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Common variation near ROBO2 is associated
with expressive vocabulary in infancy
Beate St Pourcain1,2,3,*, Rolieke A.M. Cents4,5,*, Andrew J.O. Whitehouse6,*, Claire M.A. Haworth7,8,*, Oliver S.P. Davis8,9,*,

Paul F. O’Reilly8,10, Susan Roulstone11, Yvonne Wren11, Qi W. Ang12, Fleur P. Velders4,5, David M. Evans1,13,14,

John P. Kemp1,13,14, Nicole M. Warrington12,14, Laura Miller13, Nicholas J. Timpson1,13, Susan M. Ring1,13, Frank C. Verhulst5,

Albert Hofman15, Fernando Rivadeneira15,16, Emma L. Meaburn17, Thomas S. Price18, Philip S. Dale19, Demetris Pillas10,

Anneli Yliherva20, Alina Rodriguez10,21, Jean Golding13, Vincent W.V. Jaddoe4,15,22, Marjo-Riitta Jarvelin10,23,24,25,26,

Robert Plomin8, Craig E. Pennell12, Henning Tiemeier5,15,* & George Davey Smith1,13

Twin studies suggest that expressive vocabulary at B24 months is modestly heritable. However, the genes

influencing this early linguistic phenotype are unknown. Here we conduct a genome-wide screen and

follow-up study of expressive vocabulary in toddlers of European descent from up to four studies of the

EArly Genetics and Lifecourse Epidemiology consortium, analysing an early (15–18 months, ‘one-word

stage’, NTotal¼8,889) and a later (24–30 months, ‘two-word stage’, NTotal¼ 10,819) phase of language

acquisition. For the early phase, one single-nucleotide polymorphism (rs7642482) at 3p12.3 near ROBO2,

encoding a conserved axon-binding receptor, reaches the genome-wide significance level (P¼ 1.3� 10�8)

in the combined sample. This association links language-related common genetic variation in the general

population to a potential autism susceptibility locus and a linkage region for dyslexia, speech-sound

disorder and reading. The contribution of common genetic influences is, although modest, supported by

genome-wide complex trait analysis (meta-GCTA h2
15–18-months¼0.13, meta-GCTA h2

24–30-months¼0.14)

and in concordance with additional twin analysis (5,733 pairs of European descent, h2
24-months¼0.20).
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T
he number of distinct spoken words is a widely used
measure of early language abilities, which manifests during
infancy1. Word comprehension (known as receptive

language) in typically developing children starts at the age of
about 6–9 months2, and the spontaneous production of words
(known as expressive language) emerges at about 10–15
months1,3. During the next months the accumulation of words
is typically slow, but then followed by an increase in rate, often
quite sharp, around 14–22 months of age (‘vocabulary spurt’)1,4.
As development progresses, linguistic proficiency becomes more
advanced, with two-word combinations (18–24 months of age)1,3

and more complex grammatical structures (24–36 months of
age)1,3 arising, accompanied by the steady increase in vocabulary
size. Expressive vocabulary is therefore considered to be a rapidly
changing phenotype, especially between 12 and 24 months5, with
zero size at birth, B50 words at 15–18 months1,3, B200 words at
18–30 months1,3, B14,000 words at 6 years of age3,4 and
Z50,000 words in high school graduates6,7.

Twin analyses of cross-sectional data suggest that expressive
vocabulary at B24 months is modestly heritable (h2¼ 0.16–
0.38)8,9, and longitudinal twin analyses have reported an increase
in heritability of language-related factors during development
(h2¼ 0.47–0.63, Z7 years of age)10. Large-scale investigations of
common genetic variation underlying growth in language skills,
however, are challenging owing to the complexity and varying
nature of the phenotype. This is coupled with a change in
psychological instruments, which are used to assess these
abilities with progressing age. Current genome-wide association
studies (GWASs) using cross-sectional data on language
abilities in childhood and adolescence have failed to identify
robust signals of genome-wide association11,12, and genes
influencing earlier, less-complex linguistic phenotypes are
currently unknown.

To attempt to understand genetic factors involved in language
development during infancy and early childhood, we perform a
GWAS and follow-up study of expressive vocabulary scores in
independent children of European descent from the general
population and analyse an early (‘one-word stage’) and a later
(‘two-word stage’) phase of language acquisition. We report a
novel locus near ROBO2, encoding a conserved axon-binding
receptor, as associated with expressive vocabulary during the early
‘one-word’ phase at the genome-wide significance level, and
provide heritability estimates for expressive vocabulary during
infancy and early childhood.

Results
Genome-wide association analyses. We conducted two
cross-sectional genome-wide screens corresponding to an early
(15–18 months, NTotal¼ 8,889) and a later (24–30 months,
NTotal¼ 10,819) phase of language acquisition, respectively, each
adopting a two-stage design (Figs 1 and 2; Supplementary
Data 1). During these developmental phases, expressive vocabu-
lary was captured with age-specific word lists (adaptations
of the MacArthur Communicative Development Inventories
(CDI)13–17 and the Language Development Survey (LDS)18,
Methods). However, measures of expressive vocabulary were not
normally distributed and differed in their symmetry
(Supplementary Data 1; Supplementary Fig. 1), and association
analysis was therefore carried out using rank-transformed scores
(Methods). Within the discovery cohort, a total of 2,449,665
autosomal genotyped or imputed single-nucleotide polymor-
phisms (SNPs) were studied in 6,851 15-month-old and 6,299
24-month-old English-speaking toddlers, respectively. Genome-
wide plots of the association signals are provided in
Supplementary Figs 2 and 3. For the early phase, the strongest

association signal was observed at rs7642482 on chromosome
3p12.3 near ROBO2 (P¼ 9.5� 10� 7, Supplementary Table 1)
and for the late phase at rs11742977 on chromosome 5q22.1
within CAMK4 (P¼ 3.5� 10� 7, Supplementary Table 2). All
independent variants from the discovery analysis (associated
Pr10� 4, Supplementary Tables 1 and 2), including these SNPs,
were taken forward to a follow-up study (Methods). This
included 2,038 18-month-old Dutch-speaking children for the
early phase and 4,520 24–30-month-old Dutch or English-
speaking children for the later phase (Supplementary Data 1).

For four independent loci from the early phase GWAS
(rs7642482, rs10734234, rs11176749 and rs1654584), but none
for the later phase analysis, we found evidence for association
within the follow-up cohort (Po0.05), assuming the same
direction of effect as in the discovery sample (Table 1;
Supplementary Tables 1–4). In the combined analysis of all
available samples (Table 1; Fig. 3a–d) rs7642482 on chromosome
3p12.3 near ROBO2 (the strongest signal in the discovery cohort)
reached the genome-wide significance level (P¼ 1.3� 10� 8), and
the three other signals approached the suggestive level
(rs10734234 on chromosome 11p15.2 near INSC, P¼ 1.9�
10� 7; rs11176749 on chromosome 12q15 near CAND1;
P¼ 7.2� 10� 7 and rs1654584 on chromosome 19p13.3 within
DAPK3; P¼ 3.4� 10� 7).

Each of these four polymorphisms explained only a small
proportion of the phenotypic variance (adjusted regression R2: for
rs7642482¼ 0.34–0.35%, rs10734234¼ 0.27–0.35%, rs11176749
¼ 0.25–0.27% and rs1654584¼ 0.22–0.49%) in both the dis-
covery and the follow-up cohort, but together the four SNPs
accounted for 41% of the variation in early expressive
vocabulary scores (joint adjusted regression R2¼ 1.10–1.45%).
For the SNP reaching genome-wide significance, rs7642482, each
increase in the minor G-allele was associated with lower
expressive vocabulary, although, due to the rank-transformation,
an interpretation of the magnitude of the genetic effect is not
informative. An empirical estimate of the genetic effect in the
discovery sample, suggested a decrease of 0.098 s.d. in expressive
vocabulary scores (95% confidence interval: 0.058; 0.14) per
increase in G-allele. We are aware, however, that this signal might
be prone to the ‘winner’s curse’ (that is, an overestimation of the
effect) and requires further replication within independent
samples.

Characterization of the lead association signals. rs7642482 is
located B19 kb 30 of ROBO2 (OMIM: 602431), which encodes
the human roundabout axon guidance receptor homologue 2
(Drosophila) gene. An in silico search for potentially functional
effects using the University of California Santa Cruz Genome
Browser19 provided no evidence that rs7642482 or proxy SNPs
(r240.3) relate to protein-coding variation within ROBO2. For
this, we also confirmed the observed linkage disequilibrium
structure within the discovery cohort through local imputation
of chromosome 3 using the 1,000 Genomes reference panel
(v3.20101123, Supplementary Fig. 4). The sequence at rs7642482
and the flanking genomic interval are, however, highly conserved
(rs7642482 Genomic Evolutionary Rate Profiling (GERP)20

score¼ 3.49; regional average GERP score near rs7642482
(derived from 100 bases surrounding rs7642482, GWAVA21)
¼ 3.06; average GERP score for coding sequences20 42).
Encyclopaedia of DNA elements (ENCODE)22 data indicate
that in umbilical vein endothelial cells (HUVEC), rs7642482
overlaps with regulatory chromatin states, such as H3K27ac23,24,
which are predicted to be a strong enhancer25 (Fig. 3e).
Additional searches using HaploReg (v2) (ref. 26) identified
overlaps with further regulatory DNA features, such as DNase I
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hypersensitive sites and binding sites for transcription factors (lrx,
Pou3f2_1). This suggests that variation at rs7642482 might be
implicated within regulatory mechanisms in embryonic cell types,
consistent with a peak of ROBO2 expression in the human brain
during the first trimester (Supplementary Fig. 5). There was no
evidence for cis expression quantitative trait loci (eQTL) within
±1 Mb of rs7642482 in postnatally derived cell types or adult
brain tissue, based on searches of public eQTL databases
(seeQTL)27,28.

