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Abstract

Demand for palm oil has been increasing by an average of ,8% the past decade and currently accounts for about 59% of
the world’s vegetable oil market. This drives the need to increase palm oil production. Nevertheless, due to the increasing
need for sustainable production, it is imperative to increase productivity rather than the area cultivated. Studies on the oil
palm genome are essential to help identify genes or markers that are associated with important processes or traits, such as
flowering, yield and disease resistance. To achieve this, 294,115 and 150,744 sequences from the hypomethylated or gene-
rich regions of Elaeis guineensis and E. oleifera genome were sequenced and assembled into contigs. An additional 16,427
shot-gun sequences and 176 bacterial artificial chromosomes (BAC) were also generated to check the quality of libraries
constructed. Comparison of these sequences revealed that although the methylation-filtered libraries were sequenced at
low coverage, they still tagged at least 66% of the RefSeq supported genes in the BAC and had a filtration power of at least
2.0. A total 33,752 microsatellites and 40,820 high-quality single nucleotide polymorphism (SNP) markers were identified.
These represent the most comprehensive collection of microsatellites and SNPs to date and would be an important
resource for genetic mapping and association studies. The gene models predicted from the assembled contigs were mined
for genes of interest, and 242, 65 and 14 oil palm transcription factors, resistance genes and miRNAs were identified
respectively. Examples of the transcriptional factors tagged include those associated with floral development and tissue
culture, such as homeodomain proteins, MADS, Squamosa and Apetala2. The E. guineensis and E. oleifera hypomethylated
sequences provide an important resource to understand the molecular mechanisms associated with important agronomic
traits in oil palm.
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Introduction

The oil palm is a perennial crop that belongs to the family

Arecaceae and the genus Elaeis [1]. There are two species in the

genus - Elaeis guineensis (EG), the African oil palm and Elaeis oleifera

(EO), of American origin [2]. EG is widely grown in the humid

tropics (South-East Asia, Equatorial America, Africa and South

Pacific) [3], and has become one of the most important crop in

Malaysia and Indonesia. In order to remain competitive with

other vegetable oil crops, there is a need to boost its yield and

improve oil quality, for both of which deciphering its genome is

key – to better understand the complexity of gene expression and

interactions. One of the methods used is to identify genes

expressed in a tissue of interest. The expressed sequence tag

(EST) approach coupled with conventional sanger sequencing [4]

was initially used to obtain information on gene diversity and

mRNA expression patterns from various oil palm tissues [5–7].

However, the method is limited in utility, mostly identifying the

abundantly expressed genes [8]. Although alternatives, such as

constructing normalized cDNA libraries [9] have been tried, the

method was deemed technically demanding.

The development of next generation sequencing (NGS) resolved

these issues and identification of low abundance genes was thus

made possible [10]. In oil palm, NGS sequencing was able to

provide an in depth view of the genes expressed in flowers and

fruit development. Comparing flowers of normal and abnormal

clonal palms, Shearman and colleagues [11] identified a large

number of differentially expressed genes, including those involved

in chromatin remodelling and histone methylation. The abnormal

palms in the study produced mantled fruits, a form of abnormality

observed in palms produced via somatic embryogenesis. Shear-

man and colleagues [11] results are encouraging as previous

studies have linked the occurrence of mantled fruits to changes in

methylation [12–14]. In fruit development, Bourgis et al. [15] and

Tranbarger et al. [16] were able to determine the expression of a

new oil palm WRINKLED1 (WRI1) homolog, known to be

involved in fatty acid biosynthesis in other plants. The expression

of the gene correlated with those of several fatty acid biosynthetic

genes in the mesocarp of oil palm. Nevertheless, the master

regulator of WRI1 remains elusive [15,16]. In both cases, access to

the whole complement of genes – which can only be achieved by
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whole genome sequencing would enable hypothesis-driven exper-

iments to be carried out and allow further investigations.

However, whole genome sequencing for complex organisms is

costly and requires specialized expertise to navigate the data. This

is more so for oil palm, with a genome of ,1,800 Mb [17] is much

larger than most oil seed crops [18–21] and model crops, such as

rice (420 to 466 Mb) [22,23] and Arabidopsis thaliana (,135 Mb)

[24]. However, the availability of NGS technology has recently

allowed the sequencing of the oil palm genome [25]. Nevertheless,

generating genomic sequence information through methylation

filtration, a technique that allows for the preferential selection of

hypomethylated regions of the genome [26,27] and Sanger

technology provides a comprehensive view of the genic regions

of the genome. The method is based on chemical discrimination of

repeated DNA from genes by certain strains of bacteria [27]

resulting in the generation of a comprehensive gene coverage

without the need for whole genome sequencing. The GeneThre-

sherH (GT) methylation filtration technique has been validated in

over a dozen plant genomes spanning all the major branches of the

plant kingdom. It has been employed to generate comprehensive

gene sets in ryegrass, clover, corn [28] and sorghum [29], where in

sorghum, up to 96% of the genes were successfully tagged. The

GT sequences were also an important source of microsatellite

markers for application in genetic diversity [30] and genetic

mapping [31] research programmes. This study reports on the

sequencing and characterization of the hypomethylated regions of

the oil palm genome, which is an important resource that focuses

on the active regions of the genome.

Materials and Methods

Genomic library construction and methylation filtering
Nuclear genomic DNA was purified from the spear leaf of 7 EG

and 2 EO palms, randomly sheared and size selected (0.6 to

1.4 kb). The fragments were ligated to a plasmid vector and

transformed into DH5a (methylation filtering strain) or DH10b

(non-methylation filtering strain) to generate GT (filtered) or whole

genome (UF, unfiltered) libraries, respectively. UF libraries were

used as negative control to determine the efficacy of filtered GT

libraries. Nine filtered and nine unfiltered libraries were

constructed (Table S1). The transformed strains were plated,

DNA isolated from colonies, and end-sequenced with 3730

sequencing technology (Life Technologies Corp). For the oil palm

bacterial artificial chromosomes (BAC), high molecular weight

nuclear DNA was purified from an EG palm, embedded in

agarose plugs, partially digested with HindIII, size selected and

cloned into the CopyControlTM pCC1BACTM (HindIII Cloning-

Ready) Vector. DNA from individual BAC was prepared and four

equimolar pools were constructed (,44 BAC/pool) representing

,10 megabases of the oil palm genome. Paired-end libraries were

constructed from a 3–4 kb fraction of randomly sheared pooled

BAC DNA using Roche 454 titanium kits, and sequenced to ,30

fold coverage using Roche 454 XL sequencing technology.

Sequence assembly
A graph-based clustering algorithm (MCL) and CAP3 [32]

assembler were used for assembly. Graph based sequence

clustering uses a data structure in which each sequence is a node

of a graph, and each edge is a weighted connection between

sequences. When clustering paired-end sequence data, edges are

entered both to indicate sequence similarity, and mate-pairs, with

the weighting based on alignment score for similar sequences, and

a nominal weighting for mate-pairs. An initial own-versus-own

BLAST [33] of sequences was performed, using an e-value cut-off

of 1e210 to ensure that the sequences that overlap by $40 base

pairs (the minimum to join a contig), should report a BLAST hit.

In the initial own-versus-own run, only the best hit of each

sequence (apart from itself) was reported, so that each sequence

only formed a link to at most one other sequence in the graph. The

MCL algorithm was then executed to form clusters, which were

then assembled into first-pass contigs. In addition, most singletons

were identified in this phase, and excluded from further

processing. The first pass analysis was designed to remove most

of the redundancy in the data. A second-pass analysis was then

initiated, in which an own-versus-own BLAST of the first-pass

contigs against themselves was executed to report all hits. This

forms the complete graph with each first-pass contig having

outgoing graph links to all other first-pass contigs it hits, and

clusters were formed again. These clusters-of-first-pass-contigs

were then used to partition the original sequences into final bins of

sequences. The first-pass contigs were discarded once the second

pass clustering was completed. The final bins of original sequences

were assembled using CAP3.

Filter Power
Filter power (FP), which is the ratio of the probability that a

filtered read sampled a gene coding sequence over the probability

that an unfiltered read sampled a gene coding sequence was

calculated according to Bedell et al. [29] (Materials S1). The

estimation of FP was validated using a second method based on

the statistics of the sequence assembly, following Whitelaw et al.

[28], where the number of islands observed in the filtered and

unfiltered assemblies were used to infer the effective sizes of the

genomes sampled, using the formula of Lander and Waterman

[34]. Details of the adaptation of the Lander Waterman formula

and of related calculations are described in Materials S2. The size

of the genome sampled was estimated by dividing the oil palm

genome size (,1,800 Mb for both species) by FP.

Gene models and protein translations
Ab initio gene models were predicted using Augustus [35], SNAP

[36] and GeneMark [37] implemented in MAKER [38]. Models

trained on maize and rice data were used in Augustus and SNAP

respectively, as they were the only monocot models in those

programs. GeneMark, on the other hand, was trained on data

from the oil palm BAC contigs. As MAKER carries out evidence

based gene model predictions, sequences from the Swiss-Prot

protein database were used as evidence of expressed genes to

improve the gene predictions. High quality gene models $300 bp

long that had MAKER’s AED (annotation edit distance) scores of

,0.1 were selected for further analysis. Sequences with AED

scores $0.1 were also selected if longer than 300 bp and had a

BLAST hit with e-value of #1e220 to sequences in at least one of

the public databases (RefSeq plant RNA, RefSeq plant protein

and Swiss-Prot protein). MAKER also provided protein transla-

tions of the predicted gene models. These were compared to

NCBI’s RefSeq plant protein database to detect any frame shift

error. The gene models were also compared to the oil palm

genome [25] using BLASTN with an e-value cutoff of 1e220. The

top hit was used as the putative location of the gene in the genome.

Gene tagging and coverage
Oil palm BAC was used to estimate the percentage of genes

tagged by the methylation filtration (MF) method. This involved,

firstly, repeat masking of the EG gene transcripts and then

performing iterative subtractive hybridization, in which the

transcripts were searched against the BAC genes with a stringent

e-value of 1e220. Each iteration used the top hit to mask the BAC

Analyses of Hypomethylated Oil Palm Gene Space
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gene sequence. The BLAST-and-mask-top-hit iteration was

carried out until no further hits were obtained. The BAC gene

models predicted by MAKER and sampled by the transcripts were

then indicated and quantified by the masked sequences that had

been subtracted. To further bracket the estimation of gene space

sampling and minimize the number of false positive BAC gene

predictions, a smaller BAC gene space represented by alignments

of the BAC to known plant RefSeq proteins was determined. The

locations where the plant RefSeq proteins aligned were used to

calculate the ‘‘RefSeq Gene Estimates’’.

Comparison of GT sequences to EST and transcriptome
sequences

Sanger EST reads from MPOB and Genbank, and 454 EG

transcriptome contigs from two recent oil palm publications

[15,16] were compared to the EG and EO genomic sequence

assemblies using BLASTN. The EST and transcriptome sequences

were also assembled using CD-HIT-EST [39] at a sequence

identity threshold of 0.95 and maximum unmatched percentage of

0.05 to form non-redundant EST clusters. The EST clusters were

compared to the GT assemblies using BLASTN. An EST was

considered tagged if the match had an e-value of not more than

1e220.

Global comparison and identification of conserved genes
Arabidopsis and date palm genes were downloaded from The

Arabidopsis Information Resource (TAIR; http://www.

arabidopsis.org/) and WCMC-Q (http://qatar-weill.cornell.edu/

research/datepalmGenome/download.html) websites, respective-

ly. The genes were compared to the oil palm unique sequences

(contigs and singletons) using TBLASTN. Comparisons of the

Arabidopsis to date palm genes and vice versa were carried out using

BLASTP. Reciprocal best BLAST hit method was used to

determine potential orthologs. The date palm and oil palm

potential orthologs were annotated via BLASTP and BLASTX

analysis respectively to Genbank’s non-redundant (nr) protein

database. Ortholog pairs were annotated as known genes if at least

one of the pair had significant similarity to a known gene. All

analysis was performed at an e-value cutoff of 1e220.

Gene ontology (GO)
The GO terms which arose from the BLAST results (searches

against UniProt and NCBI databases) and InterProScan [40] were

mapped onto the Plant GO Slim annotations using CateGOrizer

[41] (formerly known as GO Terms Classifications Counter) and the

occurrences counted using the single occurrence count option.

Predicted genes were functionally annotated via BLAST searches

against NCBI RefSeq plant, A. thaliana mRNA, Oryza sativa mRNA

and Swiss-Prot protein databases. All contigs, as well as their

corresponding predicted transcripts were also annotated with

protein domain and other related information using InterProScan.

Microsatellite
Microsatellite analysis was carried out using Sputnik (http://

espressosoftware.com/sputnik/index.html). A microsatellite had to

be at least six di-, five tri- or four tetranucleotide repeat-units long.

One imperfection every 10 repeats was allowed.

Single nucleotide polymorphism (SNP)
Overlapping reads were identified from ACE files by using a

Python script. Each nucleotide position in the alignment was

interrogated and putative SNP identified only when each allele

was supported by at least 2 separate reads. SNP density was

calculated by dividing the total number of SNPs by the length of

regions with sequence coverage between 4 and 30.

Transcription factors (TF)
TF of A. thaliana, O. sativa subspecies indica and japonica,

Triticum aestivum as well as Vitis vinifera in PlantTFDB [42] were

downloaded. Oil palm gene models were compared to the

PlantTFDB sequences using BLASTP (cutoff: 1e220) and validated

using HMMPfam. They were characterized as TF if they had a

significant hit to the PlantTFDB sequences and contained at least

one of the key domains of their respective TF family.

Resistance genes
Plant resistance (R) genes were downloaded from PRGdb

(http://prgdb.crg.eu/) [43] and converted to a BLAST database.

The downloaded R genes were also classified into six classes, as per

Yun [44] and Song et al. [45]. The first class, R gene Pto was

classified based on the presence of the kinase protein domains

[46,47] while class 2 R genes contain CC (coil-coiled) –NBS

(nucleotide binding site) –LRR (leusine rich repeat) protein

domains [48]. R genes that contain the TIR (toll interleukin

receptor)-NBS-LRR domains was classified as class 3 [49]. In class

4, the genes contain LRR–TM (transmembrane) [50] while class 5

R genes contain the LRR-TM-kinase domains [51]. The last

category, uncategorized R genes, are those with domains that

cannot be grouped into any of the above mentioned classes [51].

For each class, the R genes were aligned and a HMM model was

generated using HMMER [52]. The HMM models were used to

identify oil palm R gene homologs, which were validated via

BLASTP comparison to RefSeq and the downloaded R genes, and

domain search via InterProScan. An e-value cutoff of 1e220 was

used for the BLASTP analysis. Information on the protein

domains and their locations were used to define the domain

signature of each class. For classes 4 and 5, TMHMM

(Transmembrane HMM) [53] analysis was carried out to identify

transmembrane regions. R genes were clustered using ClusterW

[54] prior to phylogenetic analysis using MEGA5 [55].

microRNAs
The EG and EO contigs were searched against the whole

hairpin sequences of miRBase [56] using BLAST. Regions of the

contigs with full-length match and few mismatches - typically with

95% identity to microRNAs (miRNAs), were considered as perfect

matches. However, regions with very similar but imperfect

matches ($85% similarity; score $100), had their secondary

structures predicted using the Vienna package [57]. The

secondary structure of both the stem-loop and the sequence

around the hit region were predicted using RNAfold [58]. The

predicted structures were aligned with the RNAdistance program.

If the structure around the match showed similarity to the loop, it

was considered as a partial match. Mature miRNAs were

predicted using MatureBayes [59].

Results and Discussion

Assembly of E. guineensis and E. oleifera sequences
A total 461,286 methylation-filtered and UF sequences were

generated from 246,801 plasmids from the respective EG and EO

libraries (Table 1). The sequences were analysed and filtered prior

to sequence assembly. Methylation-filtered and UF sequence data

were combined to improve the quality of both E. guineensis

(306,558 EGs) and E. oleifera (154,728 EOs) assemblies. An

additional 559 DNA sequences (434 EGs and 125 EOs) from

Analyses of Hypomethylated Oil Palm Gene Space
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Genbank were also included in their respective assemblies, mainly

to increase the number of SNPs detected.

After quality assessment and a size cutoff of 50 bp, 94.6%

(289,587) and 94.7% (146,297) of the EG and EO reads

respectively were included in the assembly. For EG, the assembly

(EG01) produced 45,370 contigs while 155,442 remained as

singletons. The N50 of the assembly was 1,166 bp. The EO

sequence assembly (EO01) revealed 18,836 contigs and 92,446

singletons with N50 of 1,053 bp. Table 1 summarizes the statistics

of EG01 and EO01. These sequences represent an important

resource for the research community, especially since there are

only limited numbers of oil palm genomic sequences targeting

coding regions in the public domain. The collections of sequences

are available for download at http://genomsawit.mpob.gov.my

and have been registered at NCBI under the E. guineensis and E.

oleifera BioProject accessions PRJNA217845 and PRJNA217846

respectively.

Size of genome space sampled by methylation filtration
Previous studies in maize [28,60,61], land plants [62], sorghum

[29], cowpea [63] and Oryza glaberrima [64] have shown that MF

enriches for sequences from the gene space. Using the method of

Bedell et al. [29] (Materials S1), the filter power (FP) of EG was

estimated as 2.0 to 2.8, and 2.5 to 2.6 for EO. Based on the

estimated FP, the sampled genome size was 643 Mb to 900 Mb

for EG, and 692 Mb to 720 Mb for EO. Taking the average FP of

EG as 2.4 (the range was 2.0 to 2.8), the estimated hypomethylated

space of EG is 705 Mb, similar to the size of the Sorghum bicolor

genome (Figure 1). Similarly, EO had an average FP of 2.6 and a

genome space of 692 Mb. These represent a 2.5 (EG) and 2.6

(EO) fold reduction from the original palm genomes.

The estimation of FP on the EG sequences was supported by a

second method, a modification of the technique described by

Whitelaw et al. [28] using the formula of Lander and Waterman

[34]. Modifications were made for the GT assemblies used, where

unlike previously, the MF and UF reads were assembled together

to obtain contigs. The Lander Waterman formula was adapted to

obtain the number of islands expected in a mixed assembly of

sequences obtained by sampling from two genomes of different

effective sizes. This was used to infer the size of the filtered

genome, given the known size of the unfiltered genome and the

number of islands observed in the mixed assembly. Using this

approach, the genome space estimated for EG was 563 Mb with a

FP of 3.2. In EO, the sequence coverage was insufficient to

perform the analysis. The genome sampling method requires at

least 0.1x coverage of the genome to be reliable. Nevertheless,

both methods showed that the MF libraries had FP of at least 2.0.

Gene enrichment in the MF sequences of oil palm was similar to

the 2.47 to 2.83-fold enrichment reported in soybean, potato and

oilseed rape, and higher than the 1.89-fold enrichment in rice

[62].

Gene models
The oil palm gene models were predicted using MAKER, an

evidence-based gene prediction tool. MAKER uses a combination

of gene prediction software along with alignments to known

transcripts and proteins in producing high quality gene predic-

tions. A total 80,297 gene models were predicted for the EG01,

EO01 and BAC contigs. Considering only the high quality

transcripts, the number was reduced to 5,504 (166 in BAC, 3,954

Table 1. Assembly statistics of EG and EO genomic sequences.

Assembly EG01 EO01

Description EG genomic sequence EO genomic sequence

Input:

Reads(clones) 306,558(164,224) 154,728(82,577)

Public 434 125

Result:

No. Contigs 45,370 18,836

No. Singletons ($50 bp) 155,442 92,446

No. Singletons (,50 bp) 17,405 8,556

Total Unique Sequences 200,812 111,282

Total Length of Unique Sequences (nt) 137,247,669 66,077,552

% Unique are Contigs* 23% 17%

% Reads in Contigs 44% 35%

N50 Length 1,166 1,053

Max Length 8,319 7,186

Mean Length 1,063 909

*Percentage of unique sequences that are represented by contigs.
doi:10.1371/journal.pone.0086728.t001

Figure 1. Hypomethylated regions of the oil palm genome
sampled by GT Technology. MF reduced the oil palm genome by
61%, thereby allowing sampling of 705 Mb of the hypomethylated
region while filtering out 1,095 Mb of the 1,800 Mb genome.
doi:10.1371/journal.pone.0086728.g001
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in EG01 and 1,385 in EO01 contigs) (File S1). The predicted

transcripts were searched against the recently released oil palm

genome build [25] to determine whether GT genes were

represented in the chromosomes. A total 3,934 EG01 and 1,375

EO01 gene models were successfully placed (Table 2). Of these,

3,048 EG01 and 1,049 EO01 gene models were identified on the

16 oil palm chromosomes [25]. The predicted genes were evenly

distributed on all the chromosomes. The location of the GT

sequences could help to pinpoint the exonic regions of the oil palm

genome.

Gene tagging and coverage
Oil palm BAC were used to estimate the percentage of genes

tagged by MF. Full length repeat-masked EG01 contigs and

singletons were subtracted in silico from the BAC gene models

using the iterative BLAST method. The BAC gene sequences

sampled were then indicated and quantified. The analysis showed

at least 62% of the gene space on the BAC was sampled. The

analysis is indicated in Table 3 as the ‘‘Predicted Gene Estimates’’.

Steps were taken to minimize false BAC gene predictions as

these can inflate the gene space. For EG01, this was done by

sampling smaller BAC gene spaces, represented by alignments of

BAC to known plant reference sequence proteins. BAC were

positionally annotated with known plant RefSeq proteins and 157

BAC sequence transcripts corresponding to these gene positions

extracted (Table 4). The same stringent in-silico subtractive

hybridization of full length repeat-masked EG01 contigs and

singletons subtracted from this reduced set of BAC gene transcripts

resulted in the ‘‘RefSeq Gene Estimates’’ in Table 3.

To evaluate gene space coverage, EG01 sampling of this

reduced space was compared with that achieved by two other gene

sampling methods, EST and 454 transcriptome sequencing. EST

contigs assembled from Sanger EST reads (MPOB and Genbank),

and 454 EG transcriptome contigs [15,16] were repeat masked

and compared to the reduced set of BAC gene transcripts using the

same iterative method described above. The results showed that

the gene space sampled in EG01 was higher than that obtained

using EST sequencing and from the 454 sequenced transcriptome.

This shows the efficiency of the method for gene discovery.

Nevertheless, it is important to note that the number of ESTs and

transcriptome data were low and specific only to the tissues

sampled. Most of the ESTs [6,7,9,65] were sampled from tissue

culture materials while the transcriptome data was mainly sampled

from mesocarp tissues [15,16]. The BACs were randomly sampled

and genes expressed in these tissues might not be represented in

these BACs. This could have resulted in the low level of BAC gene

space sampled by the transcripts.

Comparison of GT sequences to EST and transcriptome
sequences

In order to determine whether the available oil palm ESTs were

tagged by the MF sequences, the GT assemblies were compared to

the EST and transcriptome contig sequences. EG01 was able to

tag between 64% and 78% of the EST sequences. Nevertheless, to

obtain a better estimate of the number of ESTs tagged, the GT

assemblies were compared to a non-redundant set of ESTs. The

analysis showed that EG01 sequences were able to tag a high

percentage of the EST clusters (72%). The results obtained were

comparable to those from cowpea, where 73.7% of the EST

dataset matched the GT sequences [63]. In EO01, the percentage

was lower since the EST and transcriptome sequences were mostly

obtained from EG. Differences between the two oil palm species

most likely accounted for the reduced similarity. Figure 2 show the

percentages of EST and transcriptome sequences that have hits to

EG01 and EO01 sequences. Interestingly, comparison of the

EG01 and EO01 gene models showed that 23.3% and 21.4% of

the gene models respectively, were absent from the EST and

Table 2. Identification of GT gene models in the oil palm EG5
chromosomes.

EG5 Chromosomes Predicted Transcripts

EG01 EO01

EG5_Chr1 369 139

EG5_Chr2 297 106

EG5_Chr3 296 106

EG5_Chr4 238 91

EG5_Chr5 248 75

EG5_Chr6 171 50

EG5_Chr7 178 79

EG5_Chr8 175 60

EG5_Chr9 138 51

EG5_Chr10 174 57

EG5_Chr11 131 33

EG5_Chr12 151 45

EG5_Chr13 121 36

EG5_Chr14 145 44

EG5_Chr15 126 42

EG5_Chr16 90 35

Other scaffolds 886 326

Total hits 3934 1375

doi:10.1371/journal.pone.0086728.t002

Table 3. Estimates of percentage BAC gene space sampled.

Estimated % Gene Space
Sampled Pool A* Pool B* Pool C* Pool D*

Predicted Gene Estimates 77% 79% 62% 71%

RefSeq Gene Estimates 71% 77% 68% 66%

Masked Sanger EST contigs and
singletons

33% 36% 34% 31%

(25,781 sequences, 15 Mb)

Masked 454 transcriptome 36% 35% 40% 47%

(70,729 sequences, 69 Mb)

*Pool A, B, C and D (,44 BAC/pool) are equimolar pools representing ,10
megabases of the oil palm genome.
doi:10.1371/journal.pone.0086728.t003

Table 4. Reduced BAC gene space annotated by plant RefSeq
orthologs.

Pool A Pool B Pool C Pool D

No. transcripts 49 46 27 35

Mean transcript length 1,145 1,059 1,150 992

Maximum transcript length 3,423 2,934 3,642 2,100

doi:10.1371/journal.pone.0086728.t004
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transcriptome data (Table 5). The GT sequences not only had a

high coverage of the available EST sequences, it was also able to

identify additional genes that would be an important resource for

research. The list of genes not tagged by the EST data is in File S2.

Global comparison of EG01 sequences to Arabidopsis
and date palm genes

The oil palm genomic sequences were compared to Arabidopsis

and date palm genes to determine the coverage of the genes tagged

by the EG01 data. The Arabidopsis and date palm dataset contains

35,386 [66] and 28,890 [67] genes respectively. In the first

analysis, the Arabidopsis sequences were used as TBLASTN queries

against EG and as BLASTP queries for the date palm protein

sequences. There were 15,431 (44%) and 24,604 (70%) Arabidopsis

genes with matches to oil palm and date palm genes, respectively.

The fewer hits to oil palm were not surprising considering the low

coverage of its GT sequences in this study. As date palm is the

closest related plant genome to oil palm to be sequenced, the

analysis was repeated using date palm genes as query in searches

against oil palm EG and Arabidopsis protein sequences. This

provided a better representation for cross species gene annotation.

In the analysis, 17,838 (62%) date palm sequences had hits to oil

palm while 19,489 (68%) had matches to Arabidopsis. A total 371

date palm proteins had matches to EG but not to Arabidopsis.

Reciprocal best BLAST hits of these sequences identified 192

potential orthologs of date palm and oil palm that did not have

any similarity to Arabidopsis genes. Comparison to Genbank’s nr

protein database showed that five of these genes had similarity to

repeat elements and were removed from further analysis. About

50% of the putative orthologs did not have any similarity to

sequences in Genbank. The remaining sequences had hits to

known [58] and uncharacterized [34] genes, such as hypothetical

genes or putative proteins, of which 19 had significant similarity

only to monocotyledon genes in the nr database. The list of these

orthologs is available in File S3. These genes may be useful to

study conserved functions between oil palm and date palm.

Overall, even at low coverage, the GT method was able to tag a

high percentage of genes in the date palm genome and identify

genes that are conserved between date palm and oil palm.

Gene ontology (GO)
BLAST results from the functional annotations analysis

(specifically, searches against the UniProtKB and RefSeq plant

mRNA databases) of the good quality gene models were searched

against the UniProt and NCBI databases for GO terms using a set

of custom scripts. Final results of the non-redundant GO analysis

were merged based on results from the BLAST and InterProScan

searches. Table 6 shows the domain annotation and summary of

the GO search results. The GO analysis results indicated that the

predicted genes were distributed in different functional classes

(Figure S1). More importantly, similar trends were observed in

both EG and EO functional classification, although, as expected

there were differences in the number of genes in each functional

class. The three top level categories were Molecular Function

(ML), Biological Process (BP) and Cellular Component (CC). It is

worthwhile to note that 75% of the predicted genes in EG were

assigned to ML, while 43% and 41% were categorized with BP

and CC terms, respectively. Notably, a similar trend was observed

in EO. The results also showed that 18% of the predicted genes

could not be annotated with GO terms. Analysis of their

Figure 2. BLASTN analysis of oil palm EST and transcriptome sequences to EG01 and EO01. The percentage of EST, transcriptome and
Cluster sequences that have significant similarity (#1e220) to EG01 and EO01 sequences are shown in green and yellow respectively. Cluster is a set of
non-redundant sequences generated from the assembly of the EST and transcriptome data by CD-HIT-EST.
doi:10.1371/journal.pone.0086728.g002

Table 5. Comparison of predicted oil palm gene models
against EST and transcriptome data.

Data Set Predicted Gene Models Significant Hit* No Hit*

EG01 3954 3034 920

EO01 1385 1088 297

*e-value cutoff: 1e220.
doi:10.1371/journal.pone.0086728.t005
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annotation showed that more than 50% of them had similarity to

hypothetical proteins.

A more comprehensive insight into ML revealed that the top

subcategories for EG and EO were molecular function

[GO:0003674], catalytic activity [GO:0003824] and transferase

activity [GO:0016740]. The majority of the predicted genes

annotated under the GO term BP category were regulating

transcription, DNA-dependence [GO:0006355] and proteolysis

[GO:0006508]. Interestingly, the GT data did not have over-

representation of highly expressed genes, such as ribosomal genes,

as seen in the ribosomal and cytoskeletal peaks in the BAC data in

Figure S1c. This suggests that the GT sequences were randomly

distributed in the hypomethylated regions of the genome. The

gene ontology results are given in File S1.

The gene models (3,954 EG and 1,385 EO) were also mapped

onto the Kyoto Encyclopedia of Genes and Genomes (KEGG)

orthology database [68], which enable reconstruction of the

KEGG pathways. A total 488 EG01 genes were assigned to KO

(KEGG Ortholog), of which 317 were mapped onto 71 pathways.

As for EO, out of 223 KO annotated genes, 161 were successfully

assigned and mapped onto 56 pathways. In EG, oxidative

phosphorylation [25], ribosome [23] and glycolysis/gluconeogen-

esis [16] are the most abundant. A similar result was observed in

EO, where oxidative phosphorylation [28] represented the most

common pathway, followed by photosynthesis [15]. Table S2

shows the number of genes categorized into KEGG pathways.

Microsatellites
Microsatellites, also known as Simple Sequence Repeats (SSR),

are important sources of molecular markers for genetic studies.

The earliest exploitation of a sizeable number of EG genomic SSR

for genetic mapping was by Billotte and colleagues [69] with 369

SSR of dinucleotide (GA and GT) and trinucleotide (CCG) repeats

used. Although the researchers were able to show the effectiveness

of SSR as molecular markers, the number of SSR used was small.

Hence the GeneThresher sequences were mined for di-, tri- and

tetranucleotide repeats, where 23,621 and 10,131 SSR were

identified from EG01 and EO01, respectively (Table 7). The

dinucleotide repeats in the assembled sequences of both oil palm

species exceeded those of tri- and tetranucleotide repeats. This was

consistent with what has been reported earlier by Tranbarger et al.

[70] who found that dinucleotide repeats were the most abundant

EST-SSR (36%) in oil palm followed by tri- (24%) and tetra-

(29%) motifs. The most frequent dinucleotides in their transcrip-

tome data were those with 6 repeat motifs, compared to 17–18

repeat motifs in the genomic SSR reported by Billotte et al.

[69,71]. The authors concluded that there was a higher frequency

of lower number of repeat motifs in the coding region. The current

MF data reflected this pattern as it also mainly covered the genic

regions. Nevertheless, the MF data also revealed a high percentage

of AT dinucleotide with 40 repeat motifs (Figure 3). This suggests

that the MF sequences also contained sequences from non-genic

regions, most likely the flanking regions of genes.

Among dimerics in EG01, the AG motif was the most abundant

repeat with 28.62%, followed by AT (26.06%) and AC (8.18%)

respectively (Table S3). A similar trend was also observed in EO01

(Table S4). Low et al. [7] identified similar trends in dinucleotide

repeat motifs and repeat numbers in oil palm ESTs with AG/CT

(67%) and AT (21%) the most abundant, followed by AC/GT

(11%) and CG (0.3%). The AG/CT dinucleotide repeat motif was

consistent with the high frequencies in the genic regions of A.

thaliana [72] and rice [73]. Similar patterns were also noted for

EST-SSR in peanut [74] and cacao [75]. The CG motif was

generally in low abundance in both Elaeis species.

Although the trinucleotide repeats are not the most prevalent

SSR in the hypomethylated regions of oil palm, they are of interest

as they are found predominantly in the exonic regions. Low et al.

[7] compared the distribution of a small number of oil palm full-

length EST-SSR and found the mono- and di-nucleotide repeats

in the untranslated regions (UTR), whereas trinucleotides were in

both UTR and open reading frames (ORF), with a preference for

ORF. Zhang and colleagues [72] observed that the trinucleotides,

followed by the hexanucleotides accounted for 92.6% of the SSR

in the coding regions of A. thaliana. A similar observation was also

made by Toth et al. [76] that trimers and hexamers were rampant

in the exon regions of eukaryotic genomes. In EG01 and EO01,

the most abundant trimers were AAG (5.94%, 6.11%), AAT

(5.86%, 5.89%), AGG (3.29%, 3.35%) and CCG (1.99%, 2.06%),

respectively (Tables S3 and S4). The trend is similar to the patterns

observed by Low et al. [7] in oil palm ESTs, where the most

prevalent trinucleotides were AAG/CTT (23%), AGG/CCT

(13%), CCG/CGG (11%) and AAT/ATT (11%). Although the

most prevalent trimer in both the genomic and EST-SSR was

AAG, the genomic sequences had a higher representation of AAT

repeats compared to EST-SSR. The high abundance of the tri-

repeat motif of AAG in EG and EO was similar to that reported in

the EST sequences of cotton (G. hirsutum, G. arboretum and G.

raimondii) [77] and cucumber [78], respectively. A slightly

different frequency of repeat motifs of AAG and AAC was

observed in the exonic regions of embryophyta [76]. Zhang et al.

[72] also observed that the AAG motif was the most prominent

repeat in the 59UTR region of A. thaliana.

In the hypomethylated region of Elaeis, the trimer motif CCG

was also observed albeit at low percentage of 1.99–2.06%. This is

different from other monocots (maize and wheat), where the CCG

motif alone accounted for half of the trinucleotide repeats in rice

and is also moderately rich in other plants [79]. Yonemaru et al.

[80] also found that the most frequent trimers in S. bicolor were

CGC/GCG. This shows that diverse taxonomic groups exhibit

Table 6. Summary of domain, sub-cellular localisation and GO annotation.

Dataset EG01 Contigs EO01 Contigs BAC Contigs

Predicted Genes with Domain annotations 2,861 1,013 86

Predicted Genes with SignalP predictions 581 183 n/a

Predicted Genes with TargetP predictions 148 48 n/a

Predicted Genes with GO Molecular Function terms 2,960 1,068 129

Predicted Genes with GO Biological Process terms 1704 636 96

Predicted Genes with GO Cellular Component terms 1623 622 59

doi:10.1371/journal.pone.0086728.t006
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different tendencies for SSR types which are also influenced by

their genomic locations [76]. In the 33 different tetranucleotide

repeat motifs found in the Elaeis sequences, AAAT motif was the

most frequent, followed by AAAG and ACAT. Similar motifs were

also found in the A. thaliana genome, which is AT-rich [81], and in

the genome of cotton G. raimondii [77].

The MF sequences proved to be an important source of SSR

markers. In fact, the utility of SSR from methylation filtered

sequences for oil palm genetic diversity analysis and genetic

mapping was demonstrated by Zaki et al. [30] and Ting et al. [31],

respectively. The SSR markers from MF sequences have several

advantages. One is that they show increased polymorphism

associated with genomic based SSR markers compared to EST-

SSR. At the same time, since they represent mostly genic regions,

they can be used to target candidate genes, similar to EST-SSR.

The locations of SSR in EG01 and EO01 are given in File S4.

Single nucleotide polymorphism
Evolution of the techniques for identification of molecular

markers in recent years has led to the discovery of SNPs, which is a

single base difference in a DNA sequence with an alternative of

two possible nucleotides at a specific location on the chromosome

[82]. Initially, the number of putative SNPs identified was 36,138

for EG01 and 14,640 for EO01 contigs. However, to avoid false

positives, SNPs with extraordinarily high coverage depth (.30; 2

standard deviation from mean) were excluded from further

analysis. This removed SNPs in repetitive or duplicated regions

of the genome, leaving 28,842 and 12,578 for EG and EO,

respectively. The list of SNPs in EG01 and EO01 are available in

File S4. The SNP densities were 2.30 and 2.83 per 100 bp for EG

and EO, respectively. However, a previous study on oil palm ESTs

showed a density of 1.36 SNPs per 100 bp [83]. As the SNP

density in the genic region is expected to be lower than the non-

genic region, it is likely that the GT SNP densities are not

reflective of the SNP densities of the oil palm genome. The

sequence coverage needs to be increased to have a better estimate

of the SNP density. Sequence depth values across all contigs for

EG and EO are provided in Figure S2. The depths varied widely

as most positions within most contigs are only supported by a

single read.

The SNPs were grouped into either transition (C/T or G/A) or

transversion (C/G, A/T, C/A or T/G) nucleotide substitutions.

The frequency of transition exceeded transversion (Table 8),

similar to that reported for 1,317 SNPs mined from 5,452 oil palm

sequences from seven tissues [83]. Similar trends were observed in

maize [84], S. bicolor [85] and ginger [86]. In Table 8, the number

of SNPs observed in the EG and EO contigs for both transition

type SNPs (G/A and C/T) showed no significant difference.

However, in transversions, the A/T type SNPs were more

frequent than other transversions, and collectively accounted for

44.2% (EG) and 41.3% (EO) of all transversions. The overall

transition vs transversion ratio in EO was 7.52, which indicates

higher transitions over transversions. In EG, the ratio was slightly

lower (7.17), consistent with Riju and Arunachalam [87] who

identified an overall EO transition vs transversion ratio of 1.40 for

EO and 1.02 for EG. They opined that the transition vs

Figure 3. Distribution of dinucleotide repeats observed in EG01 SSR. The AC, AG, AT and CG repeats are represented in blue, red, green and
purple respectively. The total number of observations for each repeat are represented by the height of the respective column.
doi:10.1371/journal.pone.0086728.g003

Table 7. Summary of di-, tri- and tetranucleotide repeat
motifs in EG01, EO01 and BAC.

Data Set Dinucleotides Trinucleotides Tetranucleotides Total

EG01 14, 910 5,152 3,559 23,621

EO01 6,366 2,247 1,518 10,131

BAC 594 328 247 1,169

doi:10.1371/journal.pone.0086728.t007
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transversion rate is important to understand DNA evolution, with

a low value indicative of high genetic divergence and vice versa.

Interestingly, the lower divergence of EO vis-à-vis EG had been

demonstrated experimentally using various marker systems, such

as SSR [31,88] and even a small number of SNPs [89].

In barley [90], higher polymorphism rate was observed for

transition SNPs (71%) vs transversions (29%), information of

possible importance for identification of informative markers.

Categorizing the SNPs into transition and transversions could

potentially improve efficiency and reduce the number of non-

polymorphic SNP markers. Furthermore, as the GT data

represent exonic regions of the genome that encode for genes

and their regulatory regions, identification of non-synonymous

SNPs in genes associated with traits could potentially provide

insight into the modulation of the trait. This was recently reported

when an important monogenic trait (SHELL) in oil palm was

shown to be caused by two independent SNPs in a single gene.

The mutations disrupt the DNA-binding domain of a MADS-box

gene homologue of SEEDSTICK, resulting in three different EG

fruit forms - dura, pisifera and the hybrid tenera. This single gene is

responsible for the hybrid vigour or heterosis observed in the tenera

fruit form of oil palm [91]. The polymorphisms in the gene will

prove to be an important diagnostic assay for commercial seed

production and to enhance breeding activities in oil palm.

Transcription factors
Transcription factors (TF) help regulate gene expression and are

an integral part in the development of an organism. The number

of TF in plant genomes is large - 6 to 9% of the coding regions that

code for TF [24,42,92,93]. Analysis of Musa acuminata genome

recently showed that 8.6% or 3,155 of its protein-coding gene

models coded for TF. This represents one of the highest numbers

of TF identified in a sequenced plant genome [93]. The evolution

of a large number of TF could explain the diversity and complexity

observed in plants. In oil palm, comparison of the EG01 and

EO01 gene models to TF from A. thaliana, O. sativa, T. aestivum and

V. vinifera from the PlantTFDB database [42] showed that both

libraries contained 37 TF gene families, while the BAC sequences

were able to identify two additional gene families. A total of 178

and 61 transcriptional factors were identified from the EG01 and

EO01 gene models, respectively. The numbers of GT sequences

for each gene family are listed in Table 9.

Ethylene Response Factor (ERF) is the one of the biggest group

of TF identified. This is not surprising as the ERF family is the

most abundant TF in PlantTFDB and second most abundant in

DRTF (rice transcriptional factor database) [94]. The analysis also

revealed five Apetala2 (AP2) and one RAV genes. These three

gene families belong to the AP2/ERF TF superfamily involved in

responding to plant biotic and abiotic stress [95,96]. The ERF sub-

family is also known for its involvement in regulating the

expression of pathogenesis-related (PR) genes and could play a

role in the transduction of various signals to a suite of downstream

defence genes [97]. These genes are important for studies related

to how oil palm defends itself against pathogens, especially the

fungus Ganoderma, which is the cause of a major oil palm disease in

Malaysia and Indonesia.

Analysis of the GT sequences also revealed TF associated with

floral development and tissue culture, such as homeodomain

proteins, MADS, Squamosa (SBP) and Apetala2 (AP2). These

genes are involved in floral organ patterning and are expressed in

different stages of floral development [98]. In Arabidopsis, AP2 is

required for the specification of the first and second whorl organ

identities [99]. MADS box genes are also hypothesized to be

involved in clonal abnormality, namely mantled flowers in ramets

[100]. Although clonal abnormality in oil palm has been

associated with changes in methylation, the role of MADS box

genes in this phenomenon is being investigated. In fact,

methylation changes in this group of genes that determine the

ABC model for floral development could be pivotal in the clonal

abnormality phenomenon observed [101]. In this study, a MADS

box gene was identified in the GT dataset. An additional putative

MADS box gene with significant similarity (5e227) to a MIKC

gene but only containing the k domain was also identified. The

sequence did not contain the MADS domain and was thus not

included in Table 9.

The TF dataset represents an important resource not only to

study floral development and stress responses but also other

important mechanisms in oil palm. Another important application

Table 8. Summary of SNPs.

EG01 Contigs EO01 Contigs

Transitions

C/T 12,391 5,638

G/A 12,397 5,464

Transversions

A/T 1,928 866

C/G 180 97

G/T 696 226

A/C 650 287

Total 28,242 12,578

doi:10.1371/journal.pone.0086728.t008

Table 9. Oil palm TF in EG01, EO01 and BAC sequences.

Transcription
Factor EG EO BAC

Transcription
Factor EG EO BAC

AP2 4 1 GRF 2

ARF 7 2 HB-other 1

ARR-B 2 1 HD-ZIP 12 5

BBR/BPC 2 HSF 1

BES1 1 LBD 4

bHLH 12 6 M-type 1

bZIP 8 6 MYB 12 5

C2H2 16 3 MYB_related 2

C3H 5 2 NAC 10 4

CAMTA 1 NF-X1 1

CO-like 1 NF-YB 3 1

CPP 1 1 Nin-like 1

Dof 7 RAV 1

E2F/DP 2 SBP 3 1

EIL 1 SRS 1

ERF 13 8 1 TALE 10 1

FAR1 1 TCP 4 1

G2-like 6 2 WOX 1

GATA 2 1 WRKY 7 2

GRAS 15 4 Total 178 61 3

doi:10.1371/journal.pone.0086728.t009
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of the TF data is that 58 of these sequences contained SSR or

SNPs, which can help localize the genes on the oil palm genetic

maps. As some genes of similar function tend to cluster in the

genome, identification of the genetic loci would allow researchers

to test other genes/markers flanking the TF for association with

specific traits. The list of TF is available in File S1.

Resistance gene homolog
Fungi cause three major diseases in oil palm - Fusarium wilt, bud

rot and basal stem rot. Identification of the genes involved in

pathogenicity and resistance is an important step towards

identifying disease tolerant/resistant palms. As such, efforts have

been made to identify oil palm pathogenesis-related genes (R genes

homolog) in the EG01 and EO01 gene models. R genes play an

important role in the early stages of plant defense mechanism

[102,103]. They have distinct interactions with specific molecules

secreted by the pathogen into plant cells during invasion [104–

106]. Comparison of the predicted amino acid sequences from

EG01 and EO01 to known R genes revealed 52 EG and 13 EO R

gene homologs (File S1).

