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We present an improvement to the quaternion-based signal analysis (QSA) technique to extract electroencephalography (EEG)
signal features with a view to developing real-time applications, particularly in motor imagery (IM) cognitive processes. The
proposed methodology (iQSA, improved QSA) extracts features such as the average, variance, homogeneity, and contrast of EEG
signals related to motor imagery in a more efficient manner (i.e., by reducing the number of samples needed to classify the signal
and improving the classification percentage) compared to the original QSA technique. Specifically, we can sample the signal in
variable time periods (from 0.5 s to 3 s, in half-a-second intervals) to determine the relationship between the number of samples
and their effectiveness in classifying signals. In addition, to strengthen the classification process a number of boosting-technique-
based decision trees were implemented. The results show an 82.30% accuracy rate for 0.5 s samples and 73.16% for 3 s samples. This
is a significant improvement compared to the original QSA technique that offered results from 33.31% to 40.82% without sampling
window and from 33.44% to 41.07%with sampling window, respectively.We can thus conclude that iQSA is better suited to develop
real-time applications.

1. Introduction

In the last few years, interest in inferring information from
the human brain stemming from cognitive thoughts by
means of electroencephalography (EEG) has expanded to
various disciplines such as neuroscience, robotics, com-
putational science, physics, and mathematics. Research in
these areas tends to revolve around the development of new

communication and control technologies based on brain-
computer interface (BCI) devices to support people with
severe neuromuscular conditions in ways that can enable
them to express their wishes or use devices as neuropros-
thetics [1], wheelchairs [2, 3], control a cursor on a computer
screen [4], or even a robot [5, 6]. Wolpaw et al. [7] argue
that BCIs “give their users communication and control
channels that do not depend on the brain’s normal output
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channels of peripheral nerves and muscles.” In other words,
BCI devices establish a communication channel between
the individual and a component (electromechanical devices,
robots, software applications, etc.) to control it by means
of brain activity generated by the user to carry out some
intended action [8]. To that effect, the user must call upon
those actions by means of a brain strategy known as motor
imagery.

Motor imagery (MI) is a conscious process defined as a
mental simulation of a particular movement [9]. The motor
imagery is endowed with the same functional relationship to
the imagined or represented movement and the same causal
role in the generation of the movement in question [10]. In
other words, MI is related to the intention and preparation
of movements, whereby the subject imagines carrying out a
particular action without making any real movements. This
has led to studies using motor imagery to decipher processes
that precede the execution of an action. For instance, Bai et al.
[11] claim that mental practice using motor imagery of limb
movementmay facilitatemotor recovery in personswho have
experienced cerebrovascular injuries. In addition,McFarland
et al. [12] conducted a comparative analysis of EEG topogra-
phies associated with actual hand movements and imagined
hand movements, concluding that motor imagery plays an
important role in EEG-based communication and suggesting
thatmu and beta rhythmsmight provide independent control
signals.

Similarly, there have been studies focusing onMI support
and BCI systems, proposing algorithms for feature extrac-
tion and classification. For instance, Pfurtscheller et al. [13]
studied the reactivity of mu rhythms associated with the
imagination of hand, foot, and tongue movements with 60
EEG electrodes in nine able-bodied subjects (with a 66.16%
performance rate). In turn, Aghaei et al. [14] argue for the
use of the separable common spatiospectral patterns (SCSSP)
method to extract discriminant spatiospectral EEG features
and a Laplacian filter of data set V of BCI competition III with
the following mental imagery tasks: left-hand movement,
right-hand movement, and generation of words beginning
with a random letter involving 3 subjects. As for Gao et
al. [15], they conducted EEG signal analysis during left-
hand movements, right-hand movements, and resting with
10 subjects using the Kolmogorov complexity to extract the
features and an AdaBoost multiclass classifier, achieving a
79.5% accuracy rate. In a separate study, Schlögl et al. [16]
conducted a comparative study involving four classifiers to
determine the global separability of data in relation to four
different MI tasks with 5 subjects, modelling the EEG signal
by means of an adaptive autoregressive (AAR) process whose
parameters were extracted through Kalman filtering. Trad
et al. [17] used empirical mode decomposition (EMD) and
band power (BP) to extract EEG signals and classify MI
in experiments involving 10 subjects aged 22–35 as they
imagined left-hand and right-hand movements. Choi and
Cichocki [18] implemented a MI-based algorithm to control
a wheelchair using spatial filters to extract the features by
means of a common spatial pattern (CSP) method and
the linear SVMs to classify feature vectors. Three healthy
men participated in the experiments where they had to

imagine clenching the right hand, squeezing the left hand,
and walking. In [19] results of tests conducted with a 74%
accuracy rate to control a robot indoors on the basis of
three mental states are presented. In particular, there are
several studies focusing on the development of processing
techniques, feature extraction, and classification to improve
the BCI systems. In Tables 1 and 2, we present the most com-
monly used algorithms for these tasks from Lotte’ et al. works
[20]. However, we only extracted information related to our
work, that is, motor imagery activities (imagined movement
of the left hand, imagined movement of the right hand,
imagined movement of the foot, imagined movement of
the tongue, relaxation, and mental calculation). These works
use different algorithms in the classification stages, such as
SVM, KNN, LDA,MLP, HMM,Gaussian classifier, and Bayes
quadratic, including combinations of these, which result in
most studies in acceptable performance rates. However, most
experiments are performed on a small number of subjects,
which returns a low number of trials per session. In the
feature extraction stage,most techniques used to analyze EEG
signals extract information within the frequency or time-
frequency domain, which may lead to information loss when
information is transformed. In addition, they require noise-
elimination filters and frequency band localization to identify
the patterns of motor imagery.

On the other hand, in [21], the design of a motor
imagery experiment was reported based on three mental
processes: arrow moving to the left, arrow moving to the
right, and waiting time, lasting 5 seconds per image. This
study analyzed EEG signals with the implementation of the
quaternion-based signal analysis (QSA). The quaternion-
based signal analysis (QSA) method is a technique that uses
EEG signals within the time domain because it is based on
quaternion algebra. The use of quaternion algebra with the
QSA technique makes it possible to describe signals within
the time domain by means of rotations and orientations
of 3D objects and represent multichannel EEG signals as
a single entity, preventing data ambiguity and producing a
more accurate representation doing fewer calculations than
are needed with other techniques. The offline analysis was
conducted in the feature extraction phase considering the
total number of samples in each class, which produced an
84.92% accuracy rate. However, while the analysis of offline
signals is convenient and efficient, offline analysis results may
not generalize their performance to online applications. In
the case of the QSAmethod, the online analysis obtained was
just 33.31% considering window sizes of 0.5 seconds.

Thus, this paper presents an improvement to the QSA
method that we shall call improved quaternion-based signal
analysis (iQSA) for use in the feature extraction and clas-
sification phases, whose contribution consists in providing
a technique for use in real-time applications, focusing on
analyzing EEG signals online reducing the sample sizes
needed to a tenth of the ones required by QSA, resulting
in a faster response and fewer delays to improve execution
times in real-time actions. The experiment involved using
an Emotiv-Epoc device to acquire the brain signals from the
motor and visual regions of the cerebral cortex. Similarly,
during the training and validation phases, the EEG signal
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Table 2: Accuracy of classifier in motor imagery based BCI: two classes. The classes are (T1) left imagined hand movements and (T2) right
imagined hand movements.

Dataset Activity Subjects Trials Filter Feature Classifier Accuracy References

BCI
competition III

T1, T2 5 280 Yes LS-SVM (RBF
kernel) 95.72% [34]

T1, T2 4 140 Yes HMM 77.50% + [35]

T1, T2 4 200 Yes CSP SVM (Gaussian
kernel) 77.50% [36]

T1, T2 7 100 Yes CSP/EMD,
PCA KNN 85.8% [37]

T1, T2 4 100 Yes SVM 81% [29]

Other data sets

T1, T2 4 90 Yes CSP SVM (Gaussian
kernel) 74.10% [36]

T1, T2 1 140 Yes CSP/ERD-
ERS BSSFO-SVM 97.57% [25]

T1, T2 80 Yes PLS
Regression

Based on the
decoding principle 64% [1]

T1, T2 109 90 Yes CSP SUTCCSP 90% [38]

T1, T2 4 480 Yes
CSP/ERD-

ERS,
FFT

LDA, SVM, BPNN 84%+ [39]

T1, T2 3 Yes BSS, CSP SVM 92% [40]

Epoc

T1, T2 5 120 Yes CSP/EMD,
MIDKRA

PSD, Hjort, CWT,
DWT 97.79% [41]

T1, T2 8 100 Yes ERS, ERD LDA 70.37% [42]
T1, T2 2 140 Yes CSP Naive Bayes 79% [43]

T1, T2 15 40 Yes Wavelet, PSD,
EMD KNN 91.80% [44]

database was strengthened by adding a greater number of
subjects and by combining decision trees in the classification
phase based on use of the boosting technique.

2. Materials and Methods

2.1. Quaternions. Quaternions were proposed in 1843 by
Hamilton [22], as a set of four constituents (a real and three
imaginary components) as follows: 𝑞 = 𝑤 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧,
where𝑤, 𝑥, 𝑦, 𝑧 ∈ R and 𝑖, 𝑗, 𝑘 are symbols of three imaginary
quantities known as imaginary units.These units follow these
rules:

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1
𝑖𝑗 = 𝑘,
𝑗𝑘 = 𝑖,
𝑘𝑖 = 𝑗
𝑗𝑖 = −𝑘,
𝑘𝑗 = −𝑖,
𝑖𝑘 = −𝑗.

(1)

A quaternion can be described as

𝑞 = (𝑠 + a) , a = (𝑥, 𝑦, 𝑧) , (2)

where 𝑠 and a are known as the quaternion’s scalar and vector,
respectively. When 𝑠 = 0, 𝑞 is known as pure quaternion.

Based on the expanded Euler’s formula, the rotation for
quaternion around the axis 𝑛 = [𝑛𝑥, 𝑛𝑦, 𝑛𝑧] by angle theta is
defined as follows (see [21, 45] for further details).

A rotation of angle 𝜃 around a unit vector a = [𝑎𝑥, 𝑎𝑦, 𝑎𝑥]
is defined as follows:

𝑞 = cos(𝜃2) + (ax ⋅ i + ay ⋅ j + az ⋅ k) sin(𝜃2) . (3)

Furthermore, the operation to be performed on a vector
r to produce a rotated vector r is

r = 𝑞r𝑞−1 = (cos(𝜃2) + a sin(𝜃2))
⋅ r(cos(𝜃2) − a sin(𝜃2)) .

(4)

Equation (4) is a useful representation that makes the
rotation of a vector easier. We can see that r is the original
vector, r is the rotated quaternion, and 𝑞 is the quaternion
that defines the rotation.

2.2. iQSAAlgorithm. The iQSA is amethod that improves the
performance and precision of the QSA method, which is a
technique to analyze EEG signals for extracting features based
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Table 3: Statistical features extracted using quaternions.

Statistical features Equation

Mean (𝜇) = ∑( 𝑞mod)𝑁𝑠
Variance (𝜎2) = (∑(𝑞mod)2 − 𝜇)2 + ∑(𝑞mod)22𝑁𝑠
Contrast (con) = ∑(𝑞mod)2𝑁𝑠
Homogeneity (𝐻) = ∑ 1

1 + (𝑞mod)2

on rotations and orientations bymeans of quaternion algebra.
With iQSA, we can conduct real-time signal analysis as the
signals are being acquired, to difference of QSA method who
performs an offline analysis.

The iQSA approach consists of three modules: quater-
nion, classification, and learning, which are described as
follows.

(1) Quaternion module: in this module a features matrix
(𝑀) is defined from the description of the quaternion𝑞 and a vector 𝑅, where each of them corresponds
to an array of 4 and 3 EEG channels, respectively.
This module is divided into three steps, which are
described as follows:

(a) Sampling window: here, we define the sample
size (𝑛𝑠) to be analyzed and a displacement of
the window in the signal (𝑡 disp). That is, the
iQSA method performs the sampling by means
of superposing, producing a greater number of
samples to reinforce the learning stage of the
algorithm.

(b) Calculate rotation and module: then, a rotated
vector 𝑞rot is calculated using the quaternion𝑞 and vector 𝑅, where 𝑞 is a 𝑚-by-4 matrix
containing 𝑚 quaternions and 𝑅 is an 𝑚-by-3
matrix containing 𝑚 quaternions displaced on
the basis of a 𝑑𝑡 value. Later, the modulus is
applied to the quaternion 𝑞rot resulting in the
vector 𝑞mod.

(c) Building an array of features: finally, the array𝑞mod is used to form a matrix with𝑀𝑖,𝑗 features,
where 𝑖 corresponds to the analyzed segment
and 𝑗 is one of the 4 features to be analyzed
using the equations included in Table 3, that
is, mean (𝜇), variance (𝜎2), contrast (con), and
homogeneity (𝐻).

Equation (5) shows matrix 𝑀 with its features vec-
tor. In this matrix rows correspond to samples and
columns to features.

𝑀 =
[[[[[[[
[

𝜇1 𝜎21 con1 𝐻1
𝜇2 𝜎22 con2 𝐻2
... ... ... ...
𝜇𝑖 𝜎2𝑖 con𝑖 𝐻𝑖

]]]]]]]
]
. (5)

(2) Classification module: the aim of this module is to
create a combination of models to predict the value
of a class according to its characteristics; to do this we
use the boosting method adapted to the QSA model.
To be more specific, we combine ten decision trees
and a weight is obtained for each of them, which will
be used during the learning to obtain the prediction
by a majority rule. Here, we take 70% of samples from𝑀, of which the 80% are used for training and the rest
for validation as follows:

(a) Training: the subset of training data (80% sam-
ples) is assessed, using the models of decision
trees to obtain amatrixwith accurately classified
samples (𝐺) and a matrix with inaccurately
classified samples (𝐵). The learning of each tree
is done by manipulating the training data set
and partitioning the initial set in several subsets
according to the classification results obtained;
that is, a new subset is formed, generated, and
created with the accurately classified samples,
twice that number of inaccurately classified
samples and the worst-classified samples from
the original training data set. Later, when the
trees of classification are created, these are used
with the test data set to determine a weight in
function of the accuracy of their predictions.

(b) Validation: in this block we obtain a matrix
with the reliability percentages given by the
decision trees. The subset of validation data
(20% samples) is assessed, using the decision
trees to obtain an array with reliability values
given by the processing of decision trees and the
classes identified in the training process.

(3) Learning module: in this module, the subset of
test data of 𝑀 (30% samples) is assessed to obtain
reliability values matrix (𝑅) and the prediction by
majority rule (𝐶). That is, the learning process will
be conducted assessing features matrix of test using
the trees that have been generated in classification
process. The final predictor comes from a weighted
majority rule of the predictors from various decision
trees. Equation (6) shows the recognition and error
rates obtained in each of the prediction models. In
this matrix RT corresponds to accuracy rate, ET
corresponds to error rate, and 𝛼 corresponds to
reliability value of each decision tree.

𝑅 =
[[[[[[
[

RT1 ET1 𝛼1
RT2 ET2 𝛼2
... ... ...

RT𝑖 ET𝑖 𝛼𝑖

]]]]]]
]
. (6)

In Algorithm 1, we present the pseudocode for the
main elements of the iQSA algorithm towards real-time
applications.
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Algorithm 1: iQSA method
Require: quat = {𝑞1, 𝑞2, 𝑞3, 𝑞4}, 𝑑𝑡, 𝑛𝑠, 𝑡 disp, task(1) 𝑦(𝑡) ← segments of signals(2) for each 𝑛𝑠 in 𝑦𝑖(𝑡) do𝑞(𝑛𝑠) ← quat(𝑛𝑠)𝑟(𝑛𝑠) ← quat(𝑛𝑠 − 𝑑𝑡)𝑞rot(𝑛𝑠) ← 𝑛rot (𝑞(𝑛𝑠), 𝑟(𝑛𝑠))𝑞mod(𝑛𝑠) ← mod(𝑞rot(𝑛𝑠))𝑀𝑖,𝑗 ← 𝑓𝑗 (𝑞mod(𝑛𝑠)) {𝑗 = 1, . . . , 𝑚}𝑐𝑖 ← {𝑐 = (1, 2, 3, . . . , 𝑛) | 𝑦𝑖(𝑡) ∈ 𝑐}𝑛𝑠 = 𝑛𝑠 + 𝑡disp;

end for(3) 𝑀𝑘,𝑗 ← {𝑀𝑖,𝑗 | #𝑘/#𝑖 = %𝑡}(4) 𝑀𝑙,𝑗 ← {𝑀𝑖,𝑗 | {𝑙} ∉ {𝑘}, #𝑙/#𝑖 = 1 −%𝑡}(5) [𝛽,BTree] = Classify module(𝑀𝑘,𝑗, 𝑐𝑘)(6) [𝑅, 𝐶, 𝑉𝑚] = Learning module(𝑀𝑙,𝑗, 𝑐𝑙, 𝛽𝑖)(7) % 𝑟𝑡 = #{𝐶𝑘 | 𝐶𝑘 = 𝐶𝑘}/#{𝐶𝑘}(8) % 𝑟V = #{𝐶𝑙 | 𝐶𝑙 = 𝐶𝑙}/#{𝐶𝑙}
Function: Classify module (M, c)(1) 𝑀𝑎,𝑗 ← {𝑀𝑖,𝑗 | #𝑎/#𝑖 = %𝑠}(2) 𝑀𝑏,𝑗 ← {𝑀𝑖,𝑗 | {𝑏} ∉ {𝑎}, #𝑏/#𝑖 = 1 −%𝑡}/∗𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠∗/(3) for 𝑘 = 1 to 10 do[𝐺𝑚,𝑗, 𝐵𝑛,𝑗,BTree] ← training(𝑀𝑎,𝑗, 𝑐𝑎)𝑀𝑎,𝑗 ← {𝑀𝑎,𝑗 + 𝐵𝑛,𝑗 − 𝐺𝑚,𝑗}

end for/∗𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠∗/(4) for each BTree do[𝐶𝑖] ← validation(BTree,𝑀𝑏,𝑗, 𝑐𝑏)𝛽𝑖 ← #{𝐶𝑖 | 𝐶𝑖 = 𝐶𝑖}/#{𝐶𝑖}
end for(5) return 𝛽, 𝐶,BTree

Function: Learning module (M, c, 𝛽, B, Tree)(1) for each BTree do[𝑅𝑖, 𝑉𝑚] ← classify(BTree,𝑀𝑖,𝑗, 𝛽𝑖, 𝑐𝑖)
end for(2) return 𝑅, 𝐶𝑖, 𝑉𝑚

Algorithm 1: iQSA algorithm.

2.2.1. iQSA versus QSA Methods. In Figure 1, we show
through block diagrams the main differences between the
iQSA and QSA methods. It can be observed that QSA
method considers quaternion and classification modules.
On the other hand, iQSA method considers an improved
classification module and one more for learning.

In Table 4, we present some of the main improvements
made in the iQSA algorithm.

The QSA method, by its characteristics, is an excellent
technique for the offline processing of EEG signals consid-
ering large samples of data and being inefficient when such
data is small.This last becomes essential for online processing
because the operations depend on the interaction in real time
between the signals produced by the subject and the EEG
signals translated with the aid of the algorithm. In this regard,
the iQSAmethod considers small samples of data and creates
a window with the superposition technique for a better data

Table 4: Main modules in QSA and iQSA.

Modules QSA iQSA
Sampling window X ∙
Quaternion module ∙ ∙
Classification module ∙ ∙
Boosting technique X ∙
Learning module X ∙
Superposition technique X ∙
Weight normalization X ∙
Majority voting X ∙
Processing type Batch Real-time

classification during feature extraction, strengthening the
classification phase by means of the boosting technique.

In this way, the signals produced by the iQSA algorithm
affect the posterior brain signals, which in turn will affect
the subsequent outputs of the BCI. Figure 2 presents the
time system diagram of iQSA, which indicates the timeline
of events in the algorithm. It follows the process of three
EEG data blocks (𝑁1, 𝑁2, 𝑁3) obtained from the Emotiv-
Epoc device. The processing block covers the analysis and
processing of the data with the iQSA method until obtaining
an output (OP), in this case, the class to which each𝑁𝑖 block
belongs.

It is also possible to observe the start and duration of the
next two sets of data, where the start of block𝑁2 is displaced
from the progress of block 𝑁1 by a time represented as 𝑇disp
between 𝑡−1 and 𝑡0; therefore, while the block 𝑁1 reaches
the output at 𝑡2, the process of 𝑁2 continues executing until
reaching its respective output.

2.3. BCI System. A brain-computer interface is a system of
communication based on neural activity generated by the
brain. A BCI measures the activity of an EEG signal by
processing it and extracting the relevant features to interact
in the environment as required by the user. An example
of this device is the Emotiv-Epoc headset (Figure 3(a)), a
noninvasive mobile BCI device with a gyroscopic sensor, and
14 EEG channels (electrodes) and two reference channels
(CMS/DRL)with a 128Hz sample frequency.Thedistribution
of sensors in the headset is based on the international 10–20-
electrode placement system with two sensors as reference for
proper placement on the head with channels labeled as AF3,
F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4
(Figure 3(b)).

An advantage of the Emotiv-Epoc device is its ability to
handle missing values, very common and problematic when
dealing with biomedical data.

2.4. Decision Trees and Boosting. Decision trees (DT) [46–
48] are a widely used and easy-to-implement technique that
offers high speed and accuracy rates. DT are used to analyze
data for prediction purposes. In short, they work by setting
conditions or rules organized in a hierarchical structure
where the final decision can be determined following condi-
tions established from the root to its leaves.
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Figure 1: iQSA and QSA comparison.

Recently, several alternative techniques have been pre-
sented to construct sets of classifiers whose decisions are
combined in order to solve a task and to improve the results
obtained by the base classifier. There exist two popular
techniques to build sets: bagging [49] and boosting [50].
Both methods operate under a base-learning algorithm that
is invoked several times using various training sets. In
our case, we implemented a new boosting method adapted
to QSA method, whereby we trained a number of weak
classifiers iteratively so that each new classifier (weak learner)
focuses on finding weak hypothesis (inaccurately classified).
In other words, boosting calls the weak learner 𝑤 times thus
determining, at each iteration, a random subset of training
samples by adding the accurately classified samples, twice
that number of inaccurately classified samples and the worst-
classified samples from the original training data set to form
a new weak learner 𝑤.

As a result, inaccurately classified samples of the previous
iteration are given an (𝛼) weight in the next iteration, forcing
the classifying algorithm to focus on data that are harder to

classify in order to correct classification errors of the previous
iteration. Finally, the reliability percentage of all the classifiers
is added and a hypothesis is obtained by a majority vote,
whose prediction tends to be the most accurate.

2.5. Channel Selection for iQSA. From the 14 electrodes that
the Emotiv-Epoc device provides, we decided to perform an
analysis on the electrodes located in three different regions
of the cerebral cortex looking for those with better perfor-
mance to form the quaternion: (1) electrodes located on the
motor cortex, which generates neural impulses that control
movements, (2) those on the posterior parietal cortex, where
visual information is transformed into motor instructions
[51], and (3) the ones on the prefrontal cortex, which appear
as a marker of the anticipations that the body must make to
adapt to what is going to happen immediately after [52].

In this regard, in Table 5 we present the performance for
each of the sets of channels that were selected and further
analyzed by the iQSA algorithm.
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Figure 3: BCI system: (a) Emotiv-Epoc headset and (b) Emotiv-Epoc electrode arrangement.