Since little is known about the genetic factors affecting
language acquisition, the ‘suggestive’ signals at 11p15.2, 12q15
and 19p13.3 may also stimulate future research. rs10734234
resides within the vicinity of INSC (197 kb 30 of the gene),
encoding an adaptor protein for cell polarity proteins (OMIM:
610668). rs11176749 is located near CAND1 (144 kb 30 of the

gene) encoding a F-box protein-exchange factor (OMIM:
607727), which regulates the ubiquitination of target proteins,
and rs1654584 is an intronic SNP within DAPK3 encoding the
death-associated protein kinase 3, which plays a key role in
apoptosis (OMIM: 603289).

Within a further step, we investigated whether the reported
association signals are influenced by potential covariates, such as
gestational age29 and maternal education30. These have been
previously linked to late language emergence in infancy29 and the
total number of spoken words in early childhood30, respectively.
Studying up to 8,889 15–18-month-old children from the
discovery and follow-up cohort, the association signal at
rs7642482 increased when gestational age was adjusted for
(adjusted Pmeta¼ 4.0� 10� 9, 0.36–0.38% explained variance),
while adjustment for maternal education did not affect the

Discovery Follow-up
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Independent European descent

individuals
2,449,665 imputed or

genotyped SNPs
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Instrument: Infant CDI
Mean age: 15 months
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with
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In silico analysis of imputed
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Inverse-variance fixed-effect meta-
analysis of all followed-up SNPs

N=8,889

GWAS threshold: P=2.5×10–8

Figure 1 | Study design for the genome-wide screen of early expressive vocabulary. Expressive vocabulary between 15 and 18 months of age was

assessed using different forms of the MacArthur Communicative Development Inventories (CDI). Detailed phenotype descriptions are given in

Supplementary Data 1.

Discovery

ALSPAC
Instrument: Toddler CDI
Mean age: 24 months

N=6,299
Independent European descent

individuals
2,449,665 imputed or

genotyped SNPs

Independent SNPs
with

P≤1×10–4

Follow-up

GenR,Raine,TEDS
Instruments: LDS, MCDI
Mean age: 24–30 months

Total N=4,520
Independent European descent

individuals
In silico analysis of imputed

or genotyped SNPs

Inverse-variance fixed-effect meta-
analysis of all followed-up SNPs

N=10,819

GWAS threshold: P=2.5×10–8

Figure 2 | Study design for the genome-wide screen of later expressive vocabulary. Expressive vocabulary between 24 and 30 months of age was

assessed with different forms of the MacArthur Communicative Development Inventories (CDI) and the Language Development Survey (LDS). Detailed

phenotype descriptions are given in Supplementary Data 1.
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association (Supplementary Tables 5 and 6). For the remaining
SNPs, there was little or no effect on the strength of the genetic
association when these covariates were controlled for.

To explore whether the reported association signals influence
linguistic skills other than early-phase expressive vocabulary,
we also investigated a series of language-related measures
during development. We observed no evidence for association
between the four SNPs and first single-word utterances in 4,969
12-month-old Finnish children (Supplementary Data 1;
Supplementary Table 7). However, this age pertains to a
developmental stage where expressive vocabulary is very low,
that is, the majority of children speak about one or two words,
and pre-linguistic communication skills are still developing31.
All early-phase signals were furthermore attenuated or even
abolished when investigated for association with word-
production scores during the later phase of language acquisition
(24–30 months, Supplementary Fig. 6). This age band spans a
phase where growth in linguistic proficiency may relate more to
early grammar development including two-word combinations1,
than a vocabulary of single words. Overall, the phenotypic
correlations between early and later expressive vocabulary scores
were moderate within cohorts with multiple linguistic measures
(0.48orr0.57, Supplementary Data 1), and evidence for genetic

correlations, based on genome-wide complex trait analysis
(GCTA)32,33, was mixed (Avon Longitudinal Study of
Parents and Children (ALSPAC): rg(s.e.)¼ 0.69(0.20), P¼ 0.02),
Generation R Study (GenR): rg(s.e.)¼ � 0.32(0.97), P¼ 0.18).
There was also no association between the four reported SNPs
and other language-related cognitive outcomes, including verbal
intelligence scores, in middle childhood (8–10 years of age) when
studying up to 5,540 children from the discovery cohort, apart
from nominal associations with reading speed (rs7642482
P¼ 0.009; rs1654584 P¼ 0.0035; Supplementary Tables 8
and 9). Thus, the observed genetic associations, especially at
rs7642482, are likely to be time-sensitive and specific to the early
phase of language acquisition.

Twin analysis and GCTA. A twin study of 5,733 twin pairs of
European descent, including a subset of children from the
follow-up cohorts, supported the (modest) influence of additive
genetic effects on variability in expressive vocabulary at B24
months (a2(s.e.)¼ 0.20(0.008); Table 2; Supplementary Tables 10
and 11, Methods) and was consistent with previous reports on a
smaller sample9. Estimates from twin analysis and GCTA32,
performed on the discovery sample, were furthermore in close
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concordance (ALSPAC GCTA h2(s.e.)15-months¼ 0.13(0.05);
GCTA h2(s.e.)24-months¼ 0.17(0.06); Table 2). However, in the
smaller-sized follow-up samples, GCTA heritability, especially for
the later phase, was close to zero (Table 2), and is likely to reflect
impaired power during the follow-up. Combining GCTA
heritability estimates using meta-analysis techniques (Methods),
provided similar estimates as observed for the discovery cohort
alone (meta-GCTA h2(s.e.)15–18-months¼ 0.13(0.05), meta-GCTA
h2(s.e.)24–30 months¼ 0.14(0.05)).

Discussion
This study reports a genome-wide screen and follow-up study of
expressive vocabulary scores in up to 10,819 toddlers of European
origin investigating an early phase (15–18 months) and a later
phase (24–30 months) of language acquisition. On the basis of the
combined analysis of all available samples, our study identifies a
novel locus near ROBO2 as associated with expressive vocabulary
during the early phase of language acquisition.

Robo receptors and their Slit ligands (secreted chemorepellent
proteins) are highly conserved from fly to human34,35 and play a
key role in axon guidance and cell migration. In vertebrates,
Robo2 is involved in midline commissural axon guidance36, the
proliferation of central nervous system progenitors37, the spatial
positioning of spiral ganglion neurons38 and the assembly of the
trigeminal ganglion39, which is the sensory ganglion of the
trigeminal nerve. The latter is particularly important for speech
production in humans40, as the trigeminal nerve provides motor
supply to the muscles of mastication, which control the
movement of the mandibles, and in addition the nerve
transmits sensory information from the face. Thus, genetic
variation at ROBO2 may be linked to both speech production
abilities and expressive vocabulary size within children of the
general population.

Rare recurrent ROBO2 deletions have been discovered in
patients with autism spectrum disorder41, a severe childhood
neuro-developmental condition where core symptoms include
deficits in social communication42, and decreased ROBO2
expression has been observed in the anterior cingulate cortex43

and in lymphocytes of individuals with autism44. Indeed, the
3p12-p13 region has been linked to dyslexia45, and quantitative
dyslexia traits46, as well as quantitative speech-sound disorder
traits and reading47. The dyslexia linkage findings45 have been
related to a specific SNP haplotype within ROBO148, a
neighbouring gene of ROBO2. In animal models, Robo1 and
Robo2 are mostly co-expressed and it has been shown that both
receptors function cooperatively, for example, with respect to the
guidance of most forebrain projections49. Thus, it is possible that
variation within both ROBO1 and ROBO2 might also contribute

to the linkage signals within the reported regions, and our
findings highlight ROBO2 as a novel, not yet investigated
candidate locus.

Common polymorphisms within ROBO1 have also been
associated with reading disability50 and with performance on
tasks of non-word repetition51, which is related to phonological
short-term memory deficits. However, none of these previously
reported ROBO1 variants (rs12495133, rs331142, rs4535189 and
rs6803202)50,51 were associated with early word production
scores within our study (Supplementary Table 12). Vice versa, we
also found no association between rs7642482 (ROBO2) and
language-related measures, including phonological memory and
verbal intelligence in middle childhood, nor was there any
association with expressive vocabulary during the later phase of
language acquisition (24–30 months of age) or with very first
single-word utterances at about 12 months of age. Instead, our
findings suggest that the identified ROBO2 signal is specific for an
early developmental stage of language acquisition (15–18 months
of age), which is characterized by a slow accumulation of single
words, followed by an increase in rate that is sometimes related to
a ‘vocabulary spurt’1,4. Both in silico analyses and the increase in
signal after adjustment for gestational age support the hypothesis
that expressive vocabulary during this phase may be affected by
perinatal or early postnatal gene regulatory mechanisms. It is
furthermore possible that the enhancer effect predicted within
HUVEC also relates to a yet uncharacterized embryonic cell type,
where expression changes are only detectable on the single-cell
level. For example, during the trigeminal ganglion formation
placode/neural crest cells travel as individual cells to the site of
ganglion formation, and Robo2 appears to be expressed in
discrete, dispersed regions in the surface ectoderm39. This is
characteristic of cells, which are about to detach and migrate39.
Thus, it will require further molecular studies to characterize
the biological mechanisms underlying the observed ROBO2
association in more detail.

In line with previous findings8,9, estimates from twin analysis
and GCTA (based on large samples) suggest that the proportion
of phenotypic variation in early expressive vocabulary, which is
attributable to genetic factors, is modest. The concordance of
twin and large-sample GCTA heritability estimates indicates,
however, that most of this genetic variation is common and that
there is little ‘missing heritability’. Thus, a large proportion of
common genetic variation influencing early expressive vocabulary
might be captured by current GWAS designs, given sufficient
power.

To conclude, this study describes genome-wide association
between rs7642482 near ROBO2 and expressive vocabulary
during an early phase of language acquisition where children
typically communicate with single words only. The signal is

Table 1 | Lead association signals for early expressive vocabulary (15–18 months of age).

SNP E/A Chr Pos* Genew Discovery (N¼6,851) Follow-up (N¼2,038) Meta-analysis (N¼8,889)

EAF Beta (s.e.)z Pz EAF Beta (s.e.) P EAF Beta (s.e.) P P het

rs7642482 G/A 3p12.3 77,800,446 ROBO2 0.18 �0.11 (0.022) 9.5� 10� 7 0.19 �0.12 (0.040) 4.4� 10� 3 0.19 �0.11 (0.019) 1.3� 10� 8 0.90
rs10734234 T/C 11p15.2 15,422,436 INSC 0.90 �0.14 (0.032) 1.1� 10� 5 0.90 �0.17 (0.059) 4.5� 10� 3 0.90 �0.15 (0.028) 1.9� 10� 7 0.72
rs11176749 T/A 12q15 66,139,051 CAND1 0.11 �0.12 (0.027) 2.1� 10� 5 0.11 �0.13 (0.050) 1.0� 10� 2 0.11 �0.12 (0.024) 7.2� 10� 7 0.83
rs1654584 G/T 19p13.3 3,921,683 DAPK3 0.23 �0.081 (0.020) 6.2� 10� 5 0.23 �0.13 (0.038) 9.2� 10�4 0.23 �0.091 (0.018) 3.4� 10� 7 0.30

A, alternative allele; ALSPAC, Avon Longitudinal Study of Parents and Children; CDI, Communicative Development Inventory; Chr, chromosome; E, effect allele; EAF, effect allele frequency; Pos, position;
Phet, heterogeneity P-value.
Genome-wide screen of rank-transformed expressive vocabulary scores between 15–18 months of age in children of European ancestry. Discovery analysis was conducted in ALSPAC (Abbreviated Infant
CDI13) and independent signals were followed-up in GenR (N-CDI-2A14,16). Combined results are from inverse-variance fixed-effect meta-analysis. Beta coefficients represent the change in the
rank-transformed score (adjusted for sex, age, age-squared and the most significant principal components in each cohort) per effect allele from weighted linear regression of the score on allele dosage
(MACH2QTL). The imputation accuracy (Supplementary Table 3) for rs7642482, rs11176749 and rs1654584 was high (MACH R2

Z0.95), and for rs10734234 moderate (MACH R2¼0.75–0.76). Thus,
the signal at rs10734234 in the discovery cohort was confirmed by direct genotyping (Supplementary Table 4).
Phet—heterogeneity P-value based on Cochran’s Q-test.
*hg18.
wNearest known gene within ±500 kb.
zGenomic-control corrected.
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specific to this developmental stage, strengthened after adjust-
ment for gestational age, and links overall language-related
common genetic variation in the general population to a potential
autism susceptibility locus as well as a linkage region for dyslexia,
speech-sound disorder and reading on chromosome 3p12-p13.

Methods
Phenotype selection and study design. Consistent with the developmental
pattern of language acquisition, the analysis of children’s expressive vocabulary in
infancy was divided between an early phase (15–18 months of age, Fig. 1) and a
later phase (24–30 months of age, Fig. 2) and conducted using independent
individuals of up to four population-based European studies with both quantitative
expressive vocabulary scores and genotypes available (early phase: total N¼ 8,889;
later phase: total N¼ 10,819).

Expressive vocabulary scores were measured with age-specific-defined word lists
and either ascertained with adaptations of the MacArthur CDI13–17 or the LDS18

and based on parent-report. The CDIs were developed to assess the typical course
and variability in communicative development in children of the normal
population (8–30 months of age)13. The LDS was designed as a screening tool for
the identification of language delay in 2-year-old children18. Both measures have
sufficient internal consistency, test-retest reliability and validity18,52,53.

