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Abstract

In the aftermath of shock events, policy responses tend to be crafted under significant time

constraints and high levels of uncertainty. The extent to which individuals comply with differ-

ent policy designs can further influence how effective the policy responses are and how

equitably their impacts are distributed in the population. Tools which allow policymakers to

model different crisis trajectories, policy responses, and behavioral scenarios ex ante can

provide crucial timely support in the decision-making process. Set in the context of COVID-

19 shelter in place policies, in this paper we present the COVID-19 Policy Evaluation

(CoPE) tool, which is an agent-based modeling framework that enables researchers and

policymakers to anticipate the relative impacts of policy decisions. Specifically, this frame-

work illuminates the extent to which policy design features and behavioral responsiveness

influence the efficacy and equity of policy responses to shock events. We show that while an

early policy response can be highly effective, the impact of the timing is moderated by other

aspects of policy design such as duration and targeting of the policy, as well as societal

aspects such as trust and compliance among the population. More importantly, we show

that even policies that are more effective overall can have disproportionate impacts on vul-

nerable populations. By disaggregating the impact of different policy design elements on dif-

ferent population groups, we provide an additional tool for policymakers to use in the design

of targeted strategies for disproportionately affected populations.

1. Introduction

Shock events–including crises such as the COVID-19 pandemic–have three common charac-

teristics–a threat to shared values, a sense of urgency, and high degrees of uncertainty [1]. In

the aftermath of shock events, policymakers often make rapid decisions under uncertain con-

ditions. Uncertainty can arise from at least three sources–the problem, the response, and the
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public reaction to the response [1]. The first source of uncertainty comes from difficulties in

estimating potential trajectories of an evolving crisis. The second source of uncertainty is in

the design of the policy response, such as the scope, timing, duration, and targeting of the pol-

icy. The third source of uncertainty arises from how people respond to the policies, such as the

willingness of individuals to comply with directives, depending on their perception of risk of

non-compliance. Such individual behavioral responses can constrain or amplify the overall

effectiveness of the policy response, as well as how equitably the policy impacts are distributed

among different population groups.

In the COVID-19 pandemic case, countries rapidly implemented a wide range of strategies

in the face of very limited information and high uncertainties. One of the lessons emerging

from this crisis is that there is often no single best policy response, and it is important to have a

wide range of response strategies available to be implemented depending on the context [2].

Given the uncertainties and limited resources that policymakers have at their disposal, deci-

sion tools that allow them to model different crisis trajectories, policy responses, and behav-

ioral scenarios ex ante can provide timely and crucial support in the decision-making process.

Set in the context of COVID-19 shelter in place policies, in this paper we present the

COVID-19 Policy Evaluation (CoPE) tool, which is an agent-based modeling framework that

enables researchers and policymakers to anticipate the relative impacts of policy decisions.

CoPE is a hybrid tool combining an agent-based model that generates dynamic social and pro-

fessional contact networks using geographically specific census data with an epidemiological

model of the progression of the COVID-19 disease through agents. The interactions that gener-

ate exposures are partly governed by the policy context which varies based on the duration, tim-

ing, and targeting of a shelter in place (SIP) policy, and partly governed by the extent to which

individuals comply with the policy. The objective of this paper is to demonstrate the application

of the CoPE tool and illuminate the extent to which policy design configurations and behavioral

responsiveness influence the efficacy and equity of policy responses to shock events. One ex
ante expectation for SIP policy is that early enactment, longer durations, and fewer essential

workers would be generally more effective in reducing the transmissions and subsequent hospi-

talizations. Through our analysis, we show that different combinations of policy design features

produce synergies and tradeoffs, especially when it comes to the equity of policy outcomes.

The rest of this paper is structured as follows. We review the relevant background literature

in section 2, detail our data and methods in section 3, discuss the results in section 4 and con-

clude in section 5.

2. Background

Four categories of core ideas are discussed herein–policy design, behavioral response, outcome

evaluation, and modeling approach. First, we discuss how policymakers implement a wide

range of policy designs during shock events in general and COVID-19 in particular, often with

limited ability to understand and anticipate the potential impacts on these policies on the local

communities and across socio-demographics. Second, we focus on why individuals respond

differently to policy directives and how these predispositions influence their compliance spe-

cifically vis-à-vis COVID-19 shelter in place policies. Third, we highlight the evaluation of the

distributional equity of policy outcomes before the policy is actually implemented, an impor-

tant but often challenging endeavor. Finally, we compare two approaches to epidemiological

modeling in terms of their ability to generate this desirable output. Together, we develop and

make a case for deploying tools that can help policymakers model the suite of policy design

options and individual behavioral feedback mechanisms together, with the objective of facili-

tating an ex-ante evaluation of the effectiveness and equity of these policy designs.
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2.1. Policy response to shock events

Shock events, often in the form of disasters, wars, and economic or public health crises can

induce policy change [3,4]. The multiple streams theory of the policy process suggests that an

issue can receive serious attention from decision makers when policy entrepreneurs are able to

bring recognition to problems and provide viable policy solutions that are politically aligned at

an opportune time (window of opportunity) [5]. Ordinarily, the development of policy alterna-

tives is left to experts who can analyze successful past policies and provide appropriate options

for the current context. Some windows of opportunity can be expected (for example budget

cycles or elections), which gives policy entrepreneurs sufficient time to analyze policy options

to be presented to the decision maker at the right time [6].