Comparing the data sets shown in Figure 4, it is observed
that all have a similar behavior in each sample size. For a
64-sample analysis, data sets 2 and 4 obtained 82.30% and
82.33%, respectively. The channels for data set 2 are related
to the frontal and motor areas of the brain and the channels
for data set 4 are related to the parietal andmotor areas. From
these results anddue to the fact thatwemainly focus onmotor
control tasks, set 2 (F3, F4, FC5, and FC6) has been chosen.

3. Experiment

As seen in earlier sections, one of the objectives of this
paper is to analyze EEG signals towards real-time appli-
cations. Therefore, it is necessary to reduce the number
of samples of EEG signals that have been acquired by
subjecting them to a process based on the iQSA method to
decode motor imagery activities, while keeping or improving
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Table 5: Accuracy rate to several data sets of channel blocks.

Data sets Samples
384 320 256 192 128 64

FC5, FC6, P7, P8 74.16 74.13 80.07 81.92 81.60 82.23
F3, F4, FC5, FC6 73.16 74.88 80.23 81.39 81.65 82.30
F3, F4, F7, F8 73.48 73.87 79.69 81.74 81.58 82.14
F3, F4, P7, P8 73.47 73.92 80.06 81.68 81.87 82.33
AF3, AF4, FC5, FC6 74.17 74.10 80.31 81.82 81.99 82.26
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Figure 4: Comparison of data sets with different sample sizes. Data
set 1: FC5, FC6, P7, P8; data set 2: F3, F4, FC5, FC6: data set 3, F3,
F4, F7, F8; data set 4: F3, F4, P7, P8; data set 5: AF3, AF4, FC5, FC6.

accuracy results achieved with this technique. In this way,
the experiment was designed to register EEG signals from
several individuals and to identify three motor-imagery-
related mental states (think left motion, think right motion,
and waiting time).

3.1. Description of the Experiment. The experiment was con-
ducted in three sessions: Session 1 involved motor imagery
with tagged visual support (𝑉+𝐿), that is to say, an arrowwith
the word LEFT or RIGHT written on it. Session 2 involved
motor imagery with visual (𝑉) support only. In Session 3 the
subject only received a tactile stimulus (𝑇) to evoke motor
imagery while keeping his or her eyes closed. In each session,
the aim was to identify three mental states (think left motion,
think right motion, and waiting time). The visual 𝑉 and 𝑉𝐿
stimuli were provided using a GUI interface developed in
Python 2.7 to show themovement of a red arrow for 5 seconds
for each of the motor brain actions and a fixed cross at the
center of the GUI to indicate a rest period for 3 seconds
(the third brain action). The tactile stimulus was provided by
touching the left/right shoulder of the individual to indicate
the brain action to be performed. Each session lasted for 5
minutes and was done on separate days.

To start with, the participant was asked to sit on a
comfortable chair in front of a computer screen. As the

FC5 FC6
F3 F4

Stimulation

Waiting
time Random

arrow

(�ink right motion)

(�ink le� motion) Time in
seconds

121110987654321

Figure 5: Methodology for activities in motor-cognitive experi-
ments.

participant was given instructions regarding the test, an
Emotiv-Epoc headset was placed on his or her head, making
sure that each of the Emotiv device electrodes was making
proper contact with the scalp (Figure 5). Once the participant
was ready, he or she was asked not to make sudden body
movements that could interfere with the signal acquisition
results during the experiment.

The training paradigm consisted of a sequential repetition
of cue-based trials (Figure 5). Each trial startedwith an empty
blank screen; during the time 𝑡 = 0 to 𝑡 = 3 s a cross was
displayed to indicate to the user that the experiment had
started and that it was time to relax.Then at second 3 (𝑡 = 3 s)
an arrow appearing for 5 s pointed either to the left or to the
right. Each position indicated by the arrow instructed the
subject to imagine left or right movement, respectively. The
next trial started at 𝑡 = 8 s with a cross. This process was
repeated for 5minutes, displaying the arrows 32 times and the
cross 33 times within each run.Thus, the data set recorded for
the three runs consisted of 96 trials.

3.2. iQSA Method Implementation. After data acquisition,
the next stage consists in extracting EEG signal features in
order to find the required classes, that is, think left motion,
think right motion, and waiting time. To start with, the iQSA
method was implemented to represent the four EEG signals
within a quaternion and to carry out the feature extraction
related to the stimuli presented. To that effect, data set 2 was
prepared to assess their performance when time (and the
number of samples) was reduced. Under these conditions, 3
seconds (384 samples), 2.5 seconds (320 samples), 2 seconds
(256 samples), 1.5 seconds (192 samples), 1 second (128
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Figure 6: Graphic description of the iQSA method. 𝑞rot represent the rotation of 𝑞 with respect to 𝑟; 𝑞mod is the module of 𝑞rot; class 1, class
2, and class 0 represent the motor activities evaluated, in this case “think left motion,” “think right motion,” and “waiting time,” respectively.

samples), and 0.5 seconds (64 samples) were considered.
Values 0, 1, and 2 were used to refer to the three mental
activities: waiting time (0), think left motion (1), and think
right motion (2).

So, a segments matrix was obtained to detect sudden
changes between classes for each data set. The segments
matrix consisted of samples from 32 trials from left and
right classes and samples from 33 trials for the waiting time
class. In addition, the quaternion was created with the block
signals proposed (F3, F4, FC5, and FC6), considering F3 as
the scalar component and F4, FC5, and FC6 as the imaginary
components (Figure 6). From the samples to be analyzed,
several segments were created to generate the quaternion 𝑞
and vector 𝑅 with a displacement 𝑑𝑡 = 4 and thus obtain the
rotation (𝑞rot) and modulus (𝑞mod).

Once the module was obtained, the mean (𝜇), contrast(con), homogeneity (𝐻), and variance (𝜎2) features were
calculated to generate the matrix𝑀 and the vector 𝑐 with the
required classes. Later, we returned to the current segment,
and a displacement of 64 samples for the signal was effected
to obtain the next segment.

Later, M was used in the processing stage using 70%
of data from training and 30% from test; here each class
has the same sample size and was randomly chosen. In the
classification module, we generate the matrix 𝑀1 with the
80% from training data of 𝑀 and 𝑀2 with the remaining

20% of the training data, which will be used for training
and validation, where 10 training trees were created to force
the algorithm to focus on the inaccurately classified data.
Here, for each iteration we generate new subsets of samples
with the double of inaccurately classified samples and fewer
accurately classified samples, along with a reliability rate for
each tree. Later, with matrix 𝑀2 the data were validated to
obtain the percentage of reliability of each tree. Finally, with
the remaining data of 𝑀, a prediction by majority rule is
voted and a decision is reached based on the reliability rate
of each classification tree.

4. Results

As said earlier, one of the aims of this study was to reduce the
assessment time (sample size) without loss of the accuracy
rate. Therefore, a comparison of the iQSA and QSA tech-
niques was performed to show its behavior when the number
of samples decreases.

4.1. Comparison between iQSA and QSA Methods. To evalu-
ate and compare the performance of the iQSA online versus
QSA offline algorithms, the same sets of data from the 39
participants were used, considering the different sample sizes
(384, 320, 256, 192, 128, and 64 samples) as input for the
algorithm.
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Figure 7: QSA method behavior. (a) Table of behavior of QSA method; (b) graphic of error rate for sample size.

Table 6: Table of accuracy rate for iQSA and QSA method with
different number samples.

Sample size QSA (1) QSA (2) iQSA (3)
384 40.82% 41.07% 73.16%
320 40.74% 40.29% 74.87%
256 43.56% 43.96% 80.23%
192 42.41% 42.71% 81.39%
128 37.45% 38.28% 81.65%
64 33.31% 33.44% 82.30%

In spite of the good performance rates reported with
the QSA algorithm for offline data analysis, the classification
results were not as good when the number of samples
was reduced up to 64 samples as shown in Figure 7(a).
Graphically, as can be seen, the error rate increases gradually
when the sample size is reduced for analysis, reaching up to
66.56% error for a reading of 64 samples. In this way, it was
necessary to make several adjustments to the algorithm, in
such away as to support an online analysis with small samples
sizes, without losing information and sacrificing the good
performance rates provided by the offline QSA algorithm.

Thus, the data of the 39 subjects were evaluated, consider-
ing three cases: (1)QSAmethodwithoutwindow samples, (2)
QSA method with window samples, and (3) iQSA proposed
method. Comparing the results of Table 6, the precision
percentages for the iQSA method range from 73.16% for 384
samples to 82.30%% for 64 samples, unlike the original QSA
method whose percentage decreases to 33.31% for 64 samples
in case 1 and 33.44% in case 2 although the sampling window
has been implemented.

Figure 8 shows the behavior of the iQSA technique in
blue and QSA technique in red, where the mean, maximum,
and minimum of each technique are shown. Comparing
both techniques, it is observed that the data analyzed with
the original QSA method drastically loses precision as the
number of samples selected decreases. This was not the
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Figure 8: Behavior of the iQSA and QSA methods with different
sample sizes.

case for data sets using the iQSA technique whose precision
did not vary too much when the number of samples for
classification was reduced, improving even its performance.

4.2. iQSA Results. Figure 9 shows the behavior of 39 partici-
pants under both techniques (iQSA and QSA), considering
all the sample sizes. The values obtained using the iQSA
method are better than values obtained with QSA method
whose values are below 50%. Numerical results show that the
iQSA method provides a higher accuracy over the original
QSA method for tests with a 64-sample size.

Given the above results, a data analysis was conducted
using 64 samples to identify the motor imagery actions.
The performances obtained with the set of classifiers were
compared using various assessment metrics, such as recog-
nition rate (RT) and error rate (ET), and sensitivity (𝑆)
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and specificity (Sp). The sensitivity metric shows that the
classifier can recognize samples from the relevant class, and
the specificity is also known as the real negative rate because
it measures whether the classifier can recognize samples that
do not belong to the relevant class.

RT = # {𝑐 | 𝑐 = 𝑐}
# {𝑐} (7)

ET = # {𝑐 | 𝑐 ̸= 𝑐}
# {𝑐} (8)

𝑆𝑑 = # {𝑐 | 𝑐 = 𝑑, 𝑐 = 𝑐}
# {𝑐 | 𝑐 = 𝑑} (9)

Sp𝑑 = # {𝑐 | 𝑐 ̸= 𝑑, 𝑐 = 𝑐}
# {𝑐 | 𝑐 ̸= 𝑑} . (10)

As Table 7 shows, the highest accuracy percentage was
84.50% and the lowest 68.75%. In addition, the sensitivity
average for class 0 (𝑆0) associated with the waiting time
mental state was 82.53%, and the sensitivity average for class
1 (𝑆1) and class 2 (𝑆2) associated with think left motion
and think right motion was 81.07% and 81.65%, respectively,
which indicates that the classifier had no problem classifying
classes. In turn, the specificity rate for class 0 (Sp0) shows
that 81.36% of the samples classified as negative were actually
negative, while class 1 (Sp1) performed at 82.09% and class 2
(Sp2) at 81.80%.

To evaluate the performance of our approach, we have
carried out a comparison with other methods such as FDCSP
[53], MEMD-SI-BCI [54], and SR-FBCSP [55] using data set
2a from BCI IV [56] and the results are shown in Table 8.
Our method shows a slight improvement (1.09%) compared
to the SR-FBCSP method, which presents the best results of
the three.

To analyze our results, we performed a significant sta-
tistical test making use of the STAC (Statistical Tests for
Algorithms Comparison) web platform [57]. Here, we chose
the Friedman test with a significance level of 0.10 to get
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Figure 10: Graph of behavior of subjects with three types of
experiments: tagged visual, visual, and tactile stimulation.

a ranking of the algorithms and check if the differences
between them are statistically significant.

Table 9 shows the Friedman test ranking results obtained
with the 𝑝 value approach. From such table, we can observe
that our proposal gets the lowest ranking; that is, iQSA has
the best results in accuracy among all the algorithms.

In order to comparewhether the difference between iQSA
and the other methods is significant, a Li post hoc procedure
was performed (Table 10). The differences are statistically
significant because the 𝑝 values are below 0.10.

In addition, the classification shown in Table 8 is achieved
by the iQSA in real time and compared to the other methods
a prefiltering process is not required.

In Table 11, we show the time required for each of
the tasks performed by the iQSA algorithm: (1) features
extraction, (2) classification, and (3) learning.The EEG signal
analysis in processes 1 and 2 was responsible for obtaining
the quaternion from the EEG signals, learning trees, and
training. Process 3 evaluates and classifies the signal based on
the generated decision trees, as should be done in real-time
analysis.

According to the experiment, for offline classification
(processes 1 and 2), the processing time required was 0.3089
seconds. However, the time required to recognize the motor
imagery activity generated by the subject was of 0.0095
seconds, considering that the learning trees were already
generated, and even when the processing phase was done in
real time, it would take 0.3184 seconds to recognize a pattern
after the first reading. With this, our proposed method can
be potentially used in several applications such as controlling
a robot, manipulating a wheelchair, or controlling home
appliances, to name a few.

As said earlier, the experiment consisted of 3 sessions
with each participant (visual tagged, visual, and tactile).
The average accuracy obtained from the 3 experiments is
between 76% and 78%. Figure 10 shows results from the
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Table 7: Comparison of performance measures for the decision tree classifier using 64 samples.

Subject ER RT 𝑆0 𝑆1 𝑆2 Sp0 Sp1 Sp2(1) 0.17667 0.82333 0.83000 0.81500 0.82500 0.82000 0.82750 0.82250
(2) 0.18625 0.81375 0.81375 0.79500 0.83250 0.81375 0.82312 0.80437
(3) 0.17542 0.82458 0.85125 0.79000 0.83250 0.81125 0.84188 0.82063
(4) 0.19145 0.80855 0.81923 0.81410 0.79231 0.80321 0.80577 0.81667
(5) 0.20875 0.79125 0.77750 0.79125 0.80500 0.79812 0.79125 0.78437
(6) 0.15792 0.84208 0.86500 0.81875 0.84250 0.83063 0.85375 0.84187
(7) 0.18417 0.81583 0.83500 0.79875 0.81375 0.80625 0.82438 0.81687
(8) 0.18333 0.81667 0.82125 0.80625 0.82250 0.81437 0.82188 0.81375
(9) 0.17125 0.82875 0.82875 0.83625 0.82125 0.82875 0.82500 0.83250
(10) 0.16458 0.83542 0.86375 0.84375 0.79875 0.82125 0.83125 0.85375
(11) 0.18803 0.81197 0.80641 0.81154 0.81795 0.81474 0.81218 0.80897
(12) 0.15500 0.84500 0.83125 0.84000 0.86375 0.85187 0.84750 0.83562
(13) 0.19542 0.80458 0.83125 0.78250 0.80000 0.79125 0.81563 0.80688
(14) 0.15792 0.84208 0.85000 0.82625 0.85000 0.83813 0.85000 0.83813
(15) 0.19167 0.80833 0.80625 0.79875 0.82000 0.80937 0.81312 0.80250
(16) 0.19458 0.80542 0.82500 0.76875 0.82250 0.79563 0.82375 0.79688
(17) 0.16292 0.83708 0.85000 0.83500 0.82625 0.83063 0.83813 0.84250
(18) 0.17137 0.82863 0.84615 0.81154 0.82821 0.81987 0.83718 0.82885
(19) 0.15875 0.84125 0.84000 0.83250 0.85125 0.84187 0.84562 0.83625
(20) 0.18250 0.81750 0.81500 0.80375 0.83375 0.81875 0.82438 0.80937
(21) 0.31250 0.68750 0.65625 0.68625 0.72000 0.70312 0.68812 0.67125
(22) 0.16708 0.83292 0.86250 0.82125 0.81500 0.81812 0.83875 0.84188
(23) 0.18917 0.81083 0.82375 0.81625 0.79250 0.80437 0.80813 0.82000
(24) 0.16958 0.83042 0.84250 0.81500 0.83375 0.82438 0.83813 0.82875
(25) 0.17500 0.82500 0.84079 0.83947 0.79474 0.81711 0.81776 0.84013
(26) 0.19583 0.80417 0.80750 0.80250 0.80250 0.80250 0.80500 0.80500
(27) 0.16500 0.83500 0.83000 0.82750 0.84750 0.83750 0.83875 0.82875
(28) 0.20083 0.79917 0.78500 0.79625 0.81625 0.80625 0.80063 0.79062
(29) 0.18947 0.81053 0.83421 0.79474 0.80263 0.79868 0.81842 0.81447
(30) 0.16083 0.83917 0.85875 0.83250 0.82625 0.82937 0.84250 0.84563
(31) 0.17875 0.82125 0.83375 0.80625 0.82375 0.81500 0.82875 0.82000
(32) 0.19083 0.80917 0.82125 0.81125 0.79500 0.80312 0.80812 0.81625
(33) 0.19333 0.80667 0.82125 0.79750 0.80125 0.79937 0.81125 0.80937
(34) 0.18917 0.81083 0.80250 0.82000 0.81000 0.81500 0.80625 0.81125
(35) 0.16333 0.83667 0.86500 0.82750 0.81750 0.82250 0.84125 0.84625
(36) 0.16833 0.83167 0.83250 0.82250 0.84000 0.83125 0.83625 0.82750
(37) 0.18833 0.81167 0.83125 0.81000 0.79375 0.80188 0.81250 0.82063
(38) 0.17000 0.83000 0.81125 0.86750 0.81125 0.83937 0.81125 0.83938
(39) 0.19083 0.80917 0.82125 0.80375 0.80250 0.80313 0.81187 0.81250
Mean 0.18247 0.81753 0.82533 0.81071 0.81656 0.81363 0.82095 0.81802
STD 0.02544 0.02544 0.03451 0.02796 0.02404 0.02315 0.02667 0.0291

visual stimulation session, which produced the lowest rate
at 76.63%, followed by tagged visual session which reached
76.98% and the tactile session 77.28%.

In Figure 10, it is shown that themental activity generated
with the aid of a tactile stimulus is slightlymore accurate than
visual and visual tagged stimuli where recognition is more
imprecise and slow with visual stimulus.

To summarize, the results of tests conducted with 39
participants using this newmethod to classify motor imagery

brain signals, 20 times with each participant, considering
70%–30% of the data have been presented and creating
several subsets of 80–20% for the classification process.
The average performance accuracy rate was 81.75% when
using 10 decision trees in combination with the boosting
technique at 0.5-second sampling rates. The results show
that this methodology for monitoring, representing, and
classifying EEG signals can be used for the purposes of having
individuals control external devices in real time.
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Table 8: Comparison results.

Subject iQSA FDCSP MEMD-SI-BCI SR-FBCSP
(1) 0.8543 0.9166 0.9236 0.8924
(2) 0.8296 0.6805 0.5833 0.5936
(3) 0.8273 0.9722 0.9167 0.9581
(4) 0.8509 0.7222 0.6389 0.7073
(5) 0.7879 0.7222 0.5903 0.7810
(6) 0.8284 0.7153 0.6736 0.6998
(7) 0.8172 0.8125 0.6042 0.8824
(8) 0.8466 0.9861 0.9653 0.9532
(9) 0.8425 0.9375 0.6667 0.9192
Average 0.83164 0.8294 0.7292 0.8207
Std 0.02054 0.1238 0.1581 0.1302

Table 9: Friedman test ranking results.

Algorithm Ranking
iQSA 15.3333
FDCSP 15.5556
SR-FBCSP 16.5556
MEMD-SI-BCI 26.5556

Table 10: Li post hoc adjusted 𝑝 values for the test error ranking in
Table 9.

Comparison Adjusted 𝑝 value
iQSA versus datasets 0.00118
iQSA versus SR-FBCSP 0.96717
iQSA versus FDCSP 0.97137
iQSA versus MEMD-SI-BCI 0.70942

Table 11: Execution time of iQSA method.

Process Time in seconds
iQSA quaternion (1) 0.2054
iQSA classification (2) 0.1035
iQSA learning (3) 0.0095

5. Conclusions

Feature extraction is one of the most important phases
in systems involving BCI devices. In particular, feature
extraction applied to EEG signals for motor imagery activity
discrimination has been the focus of several studies in recent
times. This paper presents an improvement to the QSA
method known as iQSA, for EEG signal feature extraction
with a view to using it in real timewithmental tasks involving
motor imagery. With our new iQSA method, the raw signal
is subsampled and analyzed on the basis of a QSA algorithm
to extract features of brain activity within the time domain
by means of quaternion algebra. The feature vector made
up of mean, variance, homogeneity, and contrast is used in
the classification phase to implement a set of decision-tree
classifiers using the boosting technique. The performance
achieved using the iQSA technique ranged from 73.16% to
82.30% accuracy rates with readings taken between 3 seconds

and half a second. This new method was compared to the
original QSA technique, whose accuracy rates ranged from
40.82% to 33.31% without sampling window and from 41.07%
to 33.34% with sampling window. We can thus conclude that
iQSA is a promising technique with potential to be used in
motor imagery recognition tasks in real-time applications.
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[16] A. Schlögl, F. Lee, H. Bischof, and G. Pfurtscheller, “Charac-
terization of four-class motor imagery EEG data for the BCI-
competition 2005,” Journal of Neural Engineering, vol. 2, no. 4,
pp. 14–22, 2005.

[17] D. Trad, T. Al-Ani, and M. Jemni, “Motor imagery signal clas-
sification for BCI system using empirical mode decomposition
and bandpower feature extraction,” Broad Research in Artificial
Intelligence and Neuroscience (BRAIN), vol. 7, 2, pp. 5–16, 2016.

[18] K. Choi and A. Cichocki, Control of a Wheelchair by Motor
Imagery in Real Time, vol. 5326, Springer-Verlag, 2008.

[19] J. D. R. Millán, F. Renkens, J. Mouriño, and W. Gerstner,
“Noninvasive brain-actuated control of a mobile robot by
human EEG,” IEEE Transactions on Biomedical Engineering, vol.
51, no. 6, pp. 1026–1033, 2004.

[20] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B.
Arnaldi, “A review of classification algorithms for EEG-based
brain–computer interfaces,” Journal of Neural Engineering, vol.
4, no. 2, pp. R1–R13, 2007.

[21] P. Batres-Mendoza, C. R. Montoro-Sanjose, E. I. Guerra-
Hernandez et al., “Quaternion-based signal analysis for motor
imagery classification from electroencephalographic signals,”
Sensors, vol. 16, no. 3, article no. 336, 2016.

[22] W. R. Hamilton, “On quaternions,” Proceedings of the Royal Irish
Academy, vol. 3, pp. 1–16, 1847.

[23] M. Almonacid, J. Ibarrola, and J.-M. Cano-Izquierdo, “Voting
Strategy to Enhance Multimodel EEG-Based Classifier Systems
forMotor Imagery BCI,” IEEE Systems Journal, vol. 10, no. 3, pp.
1082–1088, 2016.

[24] L. He, D. Hu,M.Wan, Y.Wen, K.M. VonDeneen, andM. Zhou,
“Common Bayesian Network for Classification of EEG-Based
Multiclass Motor Imagery BCI,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 46, no. 6, pp. 843–854, 2016.

[25] H.-I. Suk and S.-W. Lee, “A novel bayesian framework for
discriminative feature extraction in brain-computer interfaces,”
IEEE Transactions on Pattern Analysis andMachine Intelligence,
vol. 35, no. 2, pp. 286–299, 2013.
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