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Vascular calcification is a complex pathological process occurring in patients with

atherosclerosis, type 2 diabetes, and chronic kidney disease. The extracellular

matrix, via matricrine-receptor signaling plays important roles in the pathogenesis of

calcification. Calcification is mediated by osteochondrocytic-like cells that arise from

transdifferentiating vascular smooth muscle cells. Recent advances in our understanding

of the plasticity of vascular smooth muscle cell and other cells of mesenchymal

origin have furthered our understanding of how these cells transdifferentiate into

osteochondrocytic-like cells in response to environmental cues. In the present review,

we examine the role of the extracellular matrix in the regulation of cell behavior

and differentiation in the context of vascular calcification. In pathological calcification,

the extracellular matrix not only provides a scaffold for mineral deposition, but also

acts as an active signaling entity. In recent years, extracellular matrix components

have been shown to influence cellular signaling through matrix receptors such as the

discoidin domain receptor family, integrins, and elastin receptors, all of which can

modulate osteochondrocytic differentiation and calcification. Changes in extracellular

matrix stiffness and composition are detected by these receptors which in turn

modulate downstream signaling pathways and cytoskeletal dynamics, which are critical

to osteogenic differentiation. This review will focus on recent literature that highlights

the role of cell-matrix interactions and how they influence cellular behavior, and

osteochondrocytic transdifferentiation in the pathogenesis of cardiovascular calcification.

Keywords: vascular calcification, extracellular matrix, mechanotransduction, collagen, integrin, discoidin domain

receptor, cytoskeleton, osteogenesis

INTRODUCTION

Vascular calcification is a pathology characterized by ectopic calcification of the vessel wall of
muscular or elastic arteries. Vascular calcification is often observed in atherosclerosis, type 2
diabetes (T2D), chronic kidney disease, and aging, and contributes to increased cardiovascular
morbidity and mortality independent of other known risk factors (1–3). Vascular calcification
increases the risk of myocardial infarction and heart failure and is the leading cause of the death in
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patients with chronic kidney disease (4, 5). In addition, patients
with high calcium deposition that also have peripheral artery
disease have approximately a 25% increase in the risk of limb
amputation (6). Despite the widespread incidence of vascular
calcification, effective, and targeted therapies are still lacking.

Previously thought to be a passive process of crystal deposition
on the surrounding extracellular matrix (ECM), it is now
appreciated that vascular calcification pathogenesis is an active
process involving the transdifferentiation of vascular smooth
muscle cells (VSMCs) into osteochondrocytic cells (7–9). The
nucleation and propagation of calcium phosphate crystals in
the vessel wall is mediated by matrix vesicles secreted by
osteochondrocytic cells deposited on components of the ECM
such as collagens and elastin (10). Furthermore, previous
studies have found many of the transcriptional and regulatory
signaling pathways involved in normal bone formation are also
present in calcifying vessels (11–14). Some examples include
paracrine signaling molecules like bone morphogenetic protein
2 (BMP-2) (15), the master osteogenic transcription factor runt-
related transcription factor 2 (Runx2) (14), expression of pro-
calcification enzymes such as alkaline phosphatase (16), and loss
of calcification inhibitors such as pyrophosphate (17), matrix
GLA protein (18), and fetuin-A (19).

Much research on vascular calcification has highlighted
the impact of systemic factors such as inflammation, lipids,
glucose, and phosphate on VSMC transdifferentiation. In
addition to these factors, it has become evident that the local
ECM tissue microenvironment not only acts as a scaffold
for cells and hydroxyapatite deposition, but it also plays an
important role as a signaling entity, modulator of inflammation,
and of cell phenotype. This has been observed in VSMC
transdifferentiation to osteochondrocytic cells as well as in other
cell types such as mesenchymal stem cells. Matrix binding
receptors such as the integrins and discoidin domain receptors
(DDRs) have been implicated in the regulation of osteogenic
programs. Modulation of cell phenotype by ECM stiffness sensed
through matrix binding receptors has also been recognized
to be important in osteogenic differentiation. Furthermore,
indirect effects of the ECM on vascular calcification may be
induced by creating changes in systemic factors or overall
metabolism.

In this article, we review the current state of knowledge on
the ECM and its role in osteogenesis and vascular calcification
at a physiological level, and from a molecular and cellular
standpoint. We review mechanisms of ectopic calcification
and osteogenic differentiation to provide context for further
discussion of matricrine regulation of calcification. We then
review ECM proteins and receptors which have been implicated
in calcification, in particular DDRs, integrins, the elastin receptor
complex (ERC), and receptor for advanced glycation end
products (RAGE). Next is a discussion of two important matrix
localized calcification inhibitors, osteopontin and matrix Gla
proteins (MGP). Finally, compelling evidence for an integrated
mechanosensitive matricrine signaling axis involving receptors
coupled to the cytoskeleton is discussed. A better understanding
of the pathobiology will help to identify potential targets for more
effective therapeutics or treatment options.

ECTOPIC CALCIFICATION

Ectopic calcification is characterized by the pathological
deposition of calcium phosphate crystals within the extracellular
matrix of soft tissues, including the vasculature (20). Vascular
calcification is a form of ectopic mineralization and can be
classified as one of two main types: (1) atherosclerotic (intimal)
calcification, and (2) medial calcification (21). As suggested
by the name, intimal calcification occurs within atherosclerotic
plaques, while medial calcification occurs within the medial
layer of the vasculature. The cellular mechanisms driving both
forms of vascular calcification are similar and share features
in common with osteogenic programs (22), however remain
distinct in their pathology. Risk factors associated with vascular
calcification include chronic kidney disease (CKD) (5, 21, 23),
T2D (24, 25), inflammation (26), and age to name a few (27,
28). Medial calcification is more common in patients suffering
from T2D and CKD and is thought to be initiated by the
nucleation of calcium phosphate crystals in matrix vesicles or
on elastin and is exacerbated by metabolic factors such as
hyperglycemia and insulin resistance (8). Intimal calcification on
the other hand is more closely associated with atherosclerosis
and is mediated by local inflammation (8). Both medial and
intimal calcification involve the transdifferentiation of VSMCs
into osteochondrocytes via mechanisms that are currently being
investigated (11, 29–31).

Osteogenic differentiation and bone mineralization are
highly regulated processes involving multiple interacting factors
including intracellular signaling cascades, secreted factors,
extracellular inhibitors of mineralization, and cell-matrix
interactions. Several signaling molecules such as fibroblast
growth factors (FGFs), transforming growth factors (TGFs),
and bone morphogenetic proteins (BMPs) play a role in
osteogenic differentiation. The most widely studied are the
BMPs, particularly BMP-2. BMPs signal through BMP receptors,
transducing downstream signaling through SMAD1/5/8, which
in concert with SMAD4 upregulates the expression of the
master osteogenic transcription factor, Runx2. Runx2 commits
mesenchymal progenitors to the osteoblast lineage and drives
osteochondrocytic transdifferentiation and calcification of
VSMCs (14, 32). In addition, Runx2 regulates the expression
of osteoblast-related genes such as osteocalcin, osterix, and
type I collagen (33, 34). Runx2 activity is subject to regulation
by phosphorylation events mediated by kinases such as Akt
(12, 35), ERK1/2 (36), p38 (37), JNK (36), GSK3β (37), and
CDK1 (in response to glucose) (38). Phosphorylation of Runx2
can be activating or inhibitory. Moreover, Runx2 activity is also
regulated by nuclear translocation, DNA-binding capacity and
interaction with transcriptional co-factors, as well as protection
from degradation by binding partners such as Cbfb (39).

Following osteogenic differentiation, calcification can
progress by the nucleation and propagation of hydroxyapatite
crystals in the ECM. This is mediated by the secretion of matrix
vesicles by osteoblasts or osteochondrocytic cells in normal bone
formation and pathological calcification, respectively (40, 41).
Matrix vesicles are membrane-bound particles of approximately
100 nm in diameter and are a driving force for the initiation and
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propagation of mineralization. The ECM is an important site for
matrix vesicle deposition and scaffolding for biomineralization
(41, 42). Secreted matrix vesicles can become deposited and
cluster on collagens in the ECM (40, 41). Collagen density
has been shown to be negatively correlated to matrix vesicle
clustering and biomineralization both in in vitro and in vivo
models of vascular calcification (41).

There are examples of diseases that demonstrate the
importance of the ECM in the progression of calcification.
Osteogenesis imperfecta is an inherited disease involving a
mutation in the α1 or α2 chains of type I collagen leading to
reduced deposition of normal collagen fibrils and production of
structurally abnormal collagens (43). Improper mineralization of
hydroxyapatite crystals on the collagen scaffolding leads to the
development of fragile and brittle bones (44). Polymorphisms
in the Sp1 binding site of the Col1α1 gene are associated with
osteoporosis, a disease resulting in reduced bone mineral density
and increased risk of bone fracture (45). This polymorphism
increases binding of the Sp1 transcription factor to the Col1α1
gene promoter, causing an increase from the normal 2:1 ratio of
Col1α1 to Col1α2 mRNA and protein produced by osteoblasts
(46). This may be a causal mechanism for the reduced bone
quality and bone mass in osteoporotic patients with this
polymorphism.

EXTRACELLULAR MATRIX

The ECM is important in the regulation of cellular phenotype,
homeostasis, and development in addition to providing physical
support and organization of cells into tissues and organs (47).
Collagens are the main component of the ECM and are made
up of α-chains that assume a triple-helical conformation with a
repeating Gly-X-Y amino acid motif where X and Y constitute
any amino acid (47). Fibrillar collagens are composed of three
α-chains, although more than 40 α-chains have been discovered
in humans (48). Collagens can form supramolecular structures
and can be classified as fibrillar, fibrillar-associated collagens with
interrupted triple-helix (FACIT), membrane-associated collagens
with interrupted triple-helix (MACIT), long chain, short chain,
filamentous, or basement membrane comprised solely of type
IV collagen. Although collagens are its main constituent, the
ECM also consists of elastin, proteoglycans, lecticans, laminin,
and fibronectin (FN). Like collagens, they have unique tertiary
structures and contribute to the organization and complexity of
the ECM and are reviewed in greater detail elsewhere (47).

The ECM is often referred to as the “matrisome” and consists
of over 300 components that have been compiled and reviewed
elsewhere (49). The relationship between the ECM and the cells
residing within it is a reciprocal one, as matrix binding receptors
sense the biochemical and physical makeup of the ECM and
transduce signals to the cell which can in turn contribute to
ECM remodeling. The major classes of ECM receptors (integrins,
DDRs, and ERC) are discussed in further detail in this review.

Another important component of the “matrisome” is matrix
bound proteins, such as growth factors that have important
functions in the regulation of cell growth, plasticity, and

metabolism. ECM components can bind to and sequester growth
factors, storing them in a “solid phase” until their release is
enabled (50). For example, FN and vitronectin contain known
hepatocyte growth factor (HGF) binding sites, and endothelial
cell migration was augmented by HGF complexed to FN or
vitronectin (51). Similarly, vascular endothelial growth factor
(VEGF) was shown to bind tenascin-X (52), and FN (53).
FN fragments containing the VEGF binding domain as well
as the α5β1 integrin binding domain were required for the
maximal induction of endothelial cell migration and proliferation
(53). In some cases, components of the ECM are required for
ligand presentation and binding to its receptor. For instance,
fibroblast growth factor (FGF) is known to bind to heparin
sulfate, a requirement for FGF binding to the FGF receptor
(54). Similarly, TGF-β is sequestered in the matrix, and TGF-
β ligands are presented by integral membrane proteoglycans
(55). In addition to acting as a growth factor reservoir, some
ECM components contain growth factor-like domains that
activate growth factor receptors directly. Two examples of
this are laminins and tenascin, both known to contain EGF
domains (56, 57). A hallmark of chondrogenic tissues is type
II collagen, which is secreted into the ECM as two splice
variants, type IIA and type IIB (58). Chondrocytes secrete
mainly type IIB collagen (58), while type IIA collagen is
secreted by epithelial and mesenchymal stem cells (59). Type IIA
collagen was shown to bind to BMP-2 and TGF-β1, which are
important to chondrogenesis and endochondral bone formation
(58).

The composition of the ECM is highly dynamic and is
regulated by a balance of matrix deposition and degradation
by matrix proteases such as the matrix metalloproteinases
(MMPs). A total of 23 MMPs have been identified in humans
and can collectively degrade all ECM proteins (60). MMPs
are secreted as zymogens that require enzymatic cleavage for
activation. Endogenous inhibitors of MMPs, tissue inhibitors
of metalloproteinases (TIMPs) 1–4, are present to prevent
excessive cleavage of matrix components. TIMPs 1, 2, and
4 exist soluble in the extracellular milieu whereas TIMP3 is
bound to the ECM (61). Dysregulation of matrix turnover
resulting in excessive or insufficient matrix degradation can
result in pathologies such as tissue fibrosis and contribute to the
production of bioactive signaling molecules signaling through
ECM receptors (62, 63). Degradation of matrix components can
also result in altered release of growth factors sequestered in the
ECM, for example TGF-β (64). Matrix turnover by MMPs is
prominent in diseases associated with vascular calcification such
as atherosclerosis and T2D, and thus release of pro-osteogenic
growth factors may contribute to the pathogenesis of vascular
calcification.

Direct signaling through ECM receptors by the matrisome
also play an important role in the maintenance of cellular
phenotype and function and will be the main focus of this review.
Specifically, we will review work on the DDRs, the integrins,
the ERC, and the RAGE, and their functions in osteogenesis
and vascular calcification. A summary of these receptors, their
ligands, and pro-calcific signaling and functions is provided in
Table 1.
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TABLE 1 | Summary of matrix-binding receptors, their respective ligands, and their potential functions in promoting calcification.

Matrix receptor Ligand(s) Pro-Calcific signaling and function

DDR1 Collagens I-V, VIII Akt, ERK1/2, p38, MMP-2/9 activity, maintenance of dynamic

microtubules by GSK3β inhibition, stiffness sensing (65–67)

DDR2 Collagens I-III, V, X Runx2 induction, inhibition of osteoclastogenesis (68, 69)

Elastin Receptor Elastin-Derived Peptides Akt, ERK1/2, VSMC proliferation and de-differentiation (70–72)

α1β1 and α2β1 integrins Collagen I, Laminin Osteoblast attachment, stiffness sensing (73, 74)

α5β1 and αvβ3 integrins Fibronectin, RGD-peptide, Osteopontin, Elastokines (αvβ3
integrins)

Stiffness sensing, RGD stimulation enhances VIC and VSMC

calcification in vitro (75–77)

α4β1, α9β1, and α9β4 integrins Osteopontin SVVYGLR (SLAYGLR in mice) cryptic motif Increased immune cell infiltration, increased production of IL-1β,

TNF-α, IL-6, IL-17 (78, 79)

RAGE Receptor Glycated ECM proteins, HMGB1, S100/calgranulin,

phosphatidylserine

ERK1/2, p38, JNK, SMAD2/3 activity, cooperation with Nox1 for

ROS production, NFκB activation (80–85)

Listed here are major matrix binding receptors discussed in this review, highlighting their respective ligands as well as known signaling pathways.

DISCOIDIN DOMAIN RECEPTORS

There are two DDRs, DDR1 and DDR2, which are collagen
binding receptor tyrosine kinases. DDRs have been implicated in
cellular processes regulating migration, adhesion, proliferation,
as well as in the pathogenesis of fibrosis (86, 87), cancer (88,
89), atherosclerosis (90–92), and vascular calcification (16, 65).
The DDRs are activated upon binding to native triple-helical
collagens, undergoing autophosphorylation of the cytoplasmic
domain which leads to downstream signaling (93). Compared
to other receptor tyrosine kinases, the DDRs have delayed
phosphorylation kinetics (93). For instance, the epidermal
growth factor receptor (EGFR) and the fibroblast growth factor
receptor (FGFR) are maximally phosphorylated in a period of
seconds to minutes after ligand binding, and are then negatively
regulated (94). In contrast, type-I collagen mediated DDR1
phosphorylation peaks at 90min and is sustained for a period
of 18 h (93). In cells grown in suspension, however, DDR1
phosphorylation was accelerated (95), demonstrating a context
and adhesion dependent effect on DDR1 phosphorylation and
function. Once activated, DDR1 can bind to signaling molecules
that include PI3K subunits p85 and p110, STAT-1a/b,−3,
and−5b, as well as guanine exchange factors PLC-γ1 and Vav1/2
(96). DDR1 has also been shown to activate P38 (97), ERK1/2
(98), and PI3K/Akt signaling pathways that are important in
regulating cellular functions related to proliferation, metabolism
and cell differentiation (65, 99).

Recent work from our laboratory has demonstrated that
DDR1 promotes vascular calcification in atherosclerosis and
diabetes (16, 65). Ahmad et al. studied Ldlr−/− mice fed a
high-fat diet to stimulate the development of atherosclerotic
plaques. DDR1 deficiency resulted in marked reductions
in vascular calcification of the atherosclerotic plaques (16).
VSMCs harvested from Ddr1−/− mice exhibited decreased
alkaline phosphatase activity and matrix calcification in in
vitro calcification assays. We next fed a diabetogenic diet
to Ldlr−/− mice to induce diabetes and atherosclerosis (65).
We found that DDR1 deletion decreased vascular calcification
and abolished Runx2 nuclear localization in vivo. Cell culture
experiments revealed that DDR1 signals via PI3K/Akt and P38

to activate Runx2 leading to VSMC transdifferentiation to an
osteochondrocyte-like phenotype. Moreover, we showed that
microtubules were required for the translocation of Runx2 to
the nucleus, and microtubules were disrupted in DDR1 deficient
VSMCs. In contrast to our recent work, a previous study
reported that matrix calcification was significantly upregulated
in DDR1 deficient VSMCs (100). A probable reason for this
discrepancy is the use of different calcification media with a
high concentration of β-glycerophosphate compared to our high
glucose and phosphate media, because the former media causes
cell death and passive calcification which likely obscures late stage
phenotypic differences between the cells.

DDR2 has been implicated in chondrogenesis and in cartilage
and bone remodeling (68, 69, 101–103). DDR2 is expressed
in fibrocartilage within the temporomandibular joint, and
deletion of DDR2 resulted in delayed condyle mineralization
(104). DDR2 is also involved in bone remodeling. DDR2
overexpression inhibited osteoclast differentiation, and silencing
DDR2 enhanced osteoclast differentiation, demonstrating that
DDR2 is an important inhibitor of osteoclastogenesis (68). High
expression of DDR2 has also been detected in synovial fibroblasts
from patients with rheumatoid arthritis. DDR2 overexpression
resulted in increased MMP-13 expression dependent on Runx2
and AP1 binding to the MMP-13 promoter (105). Taken together
these studies highlight important functions for both DDRs in
the regulation of osteogenesis, and specifically for DDR1 in
regulating vascular calcification.

INTEGRINS

Integrins are a family of heterodimeric ECM receptors formed by
the dimerization of an α and a β subunit. In humans, 24 distinct
heterodimers have been identified with different combinations of
18 α subunits and 8 β subunits (106, 107). Each heterodimer has
distinct binding affinities and sequence recognition capabilities
to ECM proteins. Upon ligand binding, integrins undergo a
conformational change allowing for interaction with downstream
intracellular signaling mediators such as focal adhesion kinase
(FAK), Rho GTPases, and paxillin. In addition to conformational
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changes resulting from ligand binding, physical forces can induce
structural changes to integrins. Integrins have been implicated
in a number of cellular processes such as adhesion, migration,
proliferation, and cellular differentiation.

Integrins have a role in osteogenic differentiation and
both physiological and pathological calcification. During bone
formation, osteoblasts and chondrocytes deposit ECM proteins
such as osteopontin and type I collagen which activate
integrins. The integrin-ECM interaction guides the progression
of bone growth and mineralization. Of the integrins, β1 and
β3 integrins have been studied more extensively. Stimulation
of the FN receptor, α5β1 integrin, in adipose stem cells
suppressed osteogenic differentiation (108). Transgenic mice
expressing dominant-negative β1 integrin in osteoblasts had
impaired bone formation, due to impaired adhesion of
osteoblasts to the ECM (73). In addition to bone development,
integrins have been shown to influence osteochondrocytic
transdifferentiation and pathological calcification. Different
matrix proteins elicit different effects on in vitro VSMC
calcification and administration with α5-integrin blocking
antibodies attenuated FN-mediated enhancement of calcification
(75). This is in contrast to observations stated previously
on the role of α5β1 integrin in adipose stem cells and
osteogenesis, suggesting a cell type-specific role of α5β1 integrin
in modulating osteogenesis. Work done on valve interstitial
cell (VIC) calcification showed that stimulation with the β3-
integrin ligand Arg-Gly-Asp (RGD) peptide, a motif found in
FN, promoted osteochondrocytic differentiation and calcified
nodule formation (76). This highlights the importance of integrin
signaling to respond to cues from the ECM to modulate
osteogenesis and calcification.

ELASTIN RECEPTOR COMPLEX

Elastin is a matrix component of large elastic and muscular
arteries and is composed of polymerized tropoelastin monomers
laid over a scaffold of fibrillin microfibrils, bound to elastin
binding, and crosslinking proteins. Primarily synthesized and
deposited during fetal development, elastin expression and
synthesis of elastin fibers drops off significantly postnatally
becoming undetectable by adulthood. Under physiological
conditions, turnover of elastin is minimal and the protein has a
half-life of several decades (109). In aging or pathological states
such as atherosclerosis, elastin fiber integrity is compromised due
to degradation by proteases such as MMP-2,−9, and−12 (110,
111), neutrophil elastases (112), and cysteine proteases (113).
The proteolysis of elastin leads to the release of bioactive elastin-
derived peptides called elastokines. Elastokines signal through
cell surface receptors on smooth muscle cells to mediate a wide
variety of activities. The elastin receptor complex (ERC) was
the first receptor identified and remains the best studied (114),
though αvβ3 and αvβ5 integrins (115, 116) as well as galectin-3
(117) can also respond to elastokines.

The ERC is a trimeric protein complex composed of
two membrane-bound subunits, protective protein/cathepsin A
(PPCA) and neuraminidase-1 (Neu-1), and the elastin-binding

subunit, called elastin binding protein (EBP) (118). EBP is
responsible for ligand binding through recognizing peptide
motifs and Neu-1 is crucial for signal transduction (119, 120).
The elastin receptor-activating elastokines include the VGVAPG
repeat peptide and GXXPG-containing peptides, where X is any
hydrophobic amino acid (119, 121, 122). Negative regulation of
elastin receptor signaling is achieved through allosteric inhibition
by galactose or lactose, which inhibits EBP binding to elastokines
(123). Elastin receptor activation induces multiple intracellular
events including activation of tyrosine kinases such as FAK and
c-Src converging on activation of ERK1/2 and Akt (70–72).

Proteolytic degradation of elastin and signaling by elastokines
and tropoelastin has been implicated in the progression of
vascular calcification. Initial observations were made correlating
the expression of MMP-2 and MMP-9 with regions of calcified
elastin and osteogenic differentiation of VSMCs in vivo (124).
More recent studies have shown that elastin breaks colocalize
with regions of calcification in the aortas of Marfan syndrome
patients (125). Treatment of VSMCs with elastokines promoted
osteogenic differentiation and calcification in vitro and this was
further enhanced with concomitant TGF-β treatment (126), or
culture in high-glucose or high-phosphate media (127, 128).

Studies in mice with chemical or genetic inhibition of
proteases have demonstrated that elastin degradation contributes
to calcification. One of the earliest studies to directly demonstrate
the effect of elastolysis on vascular calcification was done using
a rat model of abdominal aortic aneurysm induced by low
dose CaCl2 treatment (129). This protocol induced elastin
breaks by increasing MMP-2 and MMP-9 activity, and tissues
were harvested prior to the development of inflammatory
response and alterations in vessel morphology due to abnormal
hemodynamics. CaCl2 treatment caused calcification of the
elastic fibers where breaks had been induced (129). Furthermore,
MMP-2/MMP-9 deficiency or treatment with AlCl3, an inhibitor
of MMP-2/9, attenuated degradation of elastic fibers and
calcification (129). In other studies, the MMP inhibitor
doxycycline was used to inhibit elastase activity in vitamin D3

or warfarin-induced rat models of vascular calcification and it
was shown that this significantly inhibited vascular calcification
(130–132). Nephrectomy is a commonly used model of chronic
kidney disease which results in vascular calcification. Knockout
of the elastolytic protease, cathepsin S (catS), in nephrectomised
ApoE−/− mice attenuates elastin degradation and vascular and
valvular calcification (133). Analysis of the blood biochemistry
of ApoE−/−; CatS−/− mice following nephrectomy revealed
reduced Cystatin C (marker for dysfunctional glomerular
filtration), increased cholesterol, and similar phosphate and
calcium concentrations compared to ApoE−/−; CatS+/+ mice
following nephrectomy (133). Furthermore, histological analysis
of carotid artery plaques from these two groups of mice revealed
similar macrophage content as assessed by Mac-3 staining (133).
Administration of cathepsin S to VSMCs treated with elastin
peptides in culture enhanced in vitro calcification (133). TGF-
β is normally sequestered in the ECM by the matrix-bound
large latent complex (LLC) until released by matrix degrading
proteases during matrix remodeling. The latent TGF-β binding
proteins (LTBPs) are key components of the LLC and tether to
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elastin scaffold proteins and elastin crosslinking proteins such
as fibrillin-1 and fibulin-5 (134, 135). Given these findings,
proteolytic degradation of elastin and release of TGF-β may
be a contributing mechanism to the development of vascular
calcification. TGF-β is a known mediator of fibrosis and has
been shown to stimulate VSMC calcification. Interestingly,
calcifying vessels in mice lacking MGP had enhanced expression
of elastin and abnormal elastin structure in the medial layer
compared to non-calcifying wild-type mice (136). Furthermore,
elastin haploinsufficiency (Eln+/−) on theMGP-null background
reduced spontaneous vascular calcification (136). These results
suggest that the quantity of elastin produced influences
calcification, possibly through the scaffolding role of elastin
for hydroxyapatite deposition or availability of elastin for the
generation of elastokines which influence osteochondrocytic
transdifferentiation.

RECEPTOR FOR ADVANCED GLYCATION
END PRODUCTS (RAGE)

Vascular calcification is a major complication in T2D. One of
the prominent hallmarks of T2D is hyperglycemia. Excessive
circulating glucose can result in non-enzymatic glycation of
proteins, altering their structural and functional properties.
Glycation is a chemical modification by which a sugar moiety
covalently modifies amino acid residues on proteins. Given
the relatively long half-life and length of ECM proteins
such as collagens, they are one of the major protein groups
that are glycated in diabetes (137). Glycation of collagens
can lead to structural deficits resulting in impairment of
collagen cross-linking (138), increased matrix and tissue stiffness
(139), inhibition of matrix turnover (140), defective cell-
matrix interactions (141), and reduced sliding of collagen
fibrils (142, 143). In addition to structural changes, glycated
proteins can serve as ligands for the multi-ligand RAGE (144).
RAGE are cell surface receptors found on most immune cells
as well as on other cell types such as VSMCs (145–148).
Aside from advanced glycation end products (AGEs), other
ligands have been identified for RAGE such as the secreted
proteins S-100/calgranulin (80) and high mobility group box 1
(HMGB1) (149), as well as phosphatidylserine (150). Ligands
like S100/calgranulin family members can act through RAGE
to promote the inflammatory NFκB pathway as well as ROS
signaling through cooperation with NADPH oxidase-1 (Nox1)
upon ligand binding (80, 81, 151). Downstream kinase mediators
such as ERK1/2, p38, and JNK as well as TGF-β pathways are
also activated by RAGE stimulation (82–85). A soluble RAGE is
secreted by cells to act as a decoy receptor to attenuate RAGE
signaling (149).

Recent studies have identified an important role
for membrane RAGE and Nox1 signaling in VSMC
osteochondrocytic differentiation and vascular calcification
(81, 152). RAGE is upregulated in calcified tissues in rat models
of diabetic aortic medial calcification as well as aortic valve
calcification in ApoE−/− mice (153, 154). NFκB can increase
the expression of RAGE, thus providing a positive feedback

mechanism for this pathway (155, 156). In the assessment of
human diabetic patients following foot amputation, it was found
that levels of circulating AGEs and expression of RAGE in the
anterior tibial artery wall was positively correlated with the
extent of calcification (157). Circulating levels of the inhibitory
soluble RAGE were reduced in patients with calcific aortic
valve stenosis and with vascular calcification (158, 159). Ex vivo
stimulation of diabetic rat femoral arteries with the RAGE ligand
N-methylpyridinium enhanced calcification (160). Treatment
of human VSMCs with AGEs from the serum of diabetic
patients upregulated the expression of alkaline phosphatase,
Runx2, and other osteochondrocytic proteins (161). On the
other hand, RAGE-blocking antibodies, p38 inhibition, and Nox
inhibition prevented calcification and VSMC osteochondrocytic
transdifferentiation (81, 83). In vivo studies in ApoE−/− mice fed
a high cholesterol diet showed that RAGE deficiency attenuated
valvular calcification, and this was associated with reduced ER
stress and inflammation without changes in lipid profile (154).

OSTEOPONTIN

Osteopontin is a matrix protein secreted by osteoblasts,
macrophages, smooth muscle cells, and chondrocytes. This
protein upon its secretion can integrate into the matrix through
its negatively charged amino acid residues. Furthermore, it
possesses a RGD sequence allowing for its recognition by
integrin heterodimers including the αvβ3 integrin. Osteopontin
also contains a distinct binding site for CD44 on immune
cells which promotes cell adhesion and migration. Osteopontin
contains a cleavage site for thrombin, which upon cleavage
reveals a cryptic site for recognition and signal transduction by
alternative integrin heterodimers α4β1, α9β1, and α9β4 (162–
164). Recognition of the cryptic site by integrins enhances
immune cell migration and promotes inflammation (78, 79).
Bone marrow derived macrophages likely recognize osteopontin
primarily through the cryptic site since flow cytometry has
identified that∼95% are positive for α4 and α9 integrins, but only
∼5% for αv integrins (165).

Osteopontin has a strong affinity for calcium allowing it
to interact with hydroxyapatite (166). It has been identified
to have a role in inhibiting biomineralization and negatively
regulating calcium crystal formation both in physiological
bone formation (167) and pathological ectopic calcification
(168). Osteopontin also has roles modulating the formation
and function of bone remodeling cells such as osteoclasts.
Osteopontin stabilizes osteoclasts on the bone as it facilitates
resorption and promotes the survival of osteoclasts (169–171).
Osteopontin is upregulated in calcified vessels and possesses
an inhibitory role in vascular calcification (172). Furthermore,
circulating osteopontin has been identified as a biomarker for
vascular calcification in diabetic patients (173). Knockout of
osteopontin in spontaneously calcifying MGP-deficient mice or
mice fed a high-phosphate diet accelerated the development of
vascular calcification and death (174, 175). In vitro calcification
of cultured VSMCs was found to be exacerbated by genetic
deletion of osteopontin and prevented by reintroducing the
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osteopontin gene by retroviral transfection (176). Furthermore,
loss of osteopontin promotes apoptosis of VSMCs, which
may contribute to enhanced calcification (177). These studies
implicate a beneficial effect of osteopontin in slowing the
progression of vascular calcification. Interestingly, human
peripheral monocytes and macrophages from hypertensive
patients with vascular calcification had reduced potential to
form osteoclasts following osteopontin stimulation (178). This
indicates that osteopontin has a suppressive role for the turnover
of hydroxyapatite in this context.

In addition to its effects on biomineralization, osteopontin
has numerous roles in regulating smooth muscle cell phenotype
and inflammation. Osteopontin promotes smooth muscle cell
migration (179) and phenotypic switching by downregulating
contractile markers and increasing proliferation (180, 181).
Osteopontin is expressed widely by immune cells such
as macrophages and is upregulated during the process of
inflammation and wound healing (182, 183). It can facilitate
differentiation of monocytes and allow adhesion and migration
of immune cells through the engagement of adhesion receptors
including integrins and CD44 (184–186). The osteopontin
promoter contains pro-inflammatory response elements such
as AP-1-binding sites and NFκB binding sites (187, 188).
Stimulation of macrophages with LPS and pro-inflammatory
cytokines such as IL-1β induces the expression of osteopontin
(189). Osteopontin knockout in ApoE−/− mice attenuated
macrophage infiltration into plaques and MMP-2/9 activity,
resulting in a reduction in atherogenesis (190). Stimulation
of monocytes/macrophages from hypertensive patients
with vascular calcification with recombinant osteopontin
reduced inflammatory cytokine secretion and increased
anti-inflammatory cytokine production (178). However,
osteopontin had no effect on monocytes/macrophages from
hypertensive patients without vascular calcification (178).
This finding of an anti-inflammatory effect contrasts with the
findings stated previously. However, it may suggest a context-
dependent response by monocytes/macrophages to osteopontin
and through the influence of other factors in the calcifying
environment.

MATRIX GLA PROTEIN (MGP)

MGP is a vitamin K-dependent, secreted matrix protein
expressed by all tissues and multiple cell types including VSMCs,
macrophages, and osteoblasts. MGP was first isolated in bone
and was found to accumulate significantly in the ECM of bone
compared to non-calcifying tissues such as the kidney, lungs,
and heart (191). The mRNA expression of MGP in osteoblasts,
however, was lower than that of the non-calcifying tissues (191).
MGP was implicated as an inhibitor of vascular calcification
following a study showing that its deletion in mice led to
spontaneous vascular calcification and death within 2 months
from arterial rupture (192). MGP possesses anti-calcific effects
through inhibition of hydroxyapatite mineral formation (193)
and BMP signaling (194, 195). Examining the expression pattern
of MGP in human vessels, normal vessels exhibit a gradient with

high levels of MGP on the luminal side that decreases gradually
toward the medial layer (196). VSMCs normally express MGP
and high levels of MGP can be found in the fibrous cap of
atherosclerotic lesions (196). A negative correlation was found
with areas of low or absent MGP expression in the vessel with
calcification and Runx2 expression for both intimal and medial
calcification (196). MGP expression is downregulated in calcified
atherosclerotic human arteries compared to non-calcified vessels
(196). In vitro calcification studies done with bovine VSMCs
found reduced MGP mRNA expression in calcifying cells and
had an inverse correlation with the extent of calcification (197).
Inhibition of calcification with bisphosphonates restored the
expression of MGP mRNA in VSMCs cultured in calcifying
media, suggesting that the process of calcification precedes
the downregulation of MGP (197). Some conflicting evidence
was found, however, showing MGP mRNA was upregulated in
calcifying human VSMCs in vitro (198). This is likely a result
of species-specific differences or time-dependent fluctuations in
the expression of MGP. For MGP activity, the protein must be
gamma-carboxylated in a vitamin K-dependent manner (199).
The anti-coagulation medication, warfarin, is known to be
a vitamin K antagonist. A previous study has found that 2
weeks of warfarin treatment in young rats induced significant
focal vascular calcification (200). Isolated VSMCs treated with
warfarin have reduced carboxylated MGP and increased in vitro
calcification (201). This was shown to be vitamin K-dependent
as the reintroduction of vitamin K to warfarin-treated rats could
inhibit calcification (201, 202).

MATRIX STIFFNESS SENSING

The stiffness of the matrix is measured by how much force is
necessary to deform a substrate. Stiffness is often measured as
an elastic modulus in kilopascals (kPa). The elastic modulus is
defined as the ratio of the stress, which is the force of deformation
divided by the area to which it is applied, to the strain,
which is the ratio describing the relative deformation compared
to the object’s original state. The composition, density, and
structural integrity of the extracellular matrix play a significant
role in determining the stiffness of a tissue. Increased density
of collagens such as type I collagen and the glycoprotein FN
enhance stiffness whereas glycosaminoglycans such as hyaluronic
acid permit greater compliance of the ECM. Increased matrix
degradation byMMPs reducesmatrix stiffness, whereas increased
crosslinking of matrix proteins by lysyl oxidase (LOX) and
glycation of matrix proteins enhance matrix stiffness.

In addition to biochemical and chemical mediators, cells
experience a variety of physical cues that influence their
behavior, phenotype, and differentiation. By a process called
mechanotransduction, cells can convert physical cues or forces
into biochemical signals affecting cellular responses. The stiffness
of the matrix is detected by matrix-binding cell surface receptors
including the integrin family of receptors and DDRs. The
mechanism by which this occurs is illustrated schematically in
Figure 1. Matrix receptors sense the stiffness of the ECM by
binding and tugging on the ECM via their extracellular domains
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and interacting with signaling molecules and the cytoskeleton
via their cytosolic domains. Resistance or stiffness of the ECM
triggers the reorganization of the cytoskeleton, polymerization
of actin monomers (G-actin) into filamentous actin (F-actin)
and bundling of F-actin into contractile units known as stress
fibers. Cells contract in response to external forces, with myosin
generating tensional forces on the actin fibers increasing the
stiffness of the cytoskeleton (203, 204). Intact microtubules are
also necessary for cells to respond to externally applied forces
(204). Tension forces generated by actin stress fibers deform
the nuclear envelope through their interaction with the LINC
(linkers of the nucleoskeleton to the cytoskeleton) complexes
(205). Increased tension on the nuclear envelope promotes the
expression and reduces degradation of an abundant structural
protein in the nuclear envelope, LaminA (206). This increases the
tensile strength of the nuclear envelope when cytoskeletal tension
is high.

Since collagens and FN are abundant in the ECM, it is
not surprising that integrins binding these molecules play
important roles inmechanotransduction. Numerous studies have
demonstrated the role of type I collagen-binding α1β1 and α2β1
integrin heterodimers (74, 207, 208), and FN-binding α5β1 and
αvβ3 integrin heterodimers (77, 209) in mechanotransduction
for a variety of cell types including mesenchymal stem cells,
fibroblasts, and HEK293 cells. In more recent years, Ghosh
et al. showed that DDR1 was a mechanotransducer in adipose-
derived stem cells (ASCs) (66). In ASCs, increased compliance of
the substrate and reduced cell contractility promoted aromatase
and estrogen expression. Knocking down DDR1 with siRNAs
attenuated aromatase expression on a soft substrate without
influencing stress fiber formation, suggesting that DDR1 helps
cells sense matrix compliance (66). Coelho et al. have shown
that DDR1 activation is enhanced on type I collagen-coated stiff
substrates compared to soft substrates, and that interaction of
DDR1 with non-muscle myosin IIA triggers cell contraction and
reorganization of the fibrillar collagen ECM (210). Furthermore,
in vivo studies of rat dermal wound healing found increased
DDR1 expression and activation in myofibroblasts when
mechanical force was applied to the wound by splinting (210).
DDR2 expression has been shown to increase with increasing
matrix stiffness (211) and DDR2 has been implicated in cell
shape changes in response to changes in matrix stiffness (212).
However, evidence is still lacking to show whether or not this
receptor is a mediator of mechanosensing.

MATRIX STIFFNESS AND OSTEOGENESIS

A seminal paper published by Engler and colleagues showed
that mesenchymal stem cell fate was determined by substrate
stiffness (32). Osteogenesis was favored and promoted on a type
I collagen-coated substrate with a stiffness of 34 kPa, which
is within the range of stiffnesses of collagenous pre-calcified
bone (25–40 kPa). Furthermore, pharmacological inhibition of
non-muscle myosin IIa by blebbistatin blocked differentiation
of mesenchymal stem cells. This highlights the importance of
stiffness sensing in osteogenic cell differentiation.

Three transcription factors are responsive to changes in
matrix stiffness, and they play roles in osteoblast differentiation,
smooth muscle differentiation, and vascular smooth muscle
calcification. These are the Yes-associated protein (YAP) and
its related protein Tafazzin (TAZ) (213), and Myocardin related
transcription factor-A (MRTF-A) (214). All three depend on
actin polymerization for the regulation of cytoplasmic and
nuclear localization and therefore activity (215–217) (illustrated
schematically in Figure 1). MRTF-A is sequestered in the
cytoplasm by binding to G-actin but is released to translocate
to the nucleus upon actin polymerization to F-actin in cells
undermechanical stress (215). In a similar mechanism, YAP/TAZ
binds to angiomotin (AMOT) in the cytoplasm until G-actin
polymerizes to F-actin, which binds AMOT and allows YAP/TAZ
to translocate to the nucleus (218). Actin polymerization
also inhibits the Hippo pathway, which is the canonical
pathway that mediates YAP/TAZ phosphorylation and prevents
its nuclear localization (216). In addition, mechanical stress
can induce deformation of the nucleus allowing YAP to be
transported into the nucleus through nuclear pores (219). In
mechanotransduction, actin polymerization is able to regulate
YAP/TAZ nuclear localization independently of canonical
Hippo pathway signaling (217). This establishes YAP/TAZ as
a mechanosensitive transcriptional co-factor, although further
studies are necessary to understand the mechanisms at work.

In mesenchymal stem cells, TAZ forms an activating complex
with Runx2 to promote osteogenesis and calcification while
suppressing peroxisome proliferator-activated receptor-γ
(PPARγ) -mediated adipogenesis (33, 220). YAP/TAZ can
influence vascular calcification by enhancing phenotypic
switching of VSMCs, or by promoting the inflammatory
response. YAP blocks serum response factor (SRF)
transcriptional activity to facilitate the conversion of VSMCs
from the contractile to the synthetic phenotype, a process which
precedes vascular calcification (221, 222). In addition, YAP/TAZ
is upregulated in endothelial cells exposed to pro-atherogenic
oscillatory blood flow and stimulates the inflammatory response
which exacerbates vascular calcification (223, 224).

MRTF-A is an important transcriptional co-factor for SRF,
the master regulator of VSMC specific gene expression (225).
MRTF-A has also been implicated in osteogenic differentiation
of mesenchymal stem cells, and in the transdifferentiation of
heart VICs and VSMCs during pathological calcification. MRTF-
A KO mice have defects in osteogenesis (226). In human
aortic valve fibrosis and calcification, there is upregulation of
MRTF-A and smooth muscle α-actin expression in calcified
regions, concurrent with differentiation from the VIC to the
myofibroblast phenotype (227). In VSMCs grown in normal
media, MRTF-A acts downstream of BMPs to maintain
the differentiated smooth muscle phenotype (228). However,
under calcifying conditions, Runx2 interferes with MRTF-
A/SRF to downregulate VSMC-specific genes and upregulate
osteochondrocytic genes (229). Since both MRTF-A and
YAP/TAZ are regulated by stiffness and actin dynamics, there
is extensive crosstalk between the pathways which can be
cooperative or mutually inhibitory (230–232). Furthermore, the
net response from their signaling is modulated by activation

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 December 2018 | Volume 5 | Article 174

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Ngai et al. Matricrine Signaling in Vascular Calcification

FIGURE 1 | Increasing matrix stiffness drives osteogenic differentiation via cooperative ECM receptor signaling and modulation of cytoskeletal dynamics. Classically,

matrix stiffness is known to be sensed by integrins, but recent research has shown that DDR1 can also act as a mechanosensory receptor and is an important

mediator of vascular calcification. Vascular calcification occurs as VSMCs transdifferentiate into osteoblast-like cells and can be promoted by RUNX2, high-glucose

(HG), inorganic phosphate (Pi), elastokines, and inflammation. Increased matrix stiffness leads to osteogenic differentiation of mesenchymal stem cells and the

cytoskeleton plays an integral role in this process. Stress fiber formation due to increased RhoA activity results in increased nuclear internalization of

fibrogenic/myogenic transcription co-factors MRTF-A and YAP/TAZ, and osteogenic transcription factor Runx2, and the concomitant inhibition of adipogenic

transcription factor PPARγ. Conversely, reduced ECM stiffness leads to reductions in ECM receptor activation and stress fiber formation, leading to nuclear exclusion

of MRTF-A and YAP/TAZ, and reduced Runx2 activity. The resulting increase in PPARγ activity results in adipogenic differentiation.

of TGF-β-Smad3 (230). Excessive matrix turnover in vascular
pathologies may result in increased release of the pro-
fibrotic TGF-β, thus increasing matrix stiffness and cooperative
signaling with MRTF-A or YAP/TAZ in VSMCs to enhance
osteochondrocytic differentiation.

CYTOSKELETON AND NUCLEOSKELETON
IN OSTEOGENESIS: ROLES OF TUBULIN
AND LAMIN A

The actin and microtubule cytoskeletons play important roles in
mechanotransduction (233), transport of vesicles and proteins
(234), and are involved in mediating osteogenesis (235–238).
Microtubules can participate in signal cascades by affecting the
distribution and compartmentalization of signaling molecules
and transcription factors. Recently, we have identified DDR1 as
an important mediator of vascular calcification, acting in part
to maintain an intact microtubule cytoskeleton which allows
Runx2 translocation to the nucleus (65). Studies in tumor
cells have demonstrated that Runx2 binds to α-tubulin via its
amino terminus, and that these interactions with tubulin are

necessary for the nuclear export of Runx2 and sequestration of
the transcription factor in the cytoplasm in these cells (239).
Interestingly, a microtubule-associated protein, doublecortin-
like and CAM kinase-like 1 (DCAMKL1), has been identified as
a regulator of osteogenesis. DCAMKL1 blunted osteogenesis by
inhibiting Runx2 and genetic disruption of DCAMKL1 in mice
resulted in increased bone mass (240). These studies support
the notion that microtubules affect osteogenesis by regulating
the intracellular localization of Runx2, however the precise
mechanisms are complex and vary between different cell types.

Lamin A is a mechanosensitive nuclear envelope protein,
a link between the cytoplasmic and nuclear cytoskeleton,
and can form complexes with transcription factors. Lamin
A is an important reservoir and regulator of transcription
factors and co-factors involved in cell fate specification
for cells in the mesenchymal lineage, and likely acts by
several overlapping mechanisms (241). Lamin A regulates
YAP and SRF transcriptional activity by promoting YAP
nuclear localization and regulating nuclear actin dynamics
to promote SRF activity (206). Lamin A also binds to
and promotes Runx2 activity and calcification in VSMCs,
osteoblasts, and mesenchymal stem cells, facilitating nuclear
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transport of Runx2 and enhancing its DNA-binding and
transcriptional activity (242, 243). Lamin A is upregulated in
rat VSMCs cultured in high calcium and phosphate calcifying
media (242). The unprocessed Lamin A precursor, prelamin
A, accumulates in calcifying and senescent VSMCs in vitro
and promotes the osteogenic transcriptional program (244).
Increased accumulation of prelamin A in calcifying vascular cells
was also observed in vivo in child dialysis patients with medial
calcification (244).

CONCLUSION

Our understanding of the pathology of vascular calcification
has advanced considerably, and it is now understood to be
an active process driven by VSMC transdifferentiation into
osteochondrocyte-like cells. There has been increased interest
in understanding how cell-matrix interactions influence cellular
responses during vascular calcification. The ECM is constantly
changing in normal physiology and in pathology, and its role
extends beyond that of a scaffold to that of a signaling mediator
with important effects on the transcriptional regulation of cell

phenotype. Further investigation into matricrine regulation of
cell phenotypes will lead to the development of novel therapeutics
to prevent or reverse vascular calcification.
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