid Mech. 2002, 2, 143–169. [CrossRef]
38. Lagae, A.; Lefebvre, S.; Cook, R.; DeRose, T.; Drettakis, G.; Ebert, D.; Lewis, J.; Perlin, K.; Zwicker, M. A Survey of Procedural

Noise Functions. Comput. Graph. Forum 2010. [CrossRef]
39. Zhou, K.; Ren, Z.; Lin, S.; Bao, H.; Guo, B.; Shum, H.Y. Real-Time Smoke Rendering Using Compensated Ray Marching.

In Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference, Los Angeles, CA,
USA, 11–15 August 2008; [CrossRef]

40. Nowak, Ł.; Bąk, A.; Czajkowski, T.; Wojciechowski, K. Modeling and Rendering of Volumetric Clouds in Real-Time with Unreal
Engine 4. In Proceedings of the Computer Vision and Graphics, Warsaw, Poland, 17–19 September 2018; pp. 68–78.

41. Swinehart, D.F. The Beer-Lambert Law. J. Chem. Educ. 1962, 39, 333. [CrossRef]
42. Hastings, E.J.; Mesit, J.; Guha, R.K. Optimization of large-scale, real-time simulations by spatial hashing. In Proceedings of the

2005 Summer Computer Simulation Conference, Philadelphia, PA, USA, 24–28 July 2005; pp. 9–17.
43. Rosbridge Suite Package. Available online: http://wiki.ros.org/rosbridge_suite (accessed on 16 February 2021).
44. ROSUnity Library. Available online: https://github.com/DavidFernandezChaves/ROSUnity (accessed on 16 February 2021).

http://dx.doi.org/10.3390/s121013664
http://www.ncbi.nlm.nih.gov/pubmed/23202015
http://dx.doi.org/10.3390/s17071479
http://www.ncbi.nlm.nih.gov/pubmed/28644375
http://dx.doi.org/10.1016/j.jweia.2018.04.003
http://dx.doi.org/10.1007/s10514-006-7100-5
http://dx.doi.org/10.3390/s110202129
http://dx.doi.org/10.1080/01431161.2017.1401250
http://dx.doi.org/10.3390/s19163488
https://www.unity.com
https://openfoam.org/
http://dx.doi.org/10.1109/IROS.2010.5652518
https://www.ansys.com/
http://dx.doi.org/10.1109/ACCESS.2017.2766579
http://dx.doi.org/10.1145/3378184.3378230
http://dx.doi.org/10.1515/jib-2018-0010
http://www.ncbi.nlm.nih.gov/pubmed/29927749
http://dx.doi.org/10.1145/3278471.3278474
http://gazebosim.org/
https://www.unrealengine.com
https://www.simscale.com
http://dx.doi.org/10.1023/A:1016283702837
http://dx.doi.org/10.1111/j.1467-8659.2010.01827.x
http://dx.doi.org/10.1145/1399504.1360635
http://dx.doi.org/10.1021/ed039p333
http://wiki.ros.org/rosbridge_suite
https://github.com/DavidFernandezChaves/ROSUnity


Sensors 2021, 21, 2041 13 of 13

45. Chaves, D.; Ruiz-Sarmiento, J.R.; Petkov, N.; Gonzalez-Jimenez, J. Integration of CNN into a Robotic Architecture to Build
Semantic Maps of Indoor Environments. In Proceedings of the 15th International Work-Conference on Artificial Neural Networks,
IWANN 2019, Gran Canaria, Spain, 12–14 June 2019; [CrossRef]

46. Monroy, J.; Ruiz-Sarmiento, J.R.; Moreno, F.A.; Melendez-Fernandez, F.; Galindo, C.; Gonzalez-Jimenez, J. A semantic-based gas
source localization with a mobile robot combining vision and chemical sensing. Sensors 2018, 18, 4174. [CrossRef]

47. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
48. Gerhart, T.; Sunu, J.; Lieu, L.; Merkurjev, E.; Chang, J.M.; Gilles, J.; Bertozzi, A.L. Detection and tracking of gas plumes in LWIR

hyperspectral video sequence data. In Proceedings of the SPIE Defense, Security, and Sensing, Baltimore, MD, USA, 29 April–3
May 2013; Volume 8743, pp. 137–150. [CrossRef]

49. Bretschneider, T.R.; Shetti, K. UAV-based gas pipeline leak detection. In Proceedings of the 35th Asian Conference on Remote
Sensing 2014, Nay Pyi Taw, Myanmar, 27–31 October 2014.

http://dx.doi.org/10.1007/978-3-030-20518-8_27
http://dx.doi.org/10.3390/s18124174
http://dx.doi.org/10.1117/12.2015155

	Introduction
	Related Work
	GADEN
	Unity Engine

	Simulation Framework
	Environment Definition and Airflow Simulation
	Gas Dispersion Simulation
	Graphics and Sensing Simulation
	ROS Interaction and Robotic Control

	Use Cases
	Gas/Volatile Source Localization with Semantics
	Pipe Leak Detection with Plume Imaging

	Conclusions and Future Work
	References