In contrast, shock events or crises present unexpected windows of opportunity, often when

there is no time to fully anticipate the complexity of problems and the heterogeneous impacts

of policy responses. An appropriate and timely policy response in the face of a crisis requires

the policymakers to both maintain a level of surveillance over emerging threats as well as have

tailored policy options ready for when the crisis hits [7]. In rapidly unfolding, complicated sit-

uations, failure to consider alternative options, poor information search, selection bias in pro-

cessing information and failure to examine costs and risks of preferred choices can lead to

defective policymaking [8]. In such cases, new tools are necessary for rapidly generating con-

text-specific scenarios, allowing for ex-ante evaluations of policy responses that are tailored to

local conditions [9,10].

The COVID-19 crisis has resulted in the implementation of a myriad of local responses that

seldom demonstrate an adequate understanding of the potential impacts of policy responses

on different population groups [11]. Policy instruments that have been used to contain the

spread of COVID-19 and other infectious diseases include social distancing requirements,

mask wearing guidelines, shelter in place orders, testing and contract tracing strategies,

domestic and international travel restrictions, school closures, etc. [12,13]. A common policy

instrument used by local policymakers is the shelter in place order (also sometimes referred to

as Stay at home order or lockdown, hereafter abbreviated SIP). Policy design features of SIP

orders include the extent to which professional and social activities remain open, social dis-

tancing, mask requirements, capacity limits and other guidelines.

In the United States, in the absence of uniform federal mandates, local and state administra-

tions bore the responsibility for developing their own response strategies. Local policymakers

enacted a range of SIP orders, with broad variation in how quickly SIP was enacted, how long

SIP was enforced, and who were classified as essential workers [14]. For example, SIP started

as early as March 17th in some California counties and two weeks later in states like Texas and

Florida. The orders were in place for only a month in Texas and Florida and for two months

or longer in Washington and Michigan. The heterogeneity in policy responses have been

shown to be associated with uncertainties in the understanding of the disease transmission

parameters as well as uncertainties about potential downstream economic costs of SIP orders

[15]. The effectiveness of different SIP policy design features is still an open question.

2.2. Individual behavioral heterogeneity

One of the sources of uncertainty in predicting policy outcomes, as mentioned in section 1,

arises from attempting to anticipate the extent to which people comply with policy directives.

Population level compliance is an aggregation of individual abilities and decisions to comply,

and human beings are boundedly rational decision makers constrained by limited informa-

tion, behavioral habits, cognitive associations, time, risk perception, uncertainty and a range of

other factors [16–19]. During epidemics, as during other crises, a significant psychological
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burden is placed on individuals which impacts their behavior. Epstein et al. introduced the

idea of a “coupled contagion” which suggests that individuals react not only to the disease

itself, but also to the fear of the disease. When individuals are “infected” with fear, they self-iso-

late and take themselves out of circulation. However, once they are “cured” of this fear, they

can get back into circulation and contribute to the subsequent waves of infections [20].

Threat perception and social context are important among the many behavioral pathways

that affects how individuals make decisions [21]. While a strong threat perception can evoke

protective behavior from individuals, an “optimism bias” [22]–which makes an individual feel

they are less likely to contract the disease than others–can make them ignore their threat per-

ceptions. An early study of COVID-19 in the United States found evidence of this optimism

bias noting that while people generally increased protective behaviors, a sub-group of individ-

uals who felt that the epidemic would not affect them personally reported low engagement in

protective behaviors [23].

The heterogeneity in risk perception among individuals covaries with many factors. Risk

perception has been shown to be dependent on the prevalence of disease in an individual’s

social network [24]. Risk perception and protective behavior also vary among different demo-

graphic groups, where older individuals, females, or individuals with higher educational level

are more likely to engage in protective behavior [25,26]. The relationship of risk perception

with age–a monotonic decrease [27]–is consistent with a number of media reports since the

beginning of COVID-19 which have indicated that younger individuals have tended to ignore

public health warnings and engage in risky behavior. Risk perception is an important behav-

ioral response that affects individual compliance with local policies, and modeling efforts

should factor in these dynamics.

2.3. Evaluation of outcomes

Substantial global variations exist in government policy responses to COVID-19 [13]. These

policy responses have been evaluated with regard to their overall effectiveness in reducing

mobility [28], healthcare demand [12] and hospitalizations [29]. Specifically focusing on the

evaluation of SIP policies in the United States, states and counties that adopted SIP policies

early on were found to benefit the most from their policies in terms of reduced number of

cases [30–32]. While most of these studies focus on the timing of the SIP policy enactment,

there are other elements of a SIP policy design that deserve attention, such as the duration and

the distinction between occupations that must discontinue working and those that can con-

tinue. While it may be reasonable to expect that a longer duration SIP policy and those that tar-

get more occupations may be generally more effective, forming expectations about the relative

magnitudes of impact from these policy design changes is less straight forward.