Expressive vocabulary during the early phase was captured by an abbreviated
version of the MacArthur CDI (Infant Version13, 8–16 months of age,
Supplementary Data 1) within the discovery cohort (ALSPAC, N¼ 6,851,
Supplementary Fig. 1a). Note, the Infant CDI has recently become also known as
CDI Words and Gestures54. A Dutch adaptation of the short-form version of the
MacArthur CDI (N-CDI 2A)14,16 was used within the follow-up cohort (GenR,
N¼ 2,038). Scores in both cohorts comprised both expressive and receptive
language aspects (‘says and understands’) and showed a positively skewed data
distribution (1.95oskewnessr2.39; Supplementary Data 1).

Vocabulary production during the later phase was measured with an
abbreviated version of the MacArthur CDI (Toddler version, 16–30 months of
age)13,15 in the discovery cohort (ALSPAC, N¼ 6,299, Supplementary Fig. 1b).
Note, the Toddler CDI has recently become also known as CDI Words and
Sentences54. Within the follow-up cohorts, expressive vocabulary was either
assessed with the LDS18 (GenR N¼ 1,812; the Raine study N¼ 981) or an adapted
short form of the MacArthur CDI (MCDI)14,17 (Twins Early Development Study,
TEDS, N¼ 1,727, independent individuals (one twin per pair), N=5,733 twin pairs
(not all of them have genotype information available)). Later-phase expressive
vocabulary scores measured expressive language only (‘says’) and were either
symmetrically distributed or negatively skewed (� 1.68oskewnessr0.24;
Supplementary Data 1).

In total, three different languages were included in our analyses: English (three
samples: ALSPAC; TEDS; Raine), Dutch (one sample: GenR) and Finnish
(sensitivity analysis: Northern Finnish Birth Cohort (NFBC) 1966). The cross-
cultural comparability of the CDI has been explored, and the measures in many
languages, including Dutch and English, show minimal differences in vocabulary
production scores in the early years55. In addition, the standardization within each

sample (see below) would have removed any minor differences between
instruments.

Basic study characteristics, details on phenotype acquisition and psychological
instruments as well as summary phenotype characteristics (including mean, s.d.,
kurtosis, skewness and age at measurement) are presented for each cohort and
developmental phase in Supplementary Data 1.

For each participating study, ethical approval of the study was obtained by the
local research ethics committee, and written informed consent was provided by all
parents and legal guardians. Detailed information on sample-specific ethical
approval and participant recruitment is provided in Supplementary Note 1.

Genotyping and imputation. Genotypes within each cohort were obtained using
high-density SNP arrays (Supplementary Data 1). Cohort-specific genotyping
information including genotyping platform, quality control (QC) for individuals
and SNPs, the final sample size, the number of SNPs before and after imputation as
well as the imputation procedures are detailed in Supplementary Data 1. Briefly, for
individual sample QC, this included filtering according to call rate, heterozygosity
and ethnic/other outliers, and for SNP QC (prior to imputation) filtering
according to minor allele frequency, call rate and SNPs with deviations from
Hardy–Weinberg equilibrium (detailed exclusion criteria are listed in
Supplementary Data 1). Genotypes were subsequently imputed to HapMap CEU
(phase II and/or III) and/or Wellcome Trust Controls (Supplementary Data 1).
For sensitivity analysis, ALSPAC genotypes on chromosome 3 were also locally
imputed to 1,000 Genomes (v3.20101123, Supplementary Data 1).

Single-variant association analysis. Within each cohort, expressive vocabulary
scores were adjusted for age, age-squared, sex and the most significant ancestry-
informative principal components56 and subsequently rank-transformed to
normality to facilitate comparison of the data across studies and instruments.
The association between SNP and the expressive vocabulary score was assessed
within each cohort using linear regression of the rank-transformed expressive
vocabulary score against allele dosage, assuming an additive genetic model.

In the discovery cohort, the genome-wide association analysis for each phase
was carried out using MACH2QTL57 using 2,449,665 imputed or genotyped SNPs.
SNPs with a minor allele frequency of o0.01 and SNPs with poor imputation
accuracy (MACH R2r0.3) were excluded prior to the analysis, and all statistics
were subjected to genomic control correction58 (Supplementary Data 1). All
independent SNPs from the early- and later-phase GWAS below the threshold of
Po10� 4 (85 and 50 SNPs, respectively) were selected for subsequent follow-up
analysis in additional cohorts. Independent SNPs were identified by linkage
disequilibrium-based clumping using PLINK59) Proxy SNPs within ±500 kb,
linkage disequilibrium r240.3 (Hapmap II CEU, Rel 22) were removed). All
analyses within the follow-up samples were carried out in silico using MACH2QTL
or SNPTEST60 software (Supplementary Data 1). For the selected SNPs, estimates
from the discovery (genomic-control corrected) and follow-up cohort(s) were
combined using fixed-effects inverse-variance meta-analysis (R ‘rmeta’ package),
while testing for overall heterogeneity using Cochran’s Q-test. Signals below a
genome-wide significance threshold of Po2.5� 10� 8 (accounting for two GWAS
analyses) were considered to represent robust evidence for association.