Of these, only two class 1 R genes from EG and one from EO

containing both the kinase and Pto domains were identified. The

analysis also revealed that class 2 was the largest group of R genes

identified. Homology search and InterProScan confirmed the

presence of 29 EG class 2 R genes. They represent ,44.6% of the

oil palm R genes identified, in line with previous reports that the

Figure 4. Phylogenetic analysis of EG and EO R genes. Class 1, 2, 4 and 5 are represented by blue, red, black and green circles respectively.
doi:10.1371/journal.pone.0086728.g004
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NBS-LRR group is the largest class of R genes [107]. Barbosa-da-

silva and colleagues [50] also reported that R genes with NBS-

LRR domain properties are the largest group and contained the

most functionally defined R genes. We suspect that this class is an

important component of the plant immune response system. The

NBS domain is involved in ATP binding and hydrolysis, while the

LRR domain is the determinant of response specificity [108].

However, no class 2 R gene was identified in the EO01 data,

probably due to the lower coverage of the EO libraries. The R

genes in EO01 were probably partial length and categorized as

class 6 (uncategorized).

The analysis also did not reveal any class 3 R genes in the EG01

and EO01 data. This was not surprising as class 3 R genes are

predominantly found in dicotyledons. The only monocotyledon

TIR-NBS-LRR R gene identified was reported in the Triticum-

Thinopyrus line [109]. Oil palm, being a monocotyledon, is not

expected to have homologues of class 3 R genes. Homologues to

class 4, 5 and 6 were also identified. Eight EG01 gene models were

classified as class 4 R genes. An additional seven EG01 and three

EO01 gene models that contained the LRR-TM-kinase domains

were classified as class 5 R gene. The final class of R genes, the

‘uncategorised’, contained 15 gene models.

Classification of the oil palm R genes homologs were further

verified using phylogenetic analysis (Figure 4). The analysis

showed three distinct clades, representing class 1, 2, and a

combination of class 4 and 5. Class 4 and 5 share the same clade

because both classes contained the LRR and TM domains. Class 5

can be differentiated by an additional kinase domain. Class 6 R

genes (uncategorised) were not included in the phylogenetic

analysis. The phylogenetic analysis generally concurred with the

classification of the genes. The R genes identified in this study

would facilitate the understanding of how oil palm defends itself

against diseases such as bud rot and basal stem rot, which have

devastated large tracts of oil palm plantations. Combining

knowledge of R genes and associating it with quantitative trait

loci analysis of germplasm/breeding populations for disease

resistance [110] would help with future development of elite oil

palm varieties.

microRNAs
miRNAs are short sequences from a class of RNAs ,18 to 24 nt

in length. They are produced by dicer-catalyzed excision from

stem-loop precursors and play an important role in diverse

organisms [111]. The functional role of miRNAs can be elucidated

by the identification of their mRNA targets [112]. At present, most

of the plant miRNAs identified belong to the model plant A.

thaliana. Nevertheless, there is a growing resource of miRNAs from

other plants, such as rice, tomato and sorghum [112–114]. In this

study, a homology approach was used to identify oil palm

miRNAs. The EG01 and EO01 contigs were searched against the

stem-loop precursors of miRBase [56]. As mature miRNAs are

short, using the stem-loop precursors provide a longer sequence

for comparison to identify conserved regions.

Forty miRNAs were identified from the contigs. Of them, 28

were predicted in EG01 contigs where 10 contigs gave perfect hits

and 18 partial matches. In EO01 contigs, nine gave perfect hits

and three partial matches to known miRNAs in the registry.

Stringent parameters with 85% similarity cutoff and a score of $

100 were used to avoid false positives. The list of predicted

miRNAs for EG01 and EO01 is shown in Table S5. However, the

predictions are dependent on the miRNAs deposited in miRBase.

The small number of predicted miRNAs obtained was most likely

due to the lack of closely related species in miRBase. The quality

of the predicted putative miRNAs was further verified by looking

at mismatches in the hit regions. This was to ensure that the

mismatches did not break the secondary structure and only fell on

the open-loop regions. As a result, 14 predicted mature sequences

were retrieved from MatureBayes program as potential oil palm

miRNAs (Table 10).

Target prediction of the 14 potential miRNAs identified one

target mRNA transcript that is similar to the Rab21-family small

GTPase, which is a small GTP-binding protein of the Ras

Table 10. List of predicted mature miRNAs from EG01 and EO01 contigs.

Contigs
Best Hits with miRNAs in
miRBase Match Status Predicted Mature miRNA*

EGC01043189 peu-MIR2911 Perfect gcggcgacccgcucucgccgcg

EGC01002494 peu-MIR2911 Perfect gcggcgacccgcucucgccgcg

EGC01007640 peu-MIR2911 Perfect gcggcgacccgcucucgccgcg

EGC01002621 peu-MIR2916 Perfect ccugaaagcaacauccgccgau

EGC01009851 peu-MIR2916 Perfect gaagacgaucagauaccguccu

EGC01006056 peu-MIR2911 Perfect gcggcgacccgcucucgccgcg

EGC01005984 peu-MIR2911 Perfect gcggcgacccgcucucgccgcg

EGC01029522 ptc-MIR156j Perfect ugaugcagagcuccaugcaucc

EOC01000015 peu-MIR2916 Perfect ugggggcucgaagacgaucagau

peu-MIR2914

peu-MIR2910

EOC01008865 vvi-MIR319f Perfect gaugcaaugggucuugcauguc

EOC01001645 sbi-MIR167g Perfect ggcaucgggggcgcaacgcccu

EOC01006693 ptc-MIR319e Perfect gcuuccuucagcccacucaugg

EOC01010601 vvi-MIR845a Perfect cucauccaagaucuagaggaaa

EOC01007557 vvi-MIR845b Perfect cccuucaguccaaucggcgggc

*Mature miRNAs were predicted using MatureBayes program.
doi:10.1371/journal.pone.0086728.t010
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superfamily [115]. Identification of only a single target gene is not

surprising as most of the oil palm mRNA transcripts available are

not full-length and probably lack the UTR regions. Nevertheless,

identification of the Rab protein is interesting as it plays an

important role in regulating intracellular vesicle trafficking. In

plants, Rab proteins have been implicated in transport between

the endoplasmic reticulum and Golgi apparatus, trafficking of

soluble cargo, fusion of endocytic vesicles and vesicular transport

along microtubules. Studies in Arabidopsis have also identified that

certain Rab proteins are influenced by hormones, such as ethylene

and auxin [116]. It would be interesting to determine the

expression of the oil palm miRNAs, and its interaction with the

Rab21 transcript. Looking forward, the recently released oil palm

genome data will provide valuable information for further

characterization of the oil palm miRNAs.
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