Additionally, the distributional equity of the policy impacts is an important dimension to

investigate. During crises, local decision makers face high uncertainties about enacting, delay-

ing, targeting or terminating policy responses, and the economic and social inequalities that

ensue from these decisions have been understudied in the policy sciences [33]. In the context

of rising social inequalities, analyses of distributional impacts of public policy decisions are

being undertaken across many fields [34–36]. Focusing on COVID-19, there is now growing

evidence of disparities in the rates of infection among racial and socio economic groups, with

the more disadvantaged population groups facing a higher burden of infection [37,38]. Many

of these disadvantaged groups already face underlying systemic barriers such as lower access

to healthcare and higher prevalence of chronic health conditions that further aggravate the

burden faced by these communities due to COVID-19 [39–41]. Higher infection rates have

been found among essential workers who were not able to reduce their mobility as much
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as others, and instead worked in densely packed places where the risk of infection is higher

[37].

The ability of individuals to comply with policy directives can alter how they are impacted

by the epidemic [42]. In addition to individual risk perception, compliance to policies is also

constrained by individual socio-economic conditions. Emerging research shows that workers

in occupations that have low probability of being able to work from home are also more eco-

nomically and socially vulnerable and face higher risks of infection [43,44]. Residents in eco-

nomically impoverished neighborhoods are less likely to comply with SIP orders, for several

reasons including being employed in essential jobs, having to travel farther distances to access

services and living in dense environments that makes social distancing difficult [11,42,45].

Compliance can also change over time due to changes in risk perceptions or changes in socio-

economic conditions as a result of social safety net programs. A poorly conceived policy

response can aggravate the inequities and cause irreparable damage to the fabric of these com-

munities [46]. In addition to evaluation of overall effectiveness of SIP and other mitigation pol-

icies, understanding the distributional equity of impacts must be at the center of analysis. To

that end, we present a decision tool for simulating the interactions of policy and behavioral

responses and comparing the impact of SIP design features on the effectiveness and distribu-

tional equity of COVID-19 outcomes. This tool is based on an agent-based modeling frame-

work, which is discussed next.

2.4. Modeling approaches

Two broad approaches to epidemiological modeling are those rooted in a compartmental

approach and the agent-based approach. Compartmental models, for example the SIR (Sus-

ceptible-Infected-Recovered) model and variations of it, are commonly used to model the

transmission of infectious diseases [47–49]. These models have been recently used in the

United States to track the anticipated impacts of COVID-19 policy configurations [50,51].

They provide aggregate outcomes of policy effectiveness and have contributed significantly to

the policy responses to the COVID-19 epidemic. These models work by applying a set of dif-

ferential equations that govern disease progression to a pre-defined population matrix.

Because compartmental models do not have highly resolved individuals as the primary unit of

analysis, they have difficulty analyzing individual level impacts or factoring in dynamic behav-

ior of individuals in the course of the analysis. Both these aspects are key to understanding the

distributional equity of policy responses. While they come with their own strengths and limita-

tions, agent-based models (ABMs) offer an approach to overcome the fundamental limitation

of the compartmental models describe above.

At the core of ABMs are heterogeneous individual agents who interact with each-other and

their environment according to a set of behavioral rules [52]. This approach allows for the spec-

ification of different policy configurations and dynamic decision-making criteria, such as

deciding to be more cautious or flout the rules, to study how macro-level outcomes emerge

from individual-level decisions over time. When the characteristics of each agent (e.g. income,

occupation class, age, etc.) are well-resolved, ABMs open the possibility of exploring distribu-

tional effects of different policy specifications. ABMs incorporate uncertainty by introducing

stochastic agent interactions and by simulating multiple runs for each input scenario [53].

ABMs have been used to explore behavioral processes and equity of outcomes in technology

adoption [54], rates of incarceration [55], emergency responses [56], access to healthy foods

[57], agriculture [58], and many other fields [59,60]. ABMs have also been used in the simula-

tion of previous epidemics such as smallpox [61], H5N1 influenza [62] and H1N1 influenza

[63,64]. In the context of COVID-19 policy design features, ABMs have been developed to
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explore the overall effect of travel restrictions [65], testing and contact tracing [66], and timing

and duration of social distancing measures [67,68]. Some of these studies also highlight the

importance of population level compliance to the social distancing guidelines [66,67]. We con-

tribute to these ongoing efforts by adding the ability to simulate several policy design features

interactively along with dynamic and empirically grounded behavioral responses from the

agents. Further, we focus our analysis on understanding the distributional equity of the differ-

ent policy responses, in addition to their overall effectiveness.

3. Data and methods

The decision tool we present in this paper, COVID-19 Policy Evaluation (CoPE), is a flexible,

modular, empirically and epidemiologically grounded Agent-Based Model (ABM). Here we

elaborate on the key components of the agent-based CoPE tool, including the input data, the

operational modules that drive the model, the research design we employ, and our analytical

strategy. The model code and user guides have been made publicly available on GitHub [69],

and additional information on the key parameters and equations used in the model are pro-

vided in the supplementary information file (see S1 Appendix).

