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Abstract

All tRNAs are extensively modified, and modification deficiency often results in growth

defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders

in humans. In S. cerevisiae, lack of any of several tRNA body modifications results in rapid

tRNA decay (RTD) of certain mature tRNAs by the 5’-3’ exonucleases Rat1 and Xrn1. As

tRNA quality control decay mechanisms are not extensively studied in other eukaryotes, we

studied trm8Δ mutants in the evolutionarily distant fission yeast Schizosaccharomyces

pombe, which lack 7-methylguanosine at G46 (m7G46) of their tRNAs. We report here that S.

pombe trm8Δ mutants are temperature sensitive primarily due to decay of tRNATyr(GUA) and

that spontaneous mutations in the RAT1 ortholog dhp1+ restored temperature resistance

and prevented tRNA decay, demonstrating conservation of the RTD pathway. We also

report for the first time evidence linking the RTD and the general amino acid control (GAAC)

pathways, which we show in both S. pombe and S. cerevisiae. In S. pombe trm8Δ mutants,

spontaneous GAAC mutations restored temperature resistance and tRNA levels, and the

trm8Δ temperature sensitivity was precisely linked to GAAC activation due to tRNATyr(GUA)

decay. Similarly, in the well-studied S. cerevisiae trm8Δ trm4Δ RTD mutant, temperature

sensitivity was closely linked to GAAC activation due to tRNAVal(AAC) decay; however, in S.

cerevisiae, GAAC mutations increased tRNA loss and exacerbated temperature sensitivity.

A similar exacerbated growth defect occurred upon GAAC mutation in S. cerevisiae trm8Δ
and other single modification mutants that triggered RTD. Thus, these results demonstrate

a conserved GAAC activation coincident with RTD in S. pombe and S. cerevisiae, but an

opposite impact of the GAAC response in the two organisms. We speculate that the RTD

pathway and its regulation of the GAAC pathway is widely conserved in eukaryotes, extend-

ing to other mutants affecting tRNA body modifications.
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Author summary

tRNA modifications are highly conserved and their lack frequently results in growth

defects in the yeast Saccharomyces cerevisiae and neuorological disorders in humans. S.

cerevsiaie has two tRNA quality control decay pathways that sense tRNAs lacking modifi-

cations in the main tRNA body. One of these, the rapid tRNA decay (RTD) pathway, tar-

gets mature tRNAs for 5’-3’ exonucleolytic decay by Rat1 and Xrn1. It is unknown if RTD

is conserved in eukaryotes, and if it might explain phenotypes associated with body modi-

fication defects. Here we focus on trm8Δmutants, lacking m7G46, in the evolutionarily

distant yeast Schizosaccharomyces pombe. Loss of m7G causes temperature sensitivity and

RTD in S. cerevisiae, microcephalic primordial dwarfism in humans, and defective stem

cell renewal in mice. We show that S. pombe trm8Δmutants are temperature sensitive due

to tY(GUA) decay by Rat1/Dhp1, implying conservation of RTD among divergent

eukaryotes. We also show that the onset of RTD triggers activation of the general amino

acid control (GAAC) pathway in both S. pombe and S. cerevisiae, resulting in further

tRNA loss in S. pombe and reduced tRNA loss in S. cerevisiae. We speculate that RTD and

its GAAC regulation will be widely conserved in eukaryotes including humans.

Introduction

tRNAs are subject to extensive post-transcriptional modifications that often profoundly affect

tRNA function, as lack of modifications often leads to growth defects in the budding yeast Sac-
charomyces cerevisiae and to neurological or mitochondrial disorders in humans [1–5]. Many

tRNA modifications in the anticodon loop are important for decoding fidelity, reading frame

maintenance, and sometimes charging efficiency [6–15]. By contrast, modifications in the

tRNA body, the region outside the anticodon loop, are often important for folding and stability

[16–18], resulting in substantial growth defects. In S. cerevisiae, deletion of TRM6 or TRM61 is

lethal, associated with lack of 1-methyladenosine at A58 (m1A58) [19], whereas deletion of

TAN1, TRM1, or TRM8 (or TRM82) results in temperature sensitivity associated with lack of

4-acetylcytidine at C12 (ac4C12), N2,N2-dimethylguanosine at G26 (m2,2G26), or 7-methylgua-

nosine at G46 (m7G46) respectively [20–22]. Similarly, human neurological disorders are linked

to mutations in TRMT10A, associated with reduced 1-methylguanosine at G9 (m1G9) [23,24],

TRMT1 (m2,2G26) [25–28], WDR4 (m7G46) [29–31] and NSUN2, associated with reduced

5-methylcytidine (m5C) at C48-50, as well as at C34 and C40 [32–34].

In S. cerevisiae, lack of any of several tRNA body modifications leads to decay of a subset of

the corresponding hypomodified tRNAs, mediated by either of two tRNA quality control path-

ways, each acting on different hypomodified tRNAs and at different stages of tRNA biogenesis.

First, the nuclear surveillance pathway targets pre-tRNAi
Met lacking m1A, acting through the

TRAMP complex and the nuclear exosome to degrade the pre-tRNA from the 3’ end [17,35–

37]. The nuclear surveillance pathway also targets a large portion of wild type (WT) pre-

tRNAs shortly after transcription, ascribed to errors in folding of the nascent tRNA or to muta-

tions arising during transcription [38]. Second, the rapid tRNA decay (RTD) pathway targets a

subset of the mature tRNAs lacking m7G46, m2,2G26, or ac4C12, using the 5’-3’ exonucleases

Rat1 in the nucleus and Xrn1 in the cytoplasm [18,21,22,39,40]. RTD is inhibited by a met22Δ
mutation [22,39,41,42] due to accumulation of the Met22 substrate adenosine 3’, 5’ bispho-

sphate (pAp) [43,44], which binds the active site of Xrn1 and presumably Rat1 [45]. The RTD

pathway also targets fully modified tRNAs with destabilizing mutations in the stems, particu-

larly the acceptor and T-stem, which expose the 5’ end [40–42]. The hypomodified tRNAs
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targeted by the RTD pathway also expose the 5’ end, ascribed to destabilization of the tertiary

fold [40].

There is limited evidence documenting tRNA quality control decay pathways that act on

hypomodified tRNAs in other eukaryotes. A mouse embryonic stem cell line with a knockout

of METTL1 (ortholog of S. cerevisiae TRM8) had undetectable m7G in its tRNA substrates and

reduced levels of several METTL1 substrate tRNAs [46]. Similarly, knockdown of METTL1 and

NSUN2 (homolog of S. cerevisiae TRM4) in HeLa cells led to reduced levels of tRNAVal(AAC)

(abbreviated tV(AAC), as in the Saccharomyces genome database) at 43˚C in the presence of

5-fluorouracil (5-FU) [47], a known inhibitor of pseudouridine synthases and 5-methyluridine

methyltransferase [48–50]. However, in both of these cases, the underlying mechanism is not

known. It was also shown that WT mature tRNAiMet was subject to decay by Xrn1 and Rat1

after 43˚C heat shock in HeLa cells, although there was no change in the modification pattern

in vivo or in the stability of the tRNA in vitro caused by this temperature shift [51].

The goal of the work described here is to determine if and to what extent tRNA quality con-

trol decay pathways are linked to hypomodified tRNAs in eukaryotes other than S. cerevisiae.
To address this issue, we have studied the biology of the tRNA m7G46 methyltransferase Trm8

in the fission yeast Schizosaccharomyces pombe, which diverged from S. cerevisiae ~ 600 mil-

lion years ago [52].

We chose to study S.pombe Trm8 because S. cerevisiae trm8Δmutants were known to trig-

ger decay by the RTD pathway. S. cerevisiae Trm8 forms a complex with Trm82 that is

required for formation of m7G46 in eukaryotic tRNAs [53,54]. S. cerevisiae trm8Δ and trm82Δ
mutants are each modestly temperature sensitive [20], and trm8Δ or trm82Δmutants also lack-

ing any of several other body modifications had enhanced temperature sensitivity [18]. More-

over, the temperature sensitivity of trm8Δmutants was suppressed by a met22Δmutation and

was associated with decay of tV(AAC) [22], and the more severe temperature sensitivity of

trm8Δ trm4Δmutants (lacking both m7G and m5C) was shown explicitly to be due to RTD of

tV(AAC) [18,39]. In addition, in mammalian cells, Trm8 biology has other dimensions of

complexity. The human TRM82 ortholog WDR4 was associated with reduced tRNA m7G

modification and a distinct form of microcephalic primordial dwarfism [29]; METTL1 or

WDR4 knock out mouse embryonic stem cells showed defects in self renewal and differentia-

tion [46]; and METTL1 was also responsible for m7G modification of mammalian miRNAs

and mRNAs [55,56]. This evidence emphasizes that Trm8/Trm82 (METTL1/WDR4) and/or

its m7G modification product is important in S. cerevisiae and mammals, although the reasons

are not yet known beyond S. cerevisiae.
We find here that S. pombe trm8Δmutants have a temperature sensitive growth defect due

primarily to decay of tRNATyr(GUA) (tY(GUA)) and to some extent tRNAPro(AGG) (tP(AGG))

by the Rat1 ortholog Dhp1, demonstrating that a major component of the RTD pathway is

conserved between S. pombe and S. cerevisiae. We also find an unexpected connection between

the RTD pathway and the general amino acid control (GAAC) pathway in both S. pombe and

S. cerevisiae. In both S. pombe trm8Δmutants and S. cerevisiae trm8Δ trm4Δmutants, the tem-

perature sensitivity coincides with the onset of tRNA decay, which in turn triggers the GAAC

activation, presumably due to the increased stress from the tRNA decay. However, in Sp trm8Δ
mutants, GAAC activation is deleterious to growth, as mutations in the GAAC pathway restore

growth and tRNA levels, whereas in S. cerevisiae trm8Δ trm4Δmutants, GAAC pathway activa-

tion is beneficial, as GAAC mutations exacerbate the growth defect and accelerate tRNA loss.

Thus, our results demonstrate a conserved GAAC response associated with tRNA decay by the

RTD pathway, but opposite effects on cell physiology in the two organisms. These findings

suggest the widespread conservation of the RTD pathway in eukaryotes, and its linkage to the

GAAC pathway.
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Results

The S. pombe trm8Δ mutants lack m7G in tRNAs and are temperature

sensitive

As Trm8 is the catalytic subunit of the Trm8-Trm82 complex [20], we anticipated that tRNAs

from S. pombe trm8Δmutants would lack m7G. We purified tY(GUA) and tF(GAA), which

had each been previously shown to have m7G46 [57,58], and then analyzed their nucleosides by

HPLC analysis. Purified tY(GUA) from S. pombe trm8Δmutants had no detectable m7G levels

(less than 0.03 moles/mole), compared to near stoichiometric levels in tY(GUA) from WT

cells (0.93 +/- 0.22 moles/mole), whereas levels of each of three other analyzed modifications

(pseudouridine (C), m5C, and m1A) were very similar in trm8Δ and WT cells (Fig 1A). Simi-

larly, purified tF(GAA) from trm8Δmutants had no detectable levels of m7G compared to

near stoichiometric levels in WT cells, but otherwise WT levels of C, 2’-O-methylcytidine

(Cm) and m2,2G (Fig 1A). These results suggest strongly that S. pombe trm8+ is the methyl-

transferase responsible for m7G formation in cytoplasmic tRNAs.

To understand the biology of S. pombe trm8Δmutants, we examined the growth pheno-

types of two genetically independent trm8Δmutants. trm8Δmutants were temperature sensi-

tive starting at 37˚C on rich (YES) and minimal (EMM) media, and expression of Ptrm8 trm8+

on a plasmid restored WT growth in both media (Fig 1B). Thus, the temperature sensitivity of

trm8Δmutants was due to lack of trm8+.

S. pombe trm8Δ mutants have reduced levels of tP(AGG) and tY(GUA) at

high temperatures

To determine if the temperature sensitivity of S. pombe trm8Δmutants was associated with tRNA

decay, we analyzed tRNA levels of trm8Δmutants after an 8 hour temperature shift in YES media

from 30˚C to 36.5˚C, 37.5˚C, and 38.5˚C, which progressively inhibited growth (S1 Fig). We mea-

sured tRNA levels of all 21 tRNAs in the Genomic tRNA Database [59] that had a 5-nt variable

loop with a central guanosine residue (S1 Table), which is the signature for m7G modification

[60]. We quantified levels of each tRNA at each temperature relative to the levels of that tRNA in

WT cells at 30˚C, after normalization of each to the levels of the non-Trm8 substrate tG(GCC) at

the corresponding temperature. We used tG(GCC) as the standard because, for unknown rea-

sons, the usual standards 5S and 5.8S RNA each had temperature-dependent reduction in their

levels in trm8Δmutants (S2 Fig), as determined relative to input RNA levels. Note that with tG

(GCC) as the standard, the levels of another non-Trm8 substrate, tL(UAA), were also unaffected.

Northern analysis showed that S. pombe trm8Δmutants had significantly reduced levels of

two of the 21 potential Trm8 substrate tRNAs as the temperature was increased. The levels of

tP(AGG) were substantially reduced in trm8Δmutants, from 70% of the levels in WT cells at

30˚C, to 50%, 31%, and 18% after temperature shift to 36.5˚C, 37.5˚C, and 38.5˚C respectively,

whereas levels of tP(AGG) in WT cells remained constant as temperature increased (Fig 2A

and 2B). As expected, tP(AGG) is indeed a substrate of Trm8, since purified tP(AGG) from

trm8Δmutants had undetectable levels of m7G, but WT levels of each of three other modifica-

tions (S3 Fig). The levels of tY(GUA) were also reduced in trm8Δmutants as temperature

increased, albeit to a lesser extent than tP(AGG) levels. Levels of tY(GUA) in trm8Δmutants

were about the same as those in WT cells at 30˚C (119%), remained essentially unchanged at

36.5˚C and 37.5˚C (124%, and 98%), but were reduced to 67% at 38.5˚C, whereas tY(GUA)

levels in WT cells were relatively constant at all temperatures. In contrast, none of the 19 other

predicted Trm8 substrate tRNAs showed a temperature-dependent reduction in levels in

trm8Δmutants (Figs 2A and 2B and S4 and S5). Levels of 15 tRNAs were approximately
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constant in trm8Δmutants as temperature increased, although the initial levels varied some-

what, and levels of the other four tRNAs (tR(CCU), tMe(CAU), tV(CAC), and tK(UUU)) were

modestly increased at 38.5˚C. Thus, if the temperature sensitivity of trm8Δmutants was due to

loss of tRNAs, the likely candidates were tP(AGG) and tY(GUA).

The growth defect of S. pombe trm8Δ mutants is primarily due to loss of tY

(GUA)

To evaluate the cause of the temperature sensitivity of S. pombe trm8Δmutants, we analyzed

growth after overexpression of tP(AGG) and/or tY(GUA) on leu2+ plasmids (Fig 2C).

Fig 1. S. pombe trm8Δ mutants lack m7G and are temperature sensitive. (A) trm8Δmutants have no detectable m7G in their tY(GUA) and tF(GAA). S. pombe trm8Δ
mutants and WT cells were grown in biological triplicate in YES media at 30˚C and tRNAs were purified, digested to nucleosides, and analyzed for modifications by

HPLC as described in Materials and Methods. The bar chart depicts average moles/mol values of nucleosides with associated standard deviation; WT, green; S. pombe
(Sp) trm8Δ, brown. (B) trm8Δ mutants are temperature sensitive due to lack of trm8+. Strains with plasmids as indicated were grown overnight in EMM-Leu media

at 30˚C, diluted to OD600 ~ 0.5, serially diluted 10-fold in EMM-Leu, and 2 μL was spotted onto plates containing EMM-Leu or YES media and incubated at 33˚C,

37˚C, and 38˚C. The two independent trm8Δmutants were labeled as Sp trm8Δ V1 and V2.

https://doi.org/10.1371/journal.pgen.1008893.g001
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Surprisingly, on both YES media and EMM complete (EMMC) media lacking leucine, trm8Δ
mutants expressing tY(GUA) grew almost as well as the trm8Δ [Ptrm8 trm8+] strain or the WT

strain at elevated temperatures, whereas trm8Δmutants expressing two tP(AGG) genes on a

plasmid had little effect on the temperature sensitivity (Fig 2D). As expected, northern analysis

showed that trm8Δ [leu2+ tY(GUA)] strains had substantially more tY(GUA) than the trm8Δ
[leu2+] vector control strain at 30˚C and 38.5˚C (3.2-fold and 6.8-fold more respectively) (S6

Fig). Similarly, trm8Δmutants expressing two copies of tP(AGG) had more tP(AGG) at 30˚C

and 38.5˚C than the vector control, and the levels of the control tT(AGU) were unchanged in

all strains at both temperatures. We conclude that although levels of both tY(GUA) and tP

(AGG) were reduced in trm8Δmutants at elevated temperatures in both YES and EMMC

media, tY(GUA) is the major physiologically important tRNA for these phenotypes.

Although tY(GUA) overexpression almost completely restored growth of S. pombe trm8Δ
mutants in YES and EMMC media at 38˚C and 39˚C, expression of both tY(GUA) and tP

(AGG) was required to completely suppress the growth defects in YES + glycerol media (S7

Fig). By contrast, overexpression of tY(GUA) and tP(AGG) had no effect on the known tem-

perature sensitivity of trm8Δmutants in YES media containing 5-FU [61,62] (S7 Fig), perhaps

due to reduced levels of C and 5-methyluridine modifications, which could trigger decay of

other hypomodified tRNA species in trm8Δmutants.

dhp1 mutations suppress the S. pombe trm8Δ growth defect and restore tY

(GUA) and tP(AGG) levels

To identify the mechanisms that restore growth to S. pombe trm8Δmutants at elevated tem-

peratures, we isolated and analyzed spontaneous suppressors of the temperature sensitivity.

One major class of four trm8Δ suppressors were as temperature resistant as WT on YES and

EMMC media, and nearly as resistant as WT on YES + 5-FU media (Figs 3A and S8). Genome

sequencing revealed that these mutants each had distinct missense mutations in the RAT1
ortholog dhp1+. The dhp1 mutations each occurred in highly conserved residues, based on an

alignment of 18 RAT1/dhp1+ eukaryotic homologs from multiple phyla (Fig 3B), and are pre-

sumably partial loss of function mutations as S. pombe dhp1+, like S. cerevisiae RAT1, is an

essential gene [63,64].

Because we obtained four genetically independent S. pombe trm8Δ dhp1 mutants and very

few other mutations in the whole genome sequencing, it was highly likely that the dhp1 muta-

tions were responsible for the restoration of growth in trm8Δ dhp1 mutants. Consistent with

this, a plasmid expressing dhp1+ complemented the S. pombe trm8Δ dhp1-1 suppressor, result-

ing in temperature sensitivity, but had no effect on WT or trm8Δmutants (S9 Fig). Thus, we

conclude that the dhp1 mutations were responsible for the rescue of growth at high

temperature.

Fig 2. S. pombe trm8Δ mutants have reduced levels of tP(AGG) and tY(GUA) at elevated temperatures. (A) Northern analysis of Trm8 substrates tP

(AGG), tY(GUA), and tT(AGU) in trm8Δ and WT cells after shift from 30˚C to 36.5˚C, 37.5˚C, and 38.5˚C. Strains were grown in YES media at 30˚C,

shifted to the indicated temperatures for 8 hours as described in Materials and Methods, and RNA was isolated and analyzed by northern blotting. n = 2 for

WT cells, n = 3 for S. pombe trm8Δmutants. (B) Quantification of tP(AGG), tY(GUA), and tT(AGU) levels in WT and trm8Δ mutants at different

temperatures. The bar chart depicts relative levels of tRNA species at each temperature, relative to their levels in the WT strain at 30˚C (each value itself first

normalized to levels of the control non-Trm8 substrate tG(GCC)). For each tRNA, lighter shades indicate progressively higher temperatures (30˚C, 36.5˚C,

37.5˚C to 38.5˚C) for tT(AGU), brown; tP(AGG), purple; tY(GUA), gray. Standard deviations for each tRNA measurement are indicated. The statistical

significance of tRNA levels was evaluated using a two-tailed Student’s t-test assuming equal variance. ns, not significant (p > 0.05); �, p< 0.05; ��, p< 0.01;
���, p< 0.001. (C) Schematic of the secondary structure of tY(GUA)-1 and tP(AGG). Modifications of tY(GUA) are as annotated. WC base pairs, black lines;

GU base pairs, black dots; mismatch C-A or C-U base pairs, red diamonds; presumed m7G46, red circle. (D) Overproduction of tY(GUA), but not tP(AGG),

suppressed the temperature sensitive growth defect of trm8Δmutants. Strains with plasmids as indicated were grown overnight in EMMC-Leu media at 30˚C

and analyzed for growth as in Fig 1B on the indicated plates.

https://doi.org/10.1371/journal.pgen.1008893.g002
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As Dhp1 encodes a 5’-3’ exonuclease [65], it seemed highly likely that the S. pombe trm8Δ
dhp1 mutants prevented decay of tY(GUA) and tP(AGG) at non-permissive temperature.

Indeed, we found that for each of two dhp1 suppressors, tY(GUA) levels were almost

completely restored at 38.5˚C, from 29% in the trm8Δmutant to 85% and 82% in the trm8Δ
dhp1-1 and trm8Δ dhp1-2 strains respectively (Fig 3C and 3D). Similarly, tP(AGG) levels were

virtually completely restored at 38.5˚C, from 16% in the trm8Δmutant to 74% and 66% in the

trm8Δ dhp1 suppressors, and the levels of the control tRNA (tT(AGU)) was unaffected. Similar

restoration of tY(GUA) and tP(AGG) levels was also observed in the two other trm8Δ dhp1
suppressors at 38.5˚C (S10 Fig). We conclude that, as for RTD in S. cerevisiae modification

mutants [22,39,40], tRNA decay in S. pombe trm8Δmutants occurs by 5’-3’ exonucleolytic deg-

radation of tRNA, providing strong evidence for conservation of the RTD pathway in S.

pombe.

Mutations in the GAAC pathway suppress the S. pombe trm8Δ growth

defect and restore tRNA levels

A second major group of six S. pombe trm8Δ suppressors was temperature resistant on YES

and EMMC media, but sensitive on YES + 5-FU media, and genome sequencing showed that

these suppressors each had distinct mutations in elements of the GAAC pathway (Figs 4A and

S11). Among these, we found three trm8Δ suppressors with gcn2 mutations, one with a gcn1
mutation, and two with tif221 mutations, encoding the translation initiation factor eIF2Bα (S2

Table). Each of these genes in S. cerevisiae is known to be critical for the GAAC pathway [66–

68], which is widely conserved in eukaryotes, including S. pombe and mammals [69–74]. In

this pathway, amino acid starvation leads to uncharged tRNAs that bind Gcn2 to activate its

kinase domain, phosphorylation of eIF2α by Gcn2, global repression of translation, and dere-

pression of translation of the transcription factor Gcn4, resulting in increased transcription of

nearly one tenth of the S. cerevisiae genes [66,75–78]. A similar massive transcription program

change occurs in S. pombe after amino acid starvation [79].

As expected, all S. pombe trm8Δmutants with suppressing mutations in gcn2, gcn1, or

tif221, grew poorly on media containing 3-Amino-1,2,4-triazole (3-AT) (S11 Fig), the classical

inducer of the GAAC pathway [79–81]. Furthermore, each of two S. pombe trm8Δ GAAC sup-

pressors tested (with gcn2-1 and tif221-2 mutations) was complemented by re-introduction of

the WT gene (Fig 4B), and a re-constructed trm8Δ gcn2Δ strain was temperature resistant and

sensitive to 3-AT (S12 Fig).

Consistent with their role as S. pombe trm8Δ suppressors, all six of the trm8Δ GAAC

mutants had increased levels of tY(GUA) and tP(AGG) at high temperature. After growth in

YES media at 38.5˚C, all trm8ΔGAAC mutants showed a 1.7-fold to 2.1-fold increase in tY

(GUA) levels compared to the parent trm8Δmutant, and tP(AGG) levels were increased ~ 3

fold, whereas the controls tT(AGU) and tV(AAC) did not have increased levels (Figs 4C and

4D and S13). These results provided strong evidence that the effect of the GAAC mutants was

to increase tRNA levels to restore growth.

Fig 3. Mutations in dhp1 suppress the temperature sensitivity of S. pombe trm8Δ mutants and restore tP(AGG) and tY(GUA) levels. (A) dhp1 mutations

restored growth of trm8Δ mutants at high temperature. Strains as indicated were grown overnight in YES media at 30˚C and analyzed for growth as in Fig

1B. (B) Mutations in dhp1 that restored growth of S. pombe trm8Δ mutants reside in evolutionarily conserved residues. The amino acid sequence of Sp
Dhp1 was aligned with putative Rat1/Dhp1 orthologs from 17 evolutionarily distant eukaryotes, using MultAlin (http://multalin.toulouse.inra.fr/multalin/)

[135]. red,> 90% conservation; blue, 50%-90% conservation. Alleles of dhp1 mutations are indicated at the top. (C) Each of two trm8Δ dhp1 mutants had

restored tRNA levels in YES media at 38.5˚C. Strains were grown in YES media at 30˚C and shifted to 38.5˚C for 8 hours, and RNA was isolated and

analyzed by northern blotting as in Fig 2A. (D) Quantification of tRNA levels of trm8Δ dhp1 mutants shown in Fig 3C. tRNA levels were quantified as in

Fig 2B. tT(AGU), brown; tP(AGG), purple; tY(GUA), gray; dark shades, 30˚C; light shades, 38.5˚C.

https://doi.org/10.1371/journal.pgen.1008893.g003
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To test if the temperature resistance of S.pombe trm8ΔGAAC mutants extended further

downstream within the GAAC pathway, we deleted the GAAC transcription factor fil1+, the

functional equivalent of S. cerevisiae Gcn4 [82]. We found that trm8Δ filΔmutants were

Fig 4. Mutations in the GAAC pathway suppress the temperature sensitivity of S. pombe trm8Δ mutants and restore tP(AGG) and tY(GUA) levels. (A) gcn1,

gcn2, and tif221 mutations each restored growth of trm8Δ mutants at high temperature. Strains as indicated were grown overnight in YES media at 30˚C and

analyzed for growth as in Fig 1B. (B) Expression of gcn2+ and tif221+ complemented the suppression phenotype of trm8Δ gcn2-1 and trm8Δ tif221-2 mutants

respectively. S. pombe trm8Δ gcn2-1 and trm8Δ tif221-2 mutants expressing gcn2+ and tif221+ respectively, or a vector, were grown overnight in EMMC-Leu media at

30˚C, and analyzed for growth as in Fig 1B. Note that expression of gcn2+ was kept to modest levels by adding thiamine to the media to partially suppress

overexpression from the Pnmt1
�� promoter. (C) gcn1, gcn2, and tif221 mutations each partially restored tY(GUA) and tP(AGG) levels of trm8Δ mutants. Strains

were grown in YES media at 30˚C and shifted to 38.5˚C for 8 hours as described in Materials and Methods, and RNA was isolated and analyzed by northern blotting.

(D) Quantification of tRNA levels of trm8Δ GAAC mutants shown in Fig 4C. tRNA levels were quantified as in Fig 2B. tT(AGU), brown; tP(AGA), purple; tY

(GUA), gray.

https://doi.org/10.1371/journal.pgen.1008893.g004
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distinctly more temperature resistant than trm8Δmutants in EMMC-His media, but not as

temperature resistant as a trm8Δ gcn2Δmutant (S14 Fig). We thus infer that suppression of

the trm8Δ temperature sensitivity observed in S. pombe trm8ΔGAAC mutants is due in part to

transcription activation by Fil1. We note that the filΔmutation did not rescue the temperature

sensitivity of trm8Δmutants in YES media; this could be due in part to the temperature sensi-

tivity of fil1Δmutants in YES media.

The temperature sensitivity of S. pombe trm8Δ mutants coincides precisely

with the onset of GAAC activation and tY(GUA) decay

Since S. pombe trm8Δ suppressors in different components of the GAAC pathway all restored

tY(GUA) and tP(AAG) levels, we inferred that trm8Δmutants activated the GAAC pathway at

non-permissive temperatures, and that this activation somehow promoted further loss of the

tRNA. To establish the precise connection between growth, tRNA levels, and GAAC activation

in trm8Δmutants, we measured each parameter during liquid growth in rich media at a per-

missive temperature (30˚C), and at three elevated temperatures: 36.5˚C, 37.5˚C, and 38.5˚C.

In this experiment, trm8Δmutants grew virtually identically to WT control strains at 36.5˚C

and 37.5˚C, and the growth defect was only obvious at 38.5˚C (S15 Fig).

Strikingly, S. pombe trm8Δmutants activated the GAAC pathway only at 38.5˚C, the lowest

temperature at which the growth defect was obvious. We measured GAAC activation by mea-

suring mRNA levels of the known GAAC targets lys4+ and aro8+ (SPAC56E4.03) [79], which

we had previously used [83]. At 38.5˚C in trm8Δmutants, we observed a 7.1-fold increase in

lys4+ mRNA levels (relative to the standard act1+), compared to that from WT or trm8Δ
mutants at 30˚C (5.3 vs 0.74 and 0.74) (Fig 5A). By contrast, we found no measurable change

in lys4+ mRNA levels in trm8Δmutants grown at 36.5˚C and 37.5˚C, relative to that observed

in trm8Δmutants at 30˚C, or in WT cells at any temperature. Moreover, the increase in rela-

tive lys4+ mRNA levels in trm8Δmutants in YES media at 38.5˚C was almost as high as that

observed in WT cells induced with 3-AT, and was completely eliminated in trm8Δ gcn2-1
mutants. Examination of relative aro8+ mRNA levels gave a similar result (S16 Fig): a substan-

tial Gcn2-dependent increase in relative aro8+ mRNA levels at 38.5˚C in trm8Δmutants, rela-

tive to 37.5˚C (1.5 vs 0.45), and no change in relative aro8+ mRNA levels at 37.5˚C in trm8Δ
mutants compared to WT (0.45 vs 0.44). Consistent with the appearance of the S. pombe
trm8Δ growth defect and the GAAC activation only at 38.5˚C, tY(GUA) decay was only signif-

icant in YES media at 38.5˚C, and at that temperature the gcn2-1 mutation significantly

restored tY(GUA) levels (Fig 5B and 5C).

As anticipated, phosphorylation of eIF2α tracked with GAAC activation. We grew WT and

S. pombe trm8Δmutants at 30˚C and 38.5˚C, and measured both eIF2α phosphorylation levels

and GAAC activation of lys4+ and aro8+ mRNA expression. We observed much more pro-

nounced levels of eIF2α phosphorylation in trm8Δmutants at 38.5˚C, compared to modest

phosphorylation levels in WT at 38.5˚C, and much reduced phosphorylation in both trm8Δ
mutants and WT at 30˚C (S17A Fig). Analysis of the same samples by RT-qPCR showed a sub-

stantial increase of lys4+ and aro8+ mRNAs in trm8Δmutants at 38.5˚C, but not in WT at

38.5˚C or in either trm8Δ or WT at 30˚C (S17B Fig), just as we observed in Figs 5A and S16.

These results provide evidence that the Gcn2 mediated GAAC activation of expression of lys4+

and aro8+ mRNAs occurs through eIF2α phophorylation in trm8Δmutants at 38.5˚C.

As tY(GUA) was the major physiologically relevant substrate in YES media (Fig 2D), we

speculated that at 38.5˚C, tY(GUA) decay might be driving the GAAC activation associated

with the trm8Δ growth defect. Alternatively, GAAC activation could be a consequence of both

tY(GUA) and tP(AAG) decay, reduced tRNA charging associated with trm8Δmutants at high
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temperature, or partly as a consequence of temperature stress itself, as a number of different

stress conditions are known to activate the GAAC pathway [72,74,84,85].

To determine the extent to which reduced tRNA levels activated the GAAC pathway, we

examined GAAC induction of S. pombe trm8Δ strains after overproduction of tY(GUA) and

tP(AGG), using the same samples we used to show that overproduction of tY(GUA) sup-

pressed the trm8Δ temperature sensitivity (Figs 2D and S6). As expected, relative lys4+ mRNA

levels were increased in trm8Δ [vector] strains grown at 38.5˚C, compared to this strain at

30˚C (4.2 vs 0.57, 7.4-fold) or to WT at 38.5˚C (7.0 fold), indicating GAAC activation (Fig

5D). Notably, relative lys4+ mRNA levels were reduced 4.0-fold in the trm8Δ [tY(GUA)] strain

compared to the corresponding trm8Δ [vector] strain (from 4.2 to 1.04), and were not reduced

in the trm8Δ [tP(AGG)] strain. Based on these results, we conclude that reduced function of

tY(GUA) is the primary cause of GAAC activation and temperature sensitivity of trm8Δ
mutants at 38.5˚C. As charging of tY(GUA) was distinctly but marginally reduced at 38.5˚C

relative to WT (S18 Fig), we cannot determine if the GAAC activation was due to reduced lev-

els of tY(GUA), or to a combination of reduced levels and charging [69,76,80,83,86].

To determine the effects of Trm8 and Gcn2 on processing and transcription, we examined

expression of the four pre-tY(GUA) species (1–1, 1–2, 1–3, and 2, as described [59]) in the

WT, trm8Δ, and trm8Δ gcn2-1 strains, using appropriate intron-specific probes. With a probe

specific for the pre-tY(GUA)-2 species, we found that at all temperatures trm8Δmutants accu-

mulated significantly more of the 3’ end-extended and the end-matured pre-tY(GUA) species

than the WT strains (S19 Fig). Similarly, with the pre-tY(GUA)-1-3 probe, we observed accu-

mulation of the end-matured pre-tY(GUA) in trm8Δmutants at all temperatures. These results

suggest a processing defect due to lack of m7G for these pre-tY(GUA) species. We also found

that levels of the primary transcript, corresponding to the largest pre-tY(GUA) species, were

slightly elevated in trm8Δ gcn2-1 mutants relative to trm8Δmutants, at both 37.5˚C and

38.5˚C, but not at 36.5˚C (S19A and S19B Fig). This result suggests that tRNA transcription

might play some role in restoring tY(GUA) levels in a trm8Δ gcn2-1 mutant at 37.5˚C and

38.5˚C, although it is not clear yet if this effect accounts for all of the suppression.

In S. cerevisiae, mutation of the GAAC pathway exacerbates the effects of

the RTD pathway

To investigate the evolutionary implications of the GAAC pathway on RTD, we examined the

consequences of deletion of GAAC components in S. cerevisiae trm8Δ trm4Δmutants, which

are highly temperature sensitive due to substantial decay of tV(AAC) by the RTD pathway,

compared to the modest RTD-dependent temperature sensitivity and the limited tV(AAC)

decay of S. cerevisiae trm8Δmutants [18,39]. In contrast to our results in S. pombe trm8Δ

Fig 5. The temperature sensitivity of S. pombe trm8Δ mutants is associated with induction of the GAAC pathway

due to tY(GUA) decay. (A) S. pombe trm8Δ mutants induced lys4+ mRNA expression at 38.5˚C but not at 36.5˚C

or 37.5˚C. Strains as indicated were grown in YES media at 30˚C and shifted to 36.5˚C, 37.5˚C, or 38.5˚C for 8 hours

(S15 Fig), and bulk RNA was isolated and analyzed by RT-qPCR as described in Materials and Methods. The mRNA

levels of lys4+ were normalized to levels of act1+, a non-regulated control mRNA. WT, green; Sp trm8Δ, brown; Sp
trm8Δ gcn2-1, light blue. Right side: GAAC induction of WT cells grown at 30˚C in EMMC-His and treated with 10

mM 3-AT for 4 hours, evaluated in parallel. (B) An S. pombe trm8Δ gcn2-1 mutant had restored levels of tY(GUA)

and tP(AGG) at 38.5˚C. Bulk RNA from the growth done for Fig 5A was used for the northern analysis. (C)
Quantification of tY(GUA) and tP(AGG) levels in WT, trm8Δ, and trm8Δ gcn2-1 mutants at different

temperatures. tRNA levels were quantified as described in Fig 2B. (D) tY(GUA) overproduction repressed the

GAAC induction of trm8Δ mutants at 38.5˚C. Strains as indicated with plasmids expressing tY(GUA) and/or tP

(AGG) were grown in EMMC-Leu media at 30˚C and shifted to 38.5˚C for 8 hours, and then RNA was isolated and

lys4+ mRNA levels were analyzed by RT-qPCR as described in Fig 5A. Right side: GAAC induction of WT cells grown

at 30˚C in EMMC-His media, and treated with 10 mM of 3-AT for 4 hours, evaluated in parallel to other samples.

https://doi.org/10.1371/journal.pgen.1008893.g005
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GAAC mutants, deletion of GCN1 or GCN2 exacerbated the temperature sensitivity of S. cere-
visiae trm8Δ trm4Δmutants in both rich (YPD) and minimal complete (SDC) media, and this

exacerbated temperature sensitivity was also observed upon deletion of the GAAC transcrip-

tion factor GCN4 (Fig 6A). Moreover, we found that a met22Δmutation, known to prevent

RTD, reversed the enhanced temperature sensitivity of a trm8Δ trm4Δ gcn2Δ strain relative to

a trm8Δ trm4Δmutant (S20 Fig). Furthermore, a similar exacerbated temperature sensitivity

due to mutation of the GAAC pathway was also observed in other S. cerevisiae modification

mutants known to be subject to RTD [22,39], including trm8Δ, trm1Δ, tan1Δ, and tan1Δ
trm44Δmutants (S21 Fig).

To determine if the exacerbated growth defect of S. cerevisiae trm8Δ trm4ΔGAAC mutants

was due to exacerbated loss of tV(AAC), we analyzed tRNA levels after a four-hour tempera-

ture shift from permissive to non-permissive temperature (27˚C to 32˚C). Consistent with the

exacerbated temperature sensitivity caused by the gcn1Δ and gcn2Δmutations, tV(AAC) levels

were further reduced in both trm8Δ trm4Δ gcn1Δ and trm8Δ trm4Δ gcn2Δmutants at 32˚C,

compared to the trm8Δ trm4Δmutant (12% and 17% vs 43%, relative to the values at 27˚C)

(Fig 6B and 6C). Using a pre-tV(AAC) probe specific for 7 of the 14 tV(AAC) genes in S. cere-
visiae, we found that levels of the primary pre-tV(AAC) transcript were modestly reduced at

32˚C in the trm8Δ trm4Δ gcn1Δmutant, relative to the trm8Δ trm4Δmutant (S22 Fig). This

result suggests that reduced pre-tV(AAC) transcription could be responsible for some of the

exacerbated loss of tV(AAC) in the trm8Δ trm4Δ gcn1Δmutant and for its exacerbated tem-

perature sensitivity, although the magnitude of the change may not account for all of the addi-

tional loss of tV(AAC).

The temperature sensitivity and tV(AAC) decay of S. cerevisiae trm8Δ
trm4Δ mutants coincides with GAAC activation

Since GAAC mutations exacerbated the RTD growth defect and enhanced the decay of an S.

cerevisiae trm8Δ trm4Δmutant at 32˚C, it seemed likely that the GAAC pathway was activated

in the trm8Δ trm4Δmutant. To evaluate GAAC activation, we measured mRNA levels of the

Gcn4 target genes LYS1 and HIS5 after the 4 hour temperature shift of trm8Δ trm4Δmutants

to 32˚C, using the same RNA as in the northern analysis of decay (Figs 6B and 6C and S22).

RT-qPCR analysis showed that trm8Δ trm4Δmutants had a large increase in relative LYS1
mRNA levels at 32˚C, compared to 27˚C (22.2 vs 0.81, 27.4-fold), or to WT cells at either 27˚C

or 32˚C (Fig 6D), showing that the GAAC activation was specific to the trm8Δ trm4Δmutant

at 32˚C. We observed a similar activation of the GCN4 target HIS5 in the trm8Δ trm4Δmutant

at 32˚C. This GAAC activation was correlated with a modest but distinct increase in

uncharged tV(AAC) commensurate with the reduced tV(AAC) levels (S23 Fig). Furthermore,

we found that overproduction of tV(AAC) in trm8Δ trm4Δmutants suppressed induction of

the GAAC pathway (Fig 6E), showing that GAAC activation in trm8Δ trm4Δmutants was due

to the reduced function of tV(AAC). Thus, in both S. cerevisiae trm8Δ trm4Δmutants and S
pombe trm8Δmutants, degradation of a single biologically relevant tRNA is the cause of

GAAC induction, which then either promotes further loss of tRNA in S. pombe, or restores

tRNA in S. cerevisiae (Fig 7).

Discussion

The results described here provide strong evidence that the RTD pathway is conserved between

the distantly related species S. cerevisiae and S. pombe. We have shown that the temperature sen-

sitivity of S. pombe trm8Δmutants is due to reduced levels of tY(GUA) and to some extent tP

(AGG), and is efficiently suppressed by mutations in the 5’-3’ exonuclease Dhp1 that
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Fig 6. Mutations in the GAAC pathway exacerbate the temperature sensitivity of S. cerevisiae trm8Δ trm4Δ mutants as well as tV(ACC) decay. (A)

Deletion of GCN1, GCN2, or GCN4 exacerbated the temperature sensitivity of S. cerevisae trm8Δ trm4Δ mutants in YPD and SDC media. Strains were
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concomitantly restore the levels of these tRNAs, strongly suggesting decay of tY(GUA) and tP

(AGG) by the RTD pathway. As RTD is triggered in S. cerevisiae strains lacking m2,2G26 or

ac4C12, as well as in strains lacking m7G46, [22,39], we speculate that the RTD pathway will also

act in S. pombe strains lacking other body modifications. Furthermore, given the large evolu-

tionary distance between S. cerevisiae and S. pombe, we speculate that the RTD pathway is con-

served throughout eukaryotes. The existence of a mammalian RTD pathway could explain the

reduced levels of specific tRNA species in mouse strains lacking m5C in their tRNAs [33,87]

and in mouse embryonic stem cells lacking m7G in their tRNAs [46], and might explain other

phenotypes associated with mutations in METTL1 or WDR4 [29,30,46,88].

It is puzzling that although tP(AGG) is substantially more degraded than tY(GUA) in S.

pombe trm8Δmutants at elevated temperatures, the temperature sensitivity of the mutants in

both rich and minimal media is primarily due to decay of tY(GUA). One possible explanation

of this result is that tY(GUA) levels might be more limiting in the cell than tP(AGG) levels at

elevated temperature, relative to the number of their respective cognate codons requiring

decoding. This type of argument was advanced as a possible explanation for why the growth

defects of i6A-lacking S. pombe tit1Δmutants were rescued by increased expression of tY

(GUA), but not by any of the other four Tit1 tRNA substrates [89]. A second, and less likely,

interpretation is that tP(AGG) decoding might be compensated by other tRNAPro isodecoders

specific for the CCN codon box. This explanation is based on the finding that in S. cerevisiae,
deletion of the two tP(AGG) genes is viable, implying that the 10 tP(UGG) isodecoders can

decode all four proline CCN codons [90]. However, as S. pombe has six tP(AGG) genes and

only two tP(UGG) genes (as well as one tP(CGG)), it seems unlikely that the loss of almost all

of the tP(AGG) in trm8Δmutants can be efficiently compensated by the small number of tP

(UGG) species (assuming that tRNA expression from each gene is comparable).

It is not immediately clear why tP(AGG) and tY(GUA) are the specific tRNAs subject to

RTD in S. pombe trm8Δmutants. Based on current understanding of RTD determinants in S.

cerevisiae, RTD substrate specificity is determined by stability of the stacked acceptor and T-

stem, with contributions to stability from the tertiary fold that are reduced in modification

mutants, and some contributions from the other two stems, but not the anticodon loop

[18,22,39–42]. tP(AGG) may be an RTD substrate because it is predicted to have a less stable

acceptor and T-stem than most Trm8 substrates (S1 Table) [91]. Furthermore, the destabiliz-

ing C4-A69 mismatch in the middle of the tP(AGG) acceptor stem might be expected to lead to

increased local breathing at the 5’ end, which is likely important for recognition by the 5’-3’

exonucleases Xrn1 and Rat1, as the Xrn1 active site binds the three most 5’ nucleotides [92].

However, it is more difficult to rationalize why tY(GUA) is a substrate for RTD in trm8Δ
mutants, as its acceptor and T-stem are predicted to be moderately stable among Trm8 sub-

strates. However, tY(GUA) does have a destabilizing N27-N43 pair (C27-U43 for 3 isodecoders,

grown overnight in YPD media at 27˚C and analyzed for growth on YPD and SDC plates at different temperatures. (B) Deletion of GCN1 or GCN2
exacerbated tV(AAC) decay of trm8Δ trm4Δ mutants at 32˚C. Strains were grown in YPD media 27˚C, shifted to 32˚C and harvested after 4 hours, and then

bulk RNA was isolated and analyzed by northern blotting. (C) Quantification of tRNA tV(AAC), tR(UCU), and tW(CCA) levels from the northern in Fig

6B. The bar chart depicts levels of tRNA species at 27˚C or 32˚C, relative to levels of that tRNA in the WT strain at 27˚C (each value itself first normalized to

levels of the control 5S rRNA). tRNA levels are indicated by diagonal hatching for WT (green); S. cerevisiae (Sc) trm8Δ trm4Δ (brown); Sc trm8Δ trm4Δ gcn2Δ
(light blue); and Sc trm8Δ trm4Δ gcn1Δ (dark blue). (D) trm8Δ trm4Δ mutants induced the GAAC pathway at 32˚C. Bulk RNA from the growth done for Fig

6B was used for RT-qPCR analysis of levels of LYS1 and HIS5 mRNA, normalized to ACT1. mRNA levels are indicated by horizontal lines for LYS1 and

hatching for HIS5, WT (green); Sc trm8Δ trm4Δ (brown). Right side: Relative levels of LYS1 mRNA of WT cells grown at 30˚C in SD-His media, and then

treated with 10 mM 3-AT for 1 hour, evaluated in parallel to other samples. (E) tV(AAC) overproduction repressed the GAAC induction of trm8Δ trm4Δ
mutants at 36˚C. Strains with plasmids as indicated were grown in SD-Ura media 27˚C and shifted to 36˚C for 1 hour, and then RNA was isolated and relative

LYS1 mRNA levels were analyzed by RT-qPCR as described in Fig 6D. Right side: GAAC induction of WT cells grown and induced with 3-AT as described in

Fig 6D.

https://doi.org/10.1371/journal.pgen.1008893.g006
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and U27-U43 for one isodecoder), which might reduce the stability of the tertiary fold by affect-

ing stability of the adjacent tertiary 26–44 interaction [93–95].