Table 2 | Heritability of expressive vocabulary (15–30 months).

Sample Age (m) Measure h2(s.e.)* LRT (df) P Nw

GCTA: early expressive vocabulary (15–18 months)
ALSPAC 15 Infant CDI 0.13 (0.05) 5.66 (1) 0.009 6,194
GenR 18 N-CDI-2A 0.19 (0.17) 1.23 (1) 0.10 1,828
Totalz 0.13 (0.05) 8,022

GCTA: later expressive vocabulary (24–30 months)
ALSPAC 24 Toddler CDI 0.17 (0.06) 8.09 (1) 0.002 5,739
Raine 24 LDS o0.01 (0.34) o0.01 (1) 0.50 866
TEDS 24 MCDI o0.01 (0.15) o0.01 (1) 0.50 1,720
GenR 30 LDS 0.11 (0.19) 0.33 (1) 0.30 1,641
Totalz 0.14 (0.05) 9,966

Sample Age (m) Measure a2(s.e.)y N||

Twin analysis: later expressive vocabulary (24 months)
TEDS 24 MCDI 0.20 (0.008) 5,733

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; GCTA, genome-wide complex trait analysis; m, months; TEDS, Twins Early Development Study.
Expressive vocabulary was captured with different forms of the MacArthur Communicative Development Inventories (CDI: infant CDI, toddler CDI, N-CDI-2A and MCDI)13–17 and the Language
development Survey (LDS)18 (Supplementary Data 1).
*GCTA heritability based on rank-transformed expressive vocabulary scores adjusted for age, age-squared, sex and the most significant ancestry-informative principal components in each cohort.
wSample number after exclusion of individuals with a relatedness of Z2.5%.
zEstimates were combined using fixed-effects inverse-variance meta-analysis (heterogeneity P value based on Cochran’s Q-test based PhetZ0.72).
yAdditive genetic influence for rank-transformed expressive vocabulary scores adjusted for age, age-squared and sex, based on an ACE model (Supplementary Tables 10 and 11).
||Number of twin pairs.
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An empirical approach (Bootstrapping with 10,000 replicates) was selected to
obtain meaningful genetic effects (basic 95% bootstrap confidence interval) of the
reported SNPs in the discovery cohort. For this, we utlilized a linear model of
z-standardized expressive vocabulary scores against allele dosage, adjusted for age,
age-squared, sex and the most significant ancestry-informative principal
components. The local departmental server of the School of Social and Community
Medicine at the University of Bristol was used for data exchange and storage.

Sensitivity analysis in ALSPAC using locally imputed genotypes on
chromosome 3 (based on 1,000 Genomes) was performed as linear regression of
the rank-transformed expressive vocabulary score against allele dosage, assuming
an additive genetic model, using MACH2QTL (Supplementary Data 1).

Direct genotyping of reported SNPs. Reported SNPs with a medium imputation
accuracy (MACH R2o0.8) were re-genotyped in the discovery cohort (ALSPAC)
to confirm the validity of the observed association signal (rs10734234,
MACH R2¼ 0.76). Genotyping was undertaken by LGC Genomic Ltd (http://
www.lgcgenomics.com/) using a form of competitive allele-specific PCR system
(KASPar) for SNP analysis.

Variance explained. To estimate the variation in expressive vocabulary scores
explained by each reported SNP and jointly by all reported SNPs together, we
calculated the adjusted regression R2 values from (i) univariate linear regression of
the rank-transformed expressive vocabulary score (see above) against allele dosage
and (ii) multivariate linear regression of the rank-transformed expressive voca-
bulary score (see above) against the allele dosage from all reported SNPs. All
analyses were performed using R, SPSS or STATA software.

Phenotypic characterization of association signals. To investigate whether there
is an association between the first single-word utterances at B12 months of age
and the reported SNPs, we conducted an association analysis in the NFBC 1966.
The number of spoken words in the NFBC 1966 (word-list
free assessment, ‘words’ are undefined) were based on parental response to a
questionnaire administered at 12 months of age (Supplementary Data 1). Given the
scarcity of categories referring to three or more spoken words, word numbers were
dichotomized into ‘1þ words’ (one or more words, 1) versus ‘no words’ (0). The
association between early word-production scores and allele dosage of the reported
SNPs was studied using logistic regression models, adjusted for sex and the most
significant principal components (as exact age at measurement was not available)
using SNPTEST.