3.1. Input data

CoPE leverages household level demographic data from the American Community Survey

(ACS) [70] and can therefore model context specific population-scale scenarios for any loca-

tion in the United States. This is important, because the demographic and occupational com-

position of every location is different, and therefore the impact of identical policy

configurations might result in different impacts in different locations. To generate household

level characteristics, we leverage several variables from the most recent (2019) American Com-

munity Survey (ACS) 5-year estimates. The lowest resolution that ACS captures these variables

is at a block-group level. Using the per-block-group number of households by race/ethnicity

(variable groups B11001B-I) paired with the joint distribution of age, income, and race/ethnic-

ity at the census track level (B19037B-I) we estimate the same joint distribution at the block

group level. Then, by block group, we merge household size (B11016) and occupation

(C24010) features.

To summarize, CoPE takes the census code for any geographic unit in the U.S. as an input

parameter and implements the model using the household distributions for all block groups in

that geographic unit. The result is a population model that can probabilistically generate agents

with age, race/ethnicity, income, occupation, and household size attributes matched at the

block-group level for any given location (city, county, metropolitan region, or state) in the

United States. For the purpose of our analysis presented in this paper, we generate household

distributions for all block-groups in Travis County.

3.2. Operational modules

CoPE consists of three key modules that together generate the emergent outcomes we analyze

here. The first module sets the policy context through three policy decisions related to SIP pol-

icy: timing, duration, and targeting. The second module determines inter-agent interactions–
building up the potential for exposure among agents. The third module, epidemiological pro-
gression, charts each agent’s path through the disease from exposure, potential hospitalization,

and eventual recovery or death. CoPE is therefore a hybrid tool which integrates a compart-

mental model within the agent-based model. Feedback loops connect each of the three mod-

ules, allowing agents to change their behavior in response to the current policy context, the

infection states of their social and professional connections, and their own infection status. We
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describe the role of risk tolerance in these behavioral feedbacks for each module in more detail

below.

3.2.1. Policy context. The policy context manifests through three policy decisions related

to SIP policy: timing, duration, and targeting–these aspects are discussed in greater detail

below. Agents respond to the policy context by changing the degree to which they interact in

professional and social spheres (Fig 1). In the professional sphere, policy determines which

agents continue to interact as providers of essential services. In the social sphere, agents have

the ability to determine whether or not they will comply with the SIP order by ceasing social

interactions; those with the highest tolerance for risk choose not to comply with (i.e., “flout”)

the SIP order (Fig 2).

Fig 1. Exposure and progression dynamics. CoPE is a bottom-up model of the way individuals interact with one

another both in a social sphere and in a professional sphere. Professional sphere includes on-the-job essential

interactions, as well as non-job essential interactions such as grocery shopping. These interactions therefore capture

exposure dynamics that are sensitive to policy such as which occupation is designated as an essential service. This

exposure generating model is overlaid on the compartmental model so that once exposed, individuals progress

through the disease and behaviors change for both the infected and others along the way. Each agent in our model is a

representative householder, whose demographic and location information is drawn from the joint distributions in the

American Community Survey. This allows the researcher to get a granular understanding of the distributional equity

among different demographic groups. In the epidemiological progression figure, S is susceptible, E is exposed, PA is

pre-asymptomatic, PY is pre-symptomatic, IA is asymptomatic, IY is symptomatic, IH is hospitalized, R is recovered, and

D is dead. For models details and parameter values refer to [71].

https://doi.org/10.1371/journal.pone.0262172.g001

Fig 2. Risk tolerance and protective behavior. Agents with high risk tolerance are likely to continue to participate in

the social sphere despite a shelter in place order. Agents start off with a “baseline” risk tolerance that is a decreasing

function of age and update it over time as other agents in their social networks become symptomatic. In CoPE, a 25

percent non-compliance rate refers to the top 25 percent of agents who have a high tolerance to risk (rather than a

random 25 percent of agents).

https://doi.org/10.1371/journal.pone.0262172.g002
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3.2.2. Interaction generation. Interactions occur in both the social sphere and the profes-

sional sphere. Social interactions have the potential to expose other agents gathered at the

same social “event.” Professional interactions take two forms: service provision and service

receipt. Service provision potentially exposes other agents within the same profession, while

service receipt potentially exposes those seeking services from a profession and the agent pro-

viding that service. Within any interaction, agents update their risk tolerance to be closer to

the group mean of all participants in that interaction to reflect the influence of local social

norms (Fig 2). Equations governing the risk tolerance updates and asymmetric probabilities of

infection are detailed in S1 Appendix.

3.2.3. Epidemiological progression. Each agent’s progression through the disease is

charted based on a compartmental epidemiological model (Fig 1, S1 Appendix) [71]. Agents

then change their activities based on their disease status (Fig 3). Asymptomatically infected

agents make no changes. Symptomatic agents forego any social interactions that they might

otherwise have scheduled but continue to receive essential services. Hospitalized agents cease

all interaction in both social and professional spheres. Recovered agents resume the activities

that they engaged in pre-infection. Agents are aware of symptomatic agents in their social net-

works and revise their risk tolerance down (i.e., become more risk averse) as this proportion

grows (Fig 2).