It is not yet clear how Dhp1 degrades tY(GUA) in S. pombe trm8Δmutants. In S. cerevisiae,
Rat1 is nuclear [96] and catalyzes a substantial amount of the decay of mature tV(AAC) in

trm8Δ trm4Δmutants [39], suggesting that the retrograde transport pathway is required to

Fig 7. A model illustrating the interplay of the RTD pathway and GAAC induction in S. pombe and S. cerevisiae. Left: S. pombe trm8Δmutants (red)

trigger RTD of tY(GUA), leading to GAAC induction and further loss of tY(GUA) and tP(AGG). The further reduced levels of tRNA resulting from GAAC

induction is in part due to transcription upregulation of Fil1 target genes (solid lines), and may also be due in part to the global reduction in translation (dotted

lines). Right: S. cerevisiae trm8Δ trm4Δmutants (green) trigger RTD of tV(AAC), leading to GAAC induction. This results in inhibition of further loss of tV

(AAC), which is due in part to the the transcription upregulation of Gcn4 target genes (solid lines), and may also be due to global reduction in translation

(dotted lines).

https://doi.org/10.1371/journal.pgen.1008893.g007
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deliver the tV(AAC) substrate to the nucleus [5,97–100]. However, we do not know the exact

species of tY(GUA) that is degraded by Dhp1 in S. pombe trm8Δmutants. If mature tY(GUA)

is the actual Dhp1 substrate, it is almost certainly subject to retrograde transport back to the

nucleus for the subsequent decay, because Dhp1 is known to be nuclear [64,101] and S. pombe
pre-tRNA splicing initiates in the cytoplasm on the mitochondrial surface [102]. Such a retro-

grade transport mechanism for hypomodified tY(GUA) lacking m7G46 in S. pombe trm8Δ
mutants would be similar to that shown for hypomodified tRNAs lacking m2,2G26 in S. cerevi-
siae trm1Δmutants [100]. However, it is also possible that Dhp1 acts to degrade unspliced pre-

tY(GUA) that accumulates in trm8Δmutants, analagous to the recently described Met22-de-

pendent pre-tRNA decay pathway [103].

It seems likely that the 5-FU sensitivity of S. pombe trm8Δmutants is due to decay of multi-

ple tRNA species in the presence of the drug, caused by the reduced levels of C and m5U [48–

50], in addition to the lack of m7G. This interpretation is consistent with the lack of suppres-

sion of the 5-FU sensitivity of trm8Δmutants by tY(GUA) and tP(AGG), and its almost com-

plete suppression by dhp1 mutations, and is consistent with the enhanced 5-FU sensitivity of a

number of tRNA body modification mutants in S. cerevisiae [61].

Our finding that loss of function of tRNA due to tRNA decay is itself the trigger for induction

of the GAAC response in both S. pombe trm8Δmutants and S. cerevisiae trm8Δ trm4Δmutants

suggests an intimate relationship between reduced tRNA function and GAAC activation. The

loss of functional tRNA below some presumed threshold level is the proximal cause of GAAC

induction, because in each organism the GAAC pathway is activated at the lowest temperature at

which tRNA decay and a growth defect is observed, and in each organism overproduction of the

physiologically relevant tRNA represses GAAC induction. The GAAC pathway has previously

been implicated in the biology of a number of anticodon loop modifications [83,104,105]. Robust

constitutive GAAC induction is observed in S. cerevisiae and S. pombe trm7Δmutants (lacking

Nm32 and Nm34) and S. cerevisiae pus3Δmutants (lackingC38 andC39) [83,105], each of which

has a constitutive growth defect [106,107], and GAAC induction is known to be Gcn2-dependent

in S. cerevisiae trm7Δmutants [83]. By contrast, S. cerevisiae mutants lacking either the mcm5U

or the s2U moiety of mcm5s2U induce the GAAC pathway independently of Gcn2 at 30˚C [104]

and are temperature sensitive at 37˚C [108]. Our finding that S. pombe trm8Δ and S. cerevisiae
trm8Δ trm4Δmutants each trigger Gcn2-dependent GAAC induction only at the temperature

that the growth defect is observed is consistent with Gcn2-dependent GAAC induction in S. cere-
visiae anticodon loop modification mutants with a constitutive growth defect.

It is striking that the induction of the GAAC response due to tRNA decay in S. pombe trm8Δ
mutants and S. cerevisiae trm8Δ trm4Δmutants has opposite consequences in each organism.

In S. pombe trm8Δmutants, activation of the GAAC response exacerbates the growth defect, as

mutation of any of four components (gcn1, gcn2, tif221, or fil1) protects against loss of tRNA.

Activation of the GAAC pathway is also part of the reason that S. cerevisiae trm7Δmutants

grow poorly [83], and defects in the integrated stress response pathway (ISR) in humans are

implicated in disease phenotypes [109–111]. By contrast, in S. cerevisiae trm8Δ trm4Δmutants,

activation of the GAAC response rescues the growth defect, as deletion of any of three GAAC

components (gcn1Δ, gcn2Δ, or gcn4Δ) exacerbates the growth defect. Furthermore, this result

extends to multiple S. cerevisiae modification mutants with an RTD phenotype, since a gcn2Δ
mutation also exacerbated the growth defects of trm8Δ, trm1Δ, tan1Δ, and tan1Δ trm44Δ
mutants. Although the rescue of RTD in S. cerevisiae by GAAC activation is opposite to the

exacerbating effect of GAAC activation in S. pombe trm8Δmutants, it is consistent with a con-

certed stress response. Moreover, the finding that GAAC effects on RTD extended to fil1Δ/
gcn4Δmutations in S. pombe and S. cerevisiae has mechanistic implications. Deletion of GCN1
or GCN2 each prevent sensing of tRNA status, and the consequent eIF2α phosphorylation,
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reduced translation initiation, reduced global translation, and massive downstream transcrip-

tion activation. However, as fil1+/Gcn4 is downstream of the sensing machinery, but upstream

of the transcription activation, we infer that the GAAC effects on RTD in S. pombe and S. cerevi-
siae are in part due to lack of transcription activation by fil1+/Gcn4.

The opposite effects of GAAC activation on growth and RTD in S. pombe trm8Δmutants

and in several S. cerevisiae RTD mutants is likely due to a differential GAAC response.

Although in each organism the GAAC pathway is known to regulate the transcription of more

than 500 genes [75,77,79,82], there are distinct differences in the GAAC response in the two

species. For example, it is known that the GAAC response to amino acid starvation results in

repression of methionine synthesis genes in S. pombe but induction of these genes in S. cerevi-
siae [79]. As a met22Δmutation is known to inhibit RTD in S. cerevisiae [22,39], this opposite

GAAC activation effect on methionine genes in the two organisms is in the wrong direction to

explain the opposite RTD effects of the GAAC pathway. Other possible explanations for the

differential effects of the GAAC pathway on RTD include differential regulation of the synthe-

sis or biochemical activity of RTD regulators such as EF1A, aminoacyl tRNA synthetases, pol

III transcription [22,112], or 5’-3’ exonucleases [39,42], as well as changes in any number of

indirect effectors affecting overall levels or availability of tRNA and/or nucleases. In addition,

the overall stress response pathways are substantially different between S. cerevisiae and S.

pombe. In S. cerevisiae, Gcn2 is the sole eIF2α kinase regulating stress responses [78,113,114],

whereas in S. pombe three different eIF2α kinases (Gcn2, Hri1 and Hri2) [115] each respond

to a diverse set of stress treatments [72,74,84,85,109]. The differences in kinases affecting

eIF2α phosphorylation implies substantial differences between the two species in regulation of

all sorts of combinations of stress response, which might be occurring at elevated temperature

when tRNA decay is occurring [116].