Pre-school language deficits have been repeatedly associated with later problems
in language development, especially reading skills61. To assess whether genetic
effects affecting expressive language skills early in life also influence language
competencies during later development, we investigated the association between
reported SNP signals and a series of language-related cognitive measurements in
the ALSPAC cohort (Supplementary Table 8). All outcomes were z-standardized
prior to analysis. The association between the transformed outcome and SNP allele
dosage was investigated using linear regression adjusted for sex, the most
significant principal components and age (except for age-normalized intelligence
quotient scores, Supplementary Table 9).

To assess whether gestational age and maternal education influence the
association between the reported signals and early expressive vocabulary scores, we
(i) investigated the association between these potential covariates and the SNPs
directly and (ii) adjusted the association between genotypes and language measures
for potential covariate effects. Gestational age in the relevant cohorts was either
estimated from medical records or obtained from midwife and hospital registries at
birth (Supplementary Data 1), and measured in completed weeks of gestation.
Information on maternal education was obtained from antenatal questionnaire
data, and dichotomized into lower (1) and higher (0) maternal education
(Supplementary Data 1). The association between gestational age and allele dosage
for reported SNPs was investigated with linear regression models and adjusted for
sex and the most significant principal components in each cohort. The link
between maternal education and these SNPs was studied using logistic regression
models adjusted for the most significant principal components in each cohort.

We furthermore created new transformations of expressive vocabulary scores,
that is, the reported number of words were in addition to the previously described
variables (see above) adjusted for gestational age and maternal education,
respectively, before they were rank-transformed. Association analysis for reported
SNPs was then carried out as described for discovery, follow-up and combined
analysis before. All analyses were carried out using R, SPSS or STATA software.

GCTA. The proportion of additive phenotypic variation jointly explained by all
genome-wide SNPs together (GCTA heritability) was estimated for all cohorts and
analyses windows using GCTA32. In brief, using a sample of independent
individuals, the method is based on the comparison of a matrix of pairwise
genomic similarity with a matrix of pairwise phenotypic similarity using a random-
effects mixed linear model32. Pertinent to this study, GCTA (Supplementary Data
1) was carried out using rank-transformed expressive vocabulary scores (previously
adjusted for age, sex and the most significant ancestry-informative principal
components in each cohort, see above) and directly genotyped SNPs (ALSPAC,

GenR, Raine) or most likely imputed genotypes (TEDS). GCTA estimates from
different cohorts were combined using fixed-effects inverse-variance meta-analysis
assuming symmetrically distributed s.e., while testing for overall heterogeneity
using Cochran’s Q-test.

The extent to which the same genes contribute to the observed phenotypic
correlation between two variables can be furthermore estimated through genetic
correlations62. For all cohorts with expressive vocabulary measures at two time
points (ALSPAC and GenR), the genetic correlation (rg) between the rank-
transformed scores was estimated using bivariate GCTA analysis33 (based on the
genetic covariance between two traits).

Twin analysis. Twin analyses allow the estimation of the relative contributions of
genes and environments to individual differences in measured traits. Twin intra-
class correlations were calculated63, providing an initial indication of the relative
contributions of additive genetic (A), shared environmental (C) and non-shared
environmental (E) factors. Additive genetic influence, also commonly known as
heritability, is estimated as twice the difference between the identical and fraternal
twin correlations. The contribution of the shared environment, which makes
members of a family similar, is estimated as the difference between the identical
twin correlation and heritability. Non-shared environments, that is, environments
specific to individuals, are estimated by the difference between the identical twin
correlation and 1, because they are the only source of variance making identical
twins different. Estimates of the non-shared environment also include
measurement error.

Maximum likelihood structural equation model-fitting analyses allow more
complex analyses and formal tests of significance64. Standard twin model-fitting
analyses were conducted using Mx65. The model fit is summarized by minus two
times the log likelihood (� 2LL). Differences in � 2LL between models distributes
as w2, which provides a goodness of fit statistic. A change in w2 of 3.84 is significant
for a 1 degree of freedom test. Model fit was compared between the full ACE model
and the saturated model (where variances are not decomposed into genetic and
environmental sources). Reduced models testing CE, AE and E models were
compared with the full ACE model and the saturated model. A significant P value
indicates a significantly worse fit.

Twin analysis was carried out on rank-transformed expressive vocabulary
scores at 24 months (adjusted for age, age-squared and sex), which were assessed in
5,733 twin pairs (monozygotic twins N¼ 1,969; dizygotic twins (male, female and
opposite sex) N¼ 3,764) from the TEDS66.

The URLs for all utilized web pages are given in Supplementary Note 2.
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