3.3. Calibration and validation

CoPE is calibrated using data and analyses pertaining to demographics, human behavior, and

COVID-19. Both the agents themselves (input data) and the model components (operational

modules) are empirically grounded. Agents are assigned an age, income, race/ethnicity, occu-

pation category, and household size which is drawn from ACS5 data. The underlying distribu-

tions are geographically specific and resolved at the census block-group level. In addition, the

rate at which agents participate in essential and nonessential activities is based on recent U.S.

survey data [72]. Social networks–wherein nonessential activities occur–have a small world

structure which has been shown to approximate human social networks[73]. In the profes-

sional sphere, agents interact based on their empirically grounded occupation category. Once

infected, an agent’s status (e.g., symptomatic, recovered) evolves based on COVID-19-specific

disease progression data [71]. Internally, the model has face, parameter, and process validity

[74].

Fig 3. Behavioral adaptation to SIP and disease. How agents schedule their interactions is governed by a

combination of the policy in effect, their individual risk tolerance, and the infection state of the agent and those in their

social network at that time. When SIP is in effect, compliant individuals in essential occupations cease social

interactions, and continue non-job essential interactions (as service providers). Compliant individuals in non-essential

occupations cease on-the-job and social interactions but continue non-job essential interactions (as service seekers).

Once individuals are infected and symptomatic, they cease all interactions.

https://doi.org/10.1371/journal.pone.0262172.g003
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The purpose of the CoPE tool is to demonstrate the effect of policy interventions relative to

one another and to a baseline. Externally, CoPE achieves pattern validity: the pattern in the rise

and fall of infections over time aligns with the observed pattern in the real world over the time

period analyzed [74]. Initially, as disease spread is uncontrolled, the number of infected individu-

als grows rapidly and peaks before SIP policy is put in place, slowing the spread. In our baseline

scenario, the first peak in hospitalization is 0.04 percent (Fig 6, center of panel E), or approxi-

mately 183 of the Travis County agents hospitalized. During the first peak, the Austin, Texas MSA

(metropolitan statistical area) reported 480 hospitalizations. However, since the Austin MSA is a

five-county region including Travis County the hospitalization counts are not directly compara-

ble. Establishing point or distributional validity would more direct comparisons to real world data

in a specific context, however doing so would also closely tie CoPE to that context and erode the

flexibility of the tool. Pattern validity is sufficient to drive relative comparisons between scenarios.

3.4. Research design

While the CoPE tool can be used to study any location in the United States, for the purposes of

this paper we implement CoPE to evaluate SIP policy design features in Travis County, Texas,

by simulating interactions of 458,484 households over a period of 120 days from the date of

initial exposure in the County. A full model run consists of 48 sample runs, each of which sto-

chastically samples 5% of the population such that the vast majority of households are sampled

at least once in the full model and most households are sampled more than once–some are

included more than 10 times. The results from each sample run are aggregated into a full run

accounting for the sampling procedure. For example, a household that is included in four sam-

ple runs and becomes exposed resulting in hospitalization in one of the four, but not the other

three, contributes 0.25 to cumulative hospitalization in the full model.

We then simulate a baseline SIP policy scenario designed to reflect the actual SIP policy

implemented in the focal area: Travis County, Texas. To compare to the baseline scenario, we

then simulate a range of SIP policy configurations focusing on the timing, duration, and tar-

geting of SIP policies, while accounting for various levels of policy compliance.

3.4.1. Scenario development. Realistic baseline and alternative SIP scenarios are derived

from publicly available data describing SIP orders in different states [75,76]. All of the scenar-

ios modeled are shown in Fig 4. While most states and counties nationwide, including Travis

County in Texas, imposed a SIP order around March 23, 2020 some counties in California

acted a week earlier, whereas many other states such as Florida and Georgia acted a week later.

Further, reports from Travis County indicated that the first known infections possibly

occurred two weeks before the first cases were confirmed on March 11, 2020 [77]. As per this

timeline, SIP was implemented in Travis County four weeks after the first known infection.

Thus, in our baseline scenario, SIP begins 28 days after the first infections, while in the Early
and Late scenarios, SIP begins one week earlier (day 21 since first infection) or later (day 35

since first confirmed case), respectively. Similarly, the shortest duration for the SIP was around

30 days as implemented in states like Georgia and Florida. Other states like Washington and

New Jersey had the SIP order in place for 60 days or longer. We define the baseline SIP as 45

days in duration with Short and Long durations of 30 and 60 days respectively. As the epidemic

progressed, many States went through multiple rounds of SIP orders depending on their

needs. For the purpose of this study, we simulate only the first SIP order.

Essential workers–those who would continue to provide essential services even under local

SIP orders–were defined in the United States early in the course of the pandemic by federal

guidelines [78]. State and local governments modified the definition of essential workers

depending on their contexts. For the baseline scenario, we use both federal and Texas state
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guidelines to categorize ACS occupational classes as essential or non-essential occupations

[78,79]. In the Restrictive essential worker scenario, only workers in Healthcare Practitioners
and Technical Occupations continue to provide services. On the other hand, in the Relaxed sce-

nario, all workers except those engaged in Food Preparation and Serving Related Occupations
continue providing services during SIP. In all scenarios we assume that within our simulation

timeframe, even after the SIP order is terminated, the arts and entertainment industry would

not return to full normalcy, educational instruction would continue to be online, and those in

computer-related occupations would primarily work from home [80]. Therefore, in our simu-

lations those engaged in Computer and Mathematical Occupations, Educational Instruction
and Library Occupations and Arts, Design, Entertainment, Sports, and Media Occupations cur-

tail their professional-sphere service provision interactions even after the SIP order ends.

The SIP orders are fundamentally designed to limit social gatherings to break the chain of

transmission. However, as we have noted in section 2.2, some individuals may choose to

ignore the SIP guidelines and continue to engage in activities depending on their risk prefer-

ences. The level of compliance among the local population may therefore impact the outcome

efficacy of the SIP orders. Therefore, to test for the sensitivity of the outcomes to compliance

with the SIP order, we consider a baseline level where 75 percent of individuals with lower risk

tolerance cease all non-essential activities and simulate Low and High compliance scenarios

where 50 and 90 percent of the individuals respectively comply with the SIP order.

3.5. Analytical strategy

We analyze the results from the simulations in three stages.

3.5.1. Isolated efficacy analysis. In the first stage we model the changes in peak hospitali-

zations and overall proportion of population hospitalized under each scenario (see Fig 4)

when all other factors, other than the change that defines a scenario, are held constant. For

each scenario, the mean and standard deviation provide measures of effectiveness of each SIP

policy-design element.

3.5.2. Integrated efficacy analysis. When the policy design can vary simultaneously along

multiple dimensions, interactions among design elements can produce synergies or tradeoffs

that increase or decrease effectiveness of the policy. Questions involving these synergies can be

Fig 4. Visual summary of baseline and alternative SIP scenarios.

https://doi.org/10.1371/journal.pone.0262172.g004
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difficult to assess. For example, what are the tradeoffs between a short duration SIP enacted

early versus a long duration SIP enacted late? How do these impacts vary when the compliance

level of the population changes? With increasing complexity of policy design and uncertainties

in policy compliance, anticipating the outcomes become less straightforward.

To investigate these tradeoffs, in stage two of our analysis we simulate the incremental and

interactional effect of timing and duration of SIP under the three targeting and compliance

scenarios respectively (here on referred to as the integrated scenarios). For each interaction of

targeting and compliance scenarios, we simulate a series of models randomly varying the

length–in numbers of days–of the delay in implementation of SIP and the duration of SIP. The

resulting models span an outcome space that is centered on the baseline and allows us to cap-

ture nuances in potential synergies or tradeoffs between different SIP policy design criteria.

3.5.3. Equity analysis. Both the isolated and integrated efficacy analyses focus on the

overall effectiveness of policy design. ABMs allow for the further decomposition of outcomes–

beyond effectiveness at the system-level–and into equity by a variety of agent characteristics.

For example, the models described here track exactly which agents experience hospitalization

and when, along with the agent’s demographic information such as income and age. In stage

three of our analysis, we use this information to analyze the distributional impacts of different

policy configurations. Specifically, we focus on the Early and Late timing scenarios and

decompose the daily proportion of population hospitalized by the agent’s income class to

reveal any distributional impacts of the SIP order, i.e., the difference in the rates of hospitaliza-

tions among agents belonging to different income classes.

3.6. Limitations

CoPE has several important limitations. First, while the parameters used to initialize the mod-

els are grounded in individual-level empirical data, the results in the baseline scenario are

empirically validated at the pattern level as opposed to the point level [74]. For any computa-

tional model, it is important to ensure that the validation of the model is performed at the

appropriate level and for the intended purpose of analysis [81]. The objective of our model is

to demonstrate the relative differences between different policy and behavioral configurations,

rather than accurately forecasting the real-world estimates of a particular configuration. There-

fore, we focus on establishing the pattern validity of our model and pay less attention to point

validity [74]. Since these patterns emerge from heterogeneity embedded in the structure of the

empirical inputs, which we do not change, the relative differences in patterns are likely to be

stable and informative.

A second limitation is related to the computationally intensive nature of ABMs. For a single

scenario at population scale, we simulate a random sample of 458,484 agents over a series of 48

model runs. Statistically, this implies that the estimates produced by the model may not be

robust at the agent level. However, the focus of our analysis is not on individual-level out-

comes, but rather on aggregated, emergent, system-level outcomes [74]. At the system level (in

our case the County level), the estimates are robust.

CoPE also is limited in that not all types of real-world interactions are included. We focus

on professional and social interactions, which have consistently been reported as being respon-

sible for driving the infections. Other types of interactions, for example random encounters on

the street, interactions during transit, interactions at specific locations such as schools, have

not been explicitly included as separate interaction generating spheres. However, these interac-

tions are implicitly modeled to the extent that they occur in the professional or social spheres.