The results outlined here underscore that GAAC activation occurs in S. cerevisiae and S.

pombe trm8Δmodification mutants precisely at the point of observed growth stress due to

tRNA decay, albeit with different effects in S. pombe trm8Δmutants and S. cerevisiae trm8Δ
trm4Δmutants. These results, coupled with the constitutive GAAC activation in S. pombe and

S. cerevisiae trm7Δmutants and S. cerevisiae pus3Δmutants [83,105], fuel speculation that the

GAAC response will also be activated in mammals and other eukaryotes with tRNA modifica-

tion mutations or other mutations that result in reduced tRNA function. Given that GAAC

activation at the onset of reduced tRNA function regulates RTD in opposite ways in S. pombe
and S. cerevisiae, it would be interesting to determine the GAAC effect on tRNA decay and

tRNA levels in mammalian systems. Based on the observation that GAAC activation in mice

attenuates the growth defects caused by the combination of reduced tRNAArg(UCU) levels and a

defect in the ribosome recycling component GTPBP2 [86], we speculate that GAAC activation

by reduced tRNA function in mammals will likewise attenuate RTD and promote survival.

As Trm8 is phosphorylated and likely inactivated by treatment of HEK293 cells with insu-

lin-like growth factor-1 [117], it seems plausible that if RTD is conserved in mammals, m7G

modification dynamics could be used to regulate tRNA levels physiologically. There is growing

evidence that levels of a number of modifications are under dynamic control in different con-

ditions [118,119]. There is also evidence that regulation of tRNA expression plays an impor-

tant role in differentiation and proliferation, and is also a characteristic of breast cancer [120–

124]. For example, tRNAArg iso-acceptors have different expression in differentiated vs prolif-

erating cells [123] and tR(UCU) iso-decoders show tissue specific regulation of expression

[125]. It remains to be determined if regulated changes in expression, phosphorylation, or bio-

chemical activity of METTL1 or WDR4 result in altered m7G levels and consequent changes

in tRNA levels that physiologically regulate expression.
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Materials and methods

Yeast strains

S. pombe haploid WT and two independent S. pombe trm8Δ::kanMX strains were derived

from SP286 (ade6-M210/ade6-M216, leu1-32/leu1-32, ura4-D18/ura4-D18 h+/h+)[126], and

were obtained from Dr. Jeffrey Pleiss. S. pombe trm8Δ::kanMX strains were also generated

from haploid WT strains by PCR amplification of trm8Δ::kanMX DNA, followed by linear

transformation using lithium acetate [127]. S. cerevisiae deletion strains are shown in S3 Table,

and were constructed by linear transformation with PCR amplified DNA from the appropriate

knockout strain [128]. All strains were confirmed before use by PCR amplification.

Plasmids

Plasmids used in this study are listed in S4 Table. AB553-1 was constructed by insertion of a

NotI restriction site between the Pnmt1 promoter and the PstI site of the pREP3X plasmid. The

S. pombe plasmid expressing S. pombe Ptrm8+ trm8+ (ETD 67–1) was constructed by inserting

PCR amplified DNA genomic DNA (including 1000 bp upstream and 1000 bp downstream)

into the NotI and XhoI sites of AB 553–1, removing the Pnmt1 promoter. Plasmids expressing

S. pombe Pdhp1 dhp1+ or S. pombe tRNA genes were constructed using the same approach,

including ~ 300 bp upstream and 300 bp downstream for the tRNA genes. S. pombe plasmids

expressing Pnmt1�� gcn2+ (low strength, no message in thiamine) or Pnmt1� tif221+ (medium

strength, no message in thiamine) were constructed by PCR amplification of the respective

coding sequence from S. pombe WT genomic DNA (including introns), and insertion into the

XhoI and BamHI sites of the pREP81X or pREP41X vectors respectively.

Yeast media and growth conditions

S. pombe strains were grown at desired temperatures in rich (YES) media (containing 0.5%

yeast extract, 3% glucose, and supplements of 225 mg/l of adenine, uracil, leucine, histidine

and lysine), or Edinburgh minimal media (EMM) containing glucose and the same supple-

ments, as well as similar amounts of relevant auxotrophic requirements. Minimal complete

(EMM-C) media was supplemented with 225 mg/l of all amino acids, adenine, and uracil, as

well as 100 mg/l of para-amino benzoic acid and inositol, and 1125 mg/l of leucine for Leu-

auxotrophs [79]. For temperature shift experiments, cells were grown in YES or EMMC media

at 30˚C to OD600 ~ 0.5, diluted to ~ 0.1 OD in pre-warmed media at the desired temperature,

grown to OD ~ 0.5, harvested at 4˚C, washed with ice cold water, frozen on dry ice, and stored

at -80˚C. To select spontaneous suppressors of S. pombe trm8Δmutants, cells were grown

overnight in YES media at 30˚C and ~107 cells were plated on YES media plates at 38˚C and

39˚C. S. cerevisiae strains were grown in rich (YPD) media (containing 1% yeast extract, 2%

peptone, 2% dextrose, and 80 mg/L adenine hemisulfate), or minimal complete (SDC) media

[129] as indicated, and temperature shift experiments were performed as described for S.

pombe. All experiments with measurements were performed in biological triplicate, unless oth-

erwise noted.

Bulk RNA preparation and northern blot analysis

For northern analysis, 2 or 3 biological replicates were grown in parallel, and then bulk RNA

was isolated from ~ 3–5 OD pellets using glass beads and phenol [130] (for S. pombe) or hot

phenol (for S. cerevisiae), resolved on a 10% polyacrylamide (19:1), 7M urea, 1X TBE gel, trans-

ferred to Amersham Hybond-N+ membrane, and analyzed by hybridization to 5’ 32P-labeled

DNA probes (S5 Table) as described [18]. For analyzing tRNA charging levels of both S.
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pombe and S. cerevisiae, RNA was prepared under acidic conditions (pH 4.5), resolved on a

6.5% polyacrylamide (19:1), 8 M urea, 0.1 M sodium acetate (pH 5.0) gel at 4˚C, and analyzed

as described. [18].

Quantitative RT-PCR analysis

Strains were grown in triplicate to log phase and bulk RNA was prepared from 2–5 OD pellets

using acid washed glass beads and phenol. Then, RNA was treated with RQ1 RNase-free

DNase (Promega), reverse transcribed with Superscript II Reverse Transcriptase, and quantita-

tive PCR was performed on the cDNA as previously described [131].

Isolation and purification of tRNA

S. pombe WT and trm8Δmutant strains were grown to ~ 0.5 OD in YES media at 30˚C. Then

bulk low molecular weight RNA was extracted from ~ 300 OD of pellets by using hot phenol,

and tRNAs were purified using 5’-biotinylated oligonucleotides complementary to the corre-

sponding tRNAs (S6 Table) as previously described [132].

HPLC analysis of nucleosides of purified tRNA

Purified tRNAs (~ 1.25 μg) were digested to nucleosides by treatment with P1 nuclease, fol-

lowed by phosphotase, as previously described [132], and nucleosides were analyzed by HPLC

at pH 7.0 as previously described [133].

Whole genome sequencing

Whole genome sequencing was performed by the University of Rochester Genomics Center at

a read depth of 20–110 per genome nucleotide.

Crude extracts and western blot analysis

Crude extracts of S. pombe WT and trm8Δmutants were prepared by lysis with glass beads as

described [79]. Then 25 μg of crude extract proteins were resolved on 4–20% SDS-PAGE gels

(Criterion TGX, Bio-Rad), transferred to a 0.2 μm nitrocellulose membrane (Bio-Rad), and

probed with antibodies as described [134], using anti-phosphorylated eIF2α (Cat. # 44-728G,

Thermofisher; diluted 1:6000) and anti-α-tubulin (Cat. # T-5168 Sigma, diluted 1:6000).

Supporting information

S1 Fig. S. pombe trm8Δ mutants have a temperature sensitive growth defect in liquid YES

media. Strains were grown in YES media at 30˚C, shifted to the indicated temperatures, and

then growth was monitored for 8 hours before harvest as described in Materials and Methods,

and tRNA analysis as done in Fig 2A and 2B. WT, green; Sp trm8Δ, brown.

(PDF)

S2 Fig. S. pombe trm8Δ mutants had reduced 5S rRNA and 5.8S rRNA levels at higher tem-

peratures. The northern blot shown in Fig 2A was used to analyze the non-Trm8 substrate tL

(UAA), 5S rRNA, and 5.8S rRNA. The bar chart depicts levels of RNA species at each tempera-

ture, relative to their levels in the WT strain at 30˚C (each value itself first normalized to levels

of the control non-Trm8 substrate tG(GCC)). 30˚C, green; 36.5˚C, yellow; 37.5˚C, orange;

38.5˚C. red.

(PDF)
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S3 Fig. tP(AGG) of S. pombe trm8Δ mutants has no detectable m7G. trm8Δmutants and

WT cells were grown in YES media at 30˚C and tP(AGG) was purified and analyzed for modi-

fications as in Fig 1A.

(PDF)

S4 Fig. Northern analysis of all Trm8 substrates (except tP(AGG), tY(GUA), and tT

(AGU)) in S. pombe trm8Δ and WT cells after shift from 30˚C to 36.5˚C, 37.5˚C, and

38.5˚C. The northern blot shown in Fig 2A was continued to analyze levels of all other pre-

dicted Trm8 substrate tRNAs, as well as the non-Trm8 substrate tL(UAA), 5S RNA, and 5.8S

RNA, in WT and trm8Δmutants at different temperatures.

(PDF)

S5 Fig. A. Among 21 predicted Trm8 substrate tRNAs, only tP(AGG) and tY(GUA) had

reduced levels in S. pombe trm8Δ mutants at elevated temperatures. tRNA levels were

quantified, relative to tG(GCC), as described in Fig 2B. Note that data from Fig 2B is also

included here for completeness. B. Analysis of Trm8 substrate tRNAs in WT cells at ele-

vated temperatures.

(PDF)

S6 Fig. A. Overproduction of tY(GUA) and tP(AGG) resulted in increased levels of the

corresponding tRNAs in S. pombe trm8Δmutants and WT cells. Strains with plasmids as

indicated were grown in EMMC-Leu media at 30˚C and shifted to 38.5˚C for 8 hours, and

then RNA was isolated and analyzed by northern blotting as in Fig 2A. B. Quantification of

tRNA levels in S. pombe trm8Δmutants and WT cells overproducing tY(GUA) or tP

(AGG). Quantification was done as in Fig 2B.

(PDF)

S7 Fig. Overproduction of both tY(GUA) and tP(AGG) fully restored growth of S. pombe
trm8Δ mutants in YES + glycerol media, but not in YES media containing 5-FU. Strains

grown for Fig 2D were analyzed for growth on plates containing YES media with 3% glycerol

(instead of 3% glucose) and YES media with 5-FU (30 μg/ml).

(PDF)

S8 Fig. dhp1 mutations restored growth of S. pombe trm8Δ mutants in YES + 5-FU media.

Strains grown for Fig 3A were analyzed for growth on YES + 5-FU (30 μg/ml) plates.

(PDF)

S9 Fig. Expression of Pdhp1 dhp1+ restored temperature sensitive growth in the S. pombe
trm8 dhp1-1 mutant. WT, trm8Δ, and trm8Δ dhp1-1 cells expressing Pdhp1 dhp1+ or a vector

were grown overnight in EMMC-Leu media at 30˚C, and analyzed for growth.

(PDF)

S10 Fig. A. S. pombe trm8Δ dhp1-3 and trm8Δ dhp1-4 mutants also restored tY(GUA) and

tP(AGG) tRNA levels at 38.5˚C. Strains were grown in YES media at 30˚C and shifted to

38.5˚C for 8 hours, and RNA was isolated and analyzed by northern blotting as in Fig 2A. B.

Quantification of tRNA levels in different S. pombe trm8Δ dhp1 mutants. tRNA levels were

quantified as in Fig 2B. tT(AGU), brown; tP(AGG), purple; tY(GUA), gray.

(PDF)

S11 Fig. Mutations in the GAAC pathway did not rescue the 5-FU sensitivity of S. pombe
trm8Δ mutants, and conferred enhanced 3-AT sensitivity. Strains grown for Fig 4A were

analyzed for growth on plates containing YES media + 5-FU (30 μg/ml) and EMMC-His
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media + 10 mM 3-AT.

(PDF)

S12 Fig. Reconstructed S. pombe trm8Δ gcn2Δ mutants had the same growth properties as

the original trm8Δ gcn2-1 strain. Strains were analyzed for growth on YES media, EMM-

C-His or EMMC-His media containing 10 mM 3-AT, as described in Fig 1B. Reconstructed S.

pombe trm8Δmutant was labeled as V3.

(PDF)

S13 Fig. A. Northern analysis of WT, S. pombe trm8Δ, trm8Δ gcn2-2, trm8Δ tif221-1, and

trm8Δ gcn2-3 cells. Strains were grown in YES media at 30˚C and shifted to 38.5˚C for 8

hours, and RNA was isolated and analyzed by northern blotting as in Fig 2A. B. Quantifica-

tion of tRNA levels. tRNA levels were quantified as in Fig 2B. n = 2 for all strains.

(PDF)

S14 Fig. Deletion of fil1+ partially restored growth in S. pombe trm8Δ mutants in EMM-

C-His media. Strains were grown overnight in YES media at 30˚C and analyzed for growth.

(PDF)

S15 Fig. The temperature sensitivity of S. pombe trm8Δ mutants observed at 38.5˚C in YES

liquid media was suppressed in a trm8Δ gcn2-1 mutant. Strains were grown in YES media at

30˚C, shifted to 36.5˚C, 37.5˚C, and 38.5˚C as indicated, and then growth was monitored for 8

hours before harvest as described in Materials and Methods, and analysis of mRNAs and

tRNAs in Figs 5A–5C and S16 and S19.

(PDF)

S16 Fig. S. pombe trm8Δ mutants induced aro8+ mRNA expression at 38.5˚C, but not at

37.5˚C. Bulk RNA from the growth in S15 Fig was used for the RT-qPCR analysis of aro8+(-
SPAC56E4.03) mRNA levels, as in Fig 5A.

(PDF)

S17 Fig. A. S. pombe trm8Δ mutants had increased levels of phophorylated eIF2α at 38.5˚C

WT and S. pombe trm8Δ strains were grown in YES media at 30˚C, shifted to 38.5˚C for 8 hours

and cells were harvested. Then crude extracts were prepared and analyzed by western blotting as

described in Materials and Methods, using anti-phosphorylated eIF2α and anti-α-tubulin. Con-

trols: WT and gcn2Δmutants were grown at 30˚C in EMMC-His media and, where indicated,

treated with 20 mM 3-AT. Then extracts were prepared and evaluated by blotting in parallel to

the experimental samples. B. Increased levels of phophorylated eIF2α in S. pombe trm8Δ
mutants at 38.5˚C were associated with increased expression of lys4+ and aro8+ mRNAs. Bulk

RNA was prepared from the growth done for S17A Fig, and levels of aro8+(SPAC56E4.03) and

lys4+ mRNAs were quantified relative to act1+, using RT-qPCR, as in Fig 5A.

(PDF)

S18 Fig. A. Analysis of charging levels of tY(GUA) or tP(AGG) in S. pombe trm8Δ mutants

at 38.5˚C. Strains were grown in YES media at 30˚C and shifted to 38.5˚C, and samples were

harvested after 8 hours. Then bulk RNA was isolated and resolved by denaturing PAGE under

acidic conditions (to preserve tRNA charging), transferred, and then analyzed by hybridization

as described in Materials and Methods. Control samples (WT and S. pombe trm8Δmutants)

were treated with 1 mM EDTA and 0.1 M Tris-HCl (pH 9.0) for 30 min at 37˚C to de-acylate

the tRNA. b, base treated bulk RNA; Upper arrows, charged tRNA species; lower arrows with

dashed lines, uncharged tRNA species. B. Quantification of tY(GUA) or tP(AGG) charging

and tRNA levels. The percent charging was calculated as the ratio of aminoacylated species to
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the total for each tRNA. Relative levels of tP(AGG) and tY(GUA) were quantified as in Fig 2B,

relative to the non-Trm8 substrate tL(UAA).

(PDF)

S19 Fig. A. Northern analysis of pre-tY(GUA) levels in S. pombe WT, trm8Δ, and trm8Δ
gcn2-1 mutants. The northern blot shown in Fig 5B was continued to analyze levels of pre-tY

(GUA) species in WT and trm8Δ, and trm8Δ gcn2-1 mutants at different temperatures, using

appropriate gene-specific probes (S5 Table) for the introns of the different tY(GUA) genes

[59]. Cartoons at the right indicate exons, heavy bars; 5’ leaders, 3’ trailers, and introns, light

bars. The primary pre-tY(GUA) transcript has 5’ leader, 3’ trailer, and intron, and the end-

matured pre-tY(GUA) has only the intron. B. Quantification of pre-tY(GUA) transcript lev-

els in S. pombe trm8Δ, and trm8Δ gcn2-1 mutants, from northern in S19A Fig. The primary

pre-tY(GUA) transcript levels were normalized to levels of tG(GCC).

(PDF)

S20 Fig. Deletion of MET22 restored growth of S. cerevisiae trm8Δ trm4Δ gcn2Δ mutants at

elevated temperatures. Strains were grown overnight in YPD media 28˚C and analyzed for

growth on YPD plates.

(PDF)

S21 Fig. A. Deletion of GCN2 exacerbated the temperature sensitivity of S. cerevisiae
trm8Δ and trm1Δ mutants in SDC media. Strains were grown overnight in YPD media at

28˚C and analyzed for growth on SDC plates. B. Deletion of GCN2 exacerbated the tempera-

ture sensitivity of S. cerevisiae tan1Δ and tan1Δ trm44Δ mutants in SDC media. Strains

were grown overnight in YPD media 28˚C and analyzed for growth on SDC plates.

(PDF)

S22 Fig. A. Northern analysis of pre-tV(AAC) levels in WT, S. cerevisiae trm8Δ trm4Δ,

and trm8Δ trm4Δ gcn1Δ cells after shift from 28˚C to 32˚C. Bulk RNA from the growth

done for Fig 6B and 6C was used for the northern analysis. B. Quantification of the levels of

the primary pre-tV(AAC) transcript. pre-tV(AAC) levels were determined by hybridization

with oligomer TDZ 415, specific for seven of the fourteen pre-tV(AAC) species, and then

quantification of the upper band, corresponding to the primary transcript, with 5’ leader and

3’ trailer. Levels were normalized to 5S rRNA.

(PDF)

S23 Fig. A. Analysis of tRNA charging levels in S. cerevisiae trm8Δ trm4Δ mutants after

shift to 32˚C. Cell pellets from the growth for Fig 6B were used to isolate acidic RNA and ana-

lyzed by acidic northern as described in S18 Fig. B. Quantification of tRNA charging and
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