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In 1999, P. Griffiths broached the concept of commensal viruses
[1], concluding in the speculative editorial that ‘we should not
exclude the possibility that commensal viruses may exist’. Where
are we, almost 20 years later?

The frontiers of clinical virology have been reshaped by the
expansive potential of next-generation sequencing: characterizing
viral genomes in samples spanning environmental, animal and
human sciences [2]. So far, next-generation sequencing has iden-
tified novel viral aetiologies for distinct diseases such as Merkel cell
polyomavirus [3], as well as implicating divergent viral strains in
syndromes of previously unrecognized origin, such as astrovirus in
central nervous system infection [4]. The technology has also
contributed to the characterization of emerging viruses such as the
Middle East respiratory syndrome coronavirus [5] and Ebola virus
[6]. However, while next-generation sequencing is clarifying the
viral aetiologies of some pathologies, the multitudes of unexpected
viruses found in healthy subjects are blurring the definitions of
Koch’s postulates. Indeed, an unexpectedly abundant and diverse
array of viral sequences has been found in asymptomatic control
subjects, and immunocompromised patients without signs of overt
disease [7,8]. Whereas the presence of viral partial genome se-
quences should be interpreted with caution, the identification of
full-length genomes could partially replace the need for propaga-
tion of a pathogen in pure culture [9]. Over the past 20 years,
mounting evidence of this diverse and abundant population of
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seemingly innocuous viral residents has confirmed the existence of
commensal viruses, which together comprise the human virome.

Taking the examples cited by Griffiths [1], Torque tenovirus, a
so-called orphan virus, is now considered as a surrogate marker of
immune suppression in solid organ transplant recipients, although
the exact mechanism by which immunity modulates Torque
tenovirus replication is still unknown [10]. Pegivirus, formerly
known as hepatitis G virus or GB virus C, is found at high titres in
1%e5% of healthy blood donors, and in up to 20% of donors in
developing countries or in patients co-infected with human im-
munodeficiency virus (HIV) or hepatitis C virus. As a member of the
Flaviviridae family, Pegivirus was initially thought to cause hepatitis
but this has since been rejected. However, the absence of well-
defined organ pathology does not equate to an absence of effect.
Koch's monocausal dogma of infectious disease could not anticipate
the complex effects that a virus may have on the host immune
response. Pegivirus reduces the immune activation of Tcells, B cells,
natural killer cells and monocytes, ultimately leading to reduced
progression of HIV infection and HIV-associated mortality [11].
Pegivirus is therefore a perfect example of a commensal virus, or
how the human virome could be more than a source of pathogens, as
reviewed by H.W Virgin [12]. Various reports have shown that the
virome persists in a dynamic and subtle equilibrium with the im-
mune system and other components of the microbiome, where
cumulating permutations of stochastic infections and immune re-
sponses may build a distinct ‘virotype’ and ‘immunophenotype’
that are unique to each individual. By directly infecting cells of
haematopoietic origin, Pegivirus interacts with the human immune
system and, so, can hardly be considered as a silent bystander.
Although somemight argue that Pegivirus is ‘innocent until proven
guilty’, the circumstantial evidence in the context of sound theo-
retical causality begs further investigation into its role in shaping
our immunophenotype and virotype.

It is already well described how chronic stimulation by innate
antigens may induce tolerance, notably through pathogen-
associated molecular patterns. However, it is important to note
that commensal gut flora do not only exhaust local immune cells
into anergy but also actively induce a specific inflammatory
suppression through T regulatory cells. Importantly, this
immunomodulation is not only limited to the local environment
but has lasting systemic effects that have been shown to influence
blished by Elsevier Ltd. All rights reserved.
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immunocompetence in distant organs [13] and even alter host
susceptibility to immune disorders such as asthma and type I
diabetes [14]. This immunomodulation may also be used by
co-infections to build symbiotic relationships. For example, chronic
infection with gamma herpesvirus promotes resistance to Listeria
monocytogenes and Yersinia pestis infection in mice [15]. On the
other hand, co-infectionsmay also team up against the host, such as
is the case for cytomegalovirus and its potential to promote
Pneumocystis jiroveci infection. Further, some Leishmania parasites
have evolved to incorporate their immunomodulatory viral
co-infection as an endosymbiont found within their cytoplasm:
using the anti-viral inflammatory response as a virulence strategy
to evade immune clearance [16]. These examples force us to rethink
the effect that other viral endosymbionts (such as bacteriophages)
have on the bacterial component of the microbiome.

Although the immune system can be an intermediary for
pathogen cooperation, there also exists a rich network of direct
interactions occurring between different inter-dependent micro-
bial kingdoms, termed transkingdom interactions. Influenza virus
enhances the superinfection of Streptococcus pneumoniae or
Staphylococcus aureus, by exposing bacterial receptors on the cell
surface through neuraminidase activity [17]. Similarly, murine
norovirus directly interacts with bacterial antigens for B-cell
attachment and infection [18]. Further, murine norovirus has been
associated with inflammatory bowel disease in the presence of a
host Atg16L1 gene mutation, certain bacteria and environmental
toxins [19]. This concept, called the ‘virus-plus-susceptibility-gene’
effect, adds another layer of complexity to the interactions of the
human virome, where, in some circumstances, viral infections act
in concert with host gene polymorphisms, the microbiome and
environmental factors to modulate phenotypic variability. A
particularly interesting mechanism of the interaction between vi-
ruses and host genetics has been found at the microRNA level.
Several viruses produce ‘mimic’ microRNAs with sequences
sufficiently compatible to mRNA targets that theymay bind them to
inhibit host transcription in a sequence-dependent manner
[20]. Finally, besides its interactions with bacteria and its
virus-plus-host-gene properties, murine norovirus also has the
capacity to restore the physiological intestinal anatomy and
lymphoid function in germ-free mice [21]. Murine norovirus may
therefore harbour both detrimental and beneficial effects to the
host through distinct mechanisms, and represents an exemplary
model of the different influences of commensal viruses.

In recent years, the bacterial part of the human gut microbiome
has been extensively studied. The gut virome component com-
prises predominantly bacteriophages but also contains diverse
eukaryotic DNA and RNA viruses, including adenovirus, astrovirus,
rotavirus, bocavirus, picornavirus, anellovirus and picobirnavirus
[8]. Its content is highly influenced by environmental and dietary
habits, with specific variations occurring during the first 2 years of
life. Interestingly, although interpersonal diversity increases with
age, intrapersonal variability seems to diminish [22e25]. In a
recent review, Pfeiffer et al. depict how transkingdom interactions
govern enteric viral infections, either by promoting viral replica-
tion and transmission or inducing viral clearance [26]. For
instance, poliovirus replication is enhanced by direct contact with
bacterial membrane components (lipopolysaccharide and pepti-
doglycans), which promote virion stabilization and cell attach-
ment. Strikingly, there are data suggesting that a specific adaptive
immune response is not necessarily required to clear viral infec-
tion: rotavirus can be cleared by bacterial flagellin through
Toll-like receptor signalling and induction of interleukins 18 and
22 or by synergy between interleukin-22 and interferon-l.
Considering the pathology-changing influence of microbial alter-
ations on viral infection, transkingdom interactions should be
further explored for their potential as clinical tools, which we
could term interbiotics.

The human respiratory virome is also the site of complex in-
teractions between bacteria and community-acquired respiratory
viruses [17]. Interestingly, community-acquired respiratory viruses
have been identified in children with unexplained fever, as well as
in afebrile controls, again raising the question of the spectrum of
associated diseases and the way viruses may express their patho-
genic role [27]. In clinical practice, determining the prevalence of
asymptomatic community-acquired respiratory virus infection and
the whys and wherefores of their pathogenic role is of utmost
importance especially given the prevalence of these infections.

In conclusion, we have made serious advances in identifying the
viral components of the human virome, which has given us a
preview of their role and influence on the host and its microbiome:
not only altering the virulence of co-infecting pathogens, but also
potentially affecting host gene transcription and undoubtedly
contributing to the nuance of our immunophenotype. Hence, the
human virome is clearly more than a collection of pathogens.
Research in the field should take into account viruses together with,
and not apart from, their surrounding environment, and particu-
larly in the case of apparently ‘inoffensive’ infection. Although there
is certainly a dynamic overlap between its commensal and patho-
genic members, the virome has been revealed as an intricate
network of pathology-changing interactions that could soon prove
to be of clinical significance.
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