For example, interactions at school maybe captured by the agents in the education profession,

and random encounters maybe captured as part of the social interactions.
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3.7. Comparison with other ABMs

In this section, we compare CoPE with three other recent ABMs–the Covasim model devel-

oped by Kerr et al. [82], the TRACE model developed by Hammond et al. [66] and the stochas-

tic ABM developed by Hoertel et al. [83]–highlighting novelties and limitations of CoPE. Two

novel features of CoPE as compared to the other three models relate to the treatment of policy

compliance and the focus on distributional impacts. First, CoPE models individuals’ adherence

to policy directives as a dynamic process where individuals update their risk tolerances daily as

a result of their infection state and that of others in their network, and base their decision to

comply with the shelter in place policy on their dynamic risk tolerance value. While acknowl-

edging its importance, neither Kerr et al. [82] nor Hoertel et al. [83] explicitly model policy

compliance, whereas Hammond et al. [66] model static bounds for policy adherence. The sec-

ond novelty of CoPE is its analytical focus on the equity of policy outcomes in addition to over-

all efficacy. We believe one of the key strengths of an ABM is being able to decompose the

results based on the characteristics of the agents. Using the age-race/ethnicity-occupation-

income joint distributions we obtain from the census data, we are able to develop insights into

how the overall changes in policy outcomes, such as hospitalizations, differentially affect vul-

nerable population groups. None of the other three models provide insights on the equity of

outcomes.

One limitation of CoPE, in comparison to the other models, is the focus on a single type of

intervention–SIP policy, whereas the Covasim and TRACE models include the ability to

model different interventions [66,82]. Additional intervention types can be built into CoPE in

the future, expanding the potential for analyses of both efficacy and equity. Highlighting the

comparative novelties and limitations of CoPE underscores the value of applying different

approaches to provide unique insights into different dimensions of these complex problems.

In the following section, we discuss the insights into efficacy and equity that CoPE can

provide.

4. Results and discussion

4.1. Isolated efficacy analysis

Fig 5 presents the result of the analysis described in section 3.4.1, wherein only one SIP design

criteria is varied while holding everything else constant at the baseline scenario values men-

tioned in Fig 4. For example, in the early and late timing scenarios, only the timing variable is

changed, while holding duration, compliance and targeting variables constant at the baseline

values. As expected, compared to the baseline scenario, the percentage of population hospital-

ized is higher when (a) the SIP is implemented late, (b) the duration of SIP is short, (c) the

compliance of the population is low, or (d) the SIP is not targeted to a large enough population

(IE, it is not restrictive enough). Conversely, compared to the baseline scenario the percentage

of population hospitalized is lower when (a) the SIP is implemented early, (b) the duration of

SIP is longer, (c) the compliance of the population is high, or (d) the SIP is targeted broadly.

While these results are in expected directions, the relative magnitude of change among the dif-

ferent scenarios make it clear that timing of the SIP intervention plays the most important role
in managing the rate of hospitalization assuming everything else stays the same.

In our model, one-week delay in implementing the SIP increases the percentage of popula-

tion hospitalized by 81 percent (left y-axis, Fig 5) and increases the peak percentage of popula-

tion hospitalized by 117 percent (right y-axis, Fig 5). Conversely, enacting the SIP one week

early reduces the percentage of population hospitalized by 62 percent, and reduces the peak

percentage of population hospitalized by 82 percent. This finding is substantively consistent
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with previous empirical and model based studies [30–32], and highlights the need for decision-

makers to act quickly to minimize the damage from shock events. Early action is only possible

when there is rigorous surveillance that allows for decisionmakers to spot the early signs of

emerging or re-emerging threats. Integration of non-traditional information sources into the

surveillance infrastructure [84], detection of SARS-CoV-2 virus in sewage systems [85,86],

coupling of real-time pathogen genomic diagnostics with epidemiology [87] and other recent

advances using big data [7] highlight the evolving frontier of disease surveillance that can in

turn facilitate early policy action.

4.2. Integrated efficacy analysis

The integrated scenarios, shown in Fig 6, also reveal the substantial contribution of SIP timing

in reducing the percentage hospitalized. This analysis shows that SIP timing (early vs. late) is

important in all scenarios, and the prominence of near-vertical contour lines in most scenarios

suggest that the duration of the SIP becomes important only in low compliance scenarios with

greater effects when the SIP is timed early, but doesn’t have a notable effect in high compliance

scenarios. When compliance is low, there is a pronounced non-linear relationship between

timing and duration that “activates” the duration lever (see panels G,H,I in Fig 6): when the

SIP is implemented early, longer durations can improve the overall effectiveness of the SIP.

The sloped contour lines (e.g., panel I) also indicate that even if there is a delay in enacting the

SIP, increasing the SIP duration can make it just as effective as a shorter duration SIP that

could have been implemented earlier.

Fig 5. Percentage change in hospitalizations in each individual scenario compared to the baseline scenario. The y-axis on the left represents the

percentage change in the percent hospitalized compared to the baseline scenario and corresponds to the orange dots in the plot. The y-axis on the

right represents the percent change in peak hospitalization percent compared to the baseline scenario and corresponds to the blue dots in the plot.

The black solid line along 0% represents the percentage of population hospitalized in the baseline scenario.

https://doi.org/10.1371/journal.pone.0262172.g005
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On the other hand, when the population is generally highly compliant (panels A,B,C in Fig

6), then the effectiveness of the SIP depends mostly on the timing and very little on duration.

In such scenarios, no matter when the SIP is implemented, similar effectiveness is achieved

with a short duration policy compared to a long duration policy. This finding has important

downstream implications for reducing the economic burden from lockdowns. If the popula-

tion has high levels of trust between the government and the citizens which fosters better com-

pliance with government demands [88], then it might be possible to avoid the economic costs

of extended lockdowns by enacting a short duration SIP policy. There is however a caveat to

this relationship. Even when the population is highly compliant, the effectiveness of a SIP can

be reduced if is inadequately targeted and subject to long delays (see panel A in Fig 6). This

characterizes the Swedish experience during the first wave of COVID-19 pandemic, in which

reliance on voluntary efforts to reduce exposure and much delayed SIP orders largely failed to

curb transmission [89].

Fig 6. Variation of total percent of population hospitalized under a range of SIP design configurations. The three

panels along the x-axis represent increasing level of SIP targeting, and the three panels along the y-axis represent

increasing level of compliance. In each panel, the x-axis represents the incremental delay in timing of the SIP, and the

y-axis represents the incremental increase in the duration of SIP. The variation in percentage of population

hospitalized under each scenario is represented by the color gradient, where red indicates a lower percentage

hospitalized and yellow indicates a higher percentage hospitalized. The black lines show the contours of equal

percentage of hospitalization.

https://doi.org/10.1371/journal.pone.0262172.g006
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Finally, a shorter duration SIP that is timed late is the least effective policy in any scenario,

amounting to closing the barn door after the horses have gone. Overall, these dynamics show

that while the timing of the policy intervention is the most important criteria in determining

the effectiveness of the policy outcome, the effectiveness is moderated in non-trivial and non-

linear ways by other policy design criteria such as duration, targeting, and compliance.

4.3. Equity analysis

Panel A in Fig 7 shows that early SIP implementation reduces overall hospitalizations during

the duration of the SIP order, but there is a resurgence once the SIP is lifted. In contrast, the

disease runs through the population unchecked when the SIP is implemented late, resulting in

a single peak higher hospitalization (panel C in Fig 7). While early SIP timing is effective in

reducing hospitalization across the entire simulated system, considering the system as a whole

ignores distributional impacts and potential inequities that can arise despite increased effec-

tiveness along the hospitalization front.

These simulations show a tradeoff between effectiveness and equity in the distributional

impact of SIP timing across different income groups. In the early timing scenario, hospitaliza-

tions among individuals in the lowest income group are disproportionately high in the second

peak (panel B in Fig 7). Around day 80 in the simulation, close to 45 percent of those who are

hospitalized belong to the lowest income group, who only comprise 22 percent of the popula-

tion. This suggests that, despite lower prevalence of hospitalization in the system, the burden

of hospitalization that remains is disproportionately borne by those in the lowest income

group. In the late timing scenario, we observe a less substantially disproportionate impact on

the lowest income group (panel D in Fig 7) in conjunction with higher overall prevalence of

hospitalization.

These disproportionate impacts emerge from systemic inequality in the structure of

employment, age, and income embedded in the ACS data the defines the population. Recent

studies have shown that lower income and other vulnerable groups make up a higher propor-

tion of the essential workforce and these groups may be unable to comply with social distanc-

ing guidelines. Furthermore, their nature of work in high density work-places results in the

infections getting bottle-necked in these communities, leading to higher rates of infection and

subsequent hospitalizations among these groups [37,42].

5. Conclusions

In this paper we have developed and demonstrated the application of an empirically-grounded

agent-based model for ex ante evaluation of policy and behavioral responses to shock events,

within the context of SIP policies for curbing the spread of COVID-19. We make four practical

contributions to the modeling and design of policy response to shock events such as the spread

of an epidemic. First, we model policy compliance as a dynamic and responsive phenomenon.

We therefore more closely model the real-world dynamic responses of individuals to policy

implementation. Second, consistent with previous research, we find that an early response can

be very effective for avoiding deleterious effects. This highlights the importance of surveillance,

rapidly implementable prepared responses, communication, and community trust in policy-

makers. Third, we show that the impact of timing is non-trivially moderated by other policy

design aspects that can be changed in the short term such as duration and targeting, as well as

societal aspects that are less pliable in the short run, such as the level of trust in governmental

or health entities and compliance among the population. Even with early implementation,

when compliance is low, a more restrictive policy with longer duration covering a wider popu-

lation may be necessary. Finally, we show that even policy options that can be more effective
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overall can have disproportionate impacts on vulnerable populations, and even while it is

impossible to precisely predict the trajectory of disease progression it is possible to anticipate
these high-level trends if the relevant characteristics and interactive dynamics of the relevant

Fig 7. Percent daily hospitalizations and proportion of daily hospitalizations by income in early and late timing

scenarios. Panels A and C show the percent of population hospitalized daily in the early and late scenarios respectively.

The grey line shows the daily percentage and the solid black line shows a 7-day moving average. The solid-colored lines

in Panels B and D show the proportion of daily hospitalized broken down by the agents’ income categories in early and

late timing scenarios respectively. The dashed colored lines represent the base percent of population in each income

category. When the solid line is above the dashed line for a particular income category on a particular day, it indicates a

disproportionately higher proportion of hospitalizations faced by that income category on that day.

https://doi.org/10.1371/journal.pone.0262172.g007
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population are well resolved, something we do in this paper using publicly available data.

Insight into the distributional-equity impacts of policy design features can help decision-

makers to put in place additional welfare measures to protect the most vulnerable communi-

ties. With the CoPE modeling framework, we provide an additional tool for policymakers to

use in the design of targeted strategies supporting disproportionately affected populations.
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