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Exploring the multidimensional
heterogeneities of glioblastoma
multiforme based on sample-
specific edge perturbation in
gene interaction network

Jianglin Zheng1†, Yue Qiu2†, Zhipeng Wu1†, Xuan Wang1*

and Xiaobing Jiang1*

1Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China, 2Department of Otolaryngology, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan, China
Glioblastoma multiforme (GBM) is the most malignant brain cancer with great

heterogeneities in many aspects, such as prognosis, clinicopathological

features, immune landscapes, and immunotherapeutic responses.

Considering that gene interaction network is relatively stable in a healthy

state but widely perturbed in cancers, we sought to explore the

multidimensional heterogeneities of GBM through evaluating the degree of

network perturbations. The gene interaction network perturbations of GBM

samples (TCGA cohort) and normal samples (GTEx database) were

characterized by edge perturbations, which were quantized through

evaluating the change in relative gene expression value. An unsupervised

consensus clustering analysis was performed to identify edge perturbation-

based clusters of GBM samples. Results revealed that the edge perturbation of

GBM samples was stronger than that of normal samples. Four edge

perturbation-based clusters of GBM samples were identified and showed

prominent heterogeneities in prognosis, clinicopathological features, somatic

genomic alterations, immune landscapes, and immunotherapeutic responses.

In addition, a sample-specific perturbation of gene interaction score

(SPGIScore) was constructed based on the differently expressed genes

(DEGs) among four clusters, and exhibited a robust ability to predict

prognosis. In conclusion, the bioinformatics approach based on sample-

specific edge perturbation in gene interaction network provided a new

perspective to understanding the multidimensional heterogeneities of GBM.
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Introduction

Glioblastoma multiforme (GBM) is the most malignant

brain cancer with an extremely dismal prognosis despite

aggressive therapeutic strategies consisting of surgical excision

and chemoradiotherapy (1). GBM is characterized by high

heterogeneity, including inter- and intra-tumoural

heterogeneity, which pose a daunting challenge to judgment in

prognosis and effective treatment (2). Searching for valuable

molecular markers has long been recognized as a well-

established means for the resolution of heterogeneity. With the

broad application of high-throughput sequencing technology

and bioinformatics analysis, increasing classifications of GBM

that rely on gene expression files have been proposed (3–5). It is

important to note, however, such classification approaches

overlooked the dynamic nature of gene expression.

From a dynamic point of view, the gene expression in a

biological system varies over time and under different conditions

(6). In other words, the molecular composition of cancer cells

may be different under different time points or conditions.

Therefore, the gene expression profiles obtained at specific

time points or conditions are not completely reliable to

characterize the biological status of individual patients. In

comparison, biological networks are relatively stable against

time and conditions (7, 8). It has been recognized that specific

biological networks, but not individual molecules, are ultimately

responsible for cancer biology (9). Thus, applying network-

based methods to the analysis may contribute to a better

understanding of cancer heterogeneity.

In this study, we used sample-specific edge perturbation in

the gene interaction network to explore the heterogeneity of

GBM. This method is entirely distinct from the previous gene

expression-based approaches. Two key information, gene sets

(nodes in networks) and interactions (edges in networks) were

utilized in this method. It has been revealed that the gene

interaction network is widely perturbed in tumor tissues

compared with that in normal human tissues (8). This method
Abbreviations: GBM, Glioblastoma multiforme; TCGA, The Cancer Genome

Atlas; SPGIScore, sample-specific perturbation of gene interaction score; GTEx,

Genotype-Tissue Expression database; CGGA, Chinese Glioma Genome Atlas;

GO, Gene Ontology; SD, standard deviation; IGP, in-group proportion; OCLR,

one-class logistic regression; LST, large-scale transition; TAI, telomeric allelic

imbalance; LOT, loss of heterozygosity; HRD, Homologous recombination

deficiency; TIDE, Tumor Immune Dysfunction and Exclusion; ICI, immune

checkpoint inhibitor; TMB, tumor mutation burden; mut/Mb, mutations per

megabase; MSI, microsatellite instability; MSS, microsatellite stability; CNV, copy

number variation; DEGs, differently expressed genes; LASSO, least absolute

shrinkage and selection operator; NBT, non-tumor brain tissues; qRT-PCR,

Quantitative real-time polymerase chain reaction; IHC, Immunohistochemistry;

EGFR, epidermal growth factor receptor; ICI, immune checkpoint inhibitor; ROC,

receiver operating characteristic; WSNF, weighted similarity network fusion;

CSPRV, cancer subtype prediction using RV2.
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can quantify these perturbations in gene interactions (edge

perturbations) by evaluating the change in the relative gene

expression value. The edge perturbations can efficiently

characterize the perturbations of the biological network for

each sample. Based on the edge-perturbation matrix, we

performed an unsupervised consensus clustering analysis to

establish the edge perturbation-based clusters of GBM

samples. Moreover, we constructed a sample-specific

perturbation of gene interaction score (SPGIScore) which

exhibited a robust ability to predict prognosis. Our findings

are helpful to understand the heterogeneity of GBM from the

perspective of biological networks.
Methods

Data sources and preprocessing

This sample-specific edge perturbation project was carried out

based on the data mining of public databases. A total of 155 GBM

samples from the Cancer Genome Atlas (TCGA) were defined as

the experimental cohort, the transcriptome data and clinical

information of which were downloaded from the UCSC Xena

website (https://xenabrowser.net/datapages/). For the control

cohort, the transcriptome data of 1152 normal brain samples

were obtained from the Genotype-Tissue Expression database

(GTEx, https://gtexportal.org/home/). In addition, three

independent validation cohorts were composed by the GBM

samples extracted from the Chinese Glioma Genome Atlas

(CGGA, http://www.cgga.org.cn/; mRNA-array_301 dataset and

mRNAseq_325 dataset) and Rembrandt microarray dataset

(http://gliovis.bioinfo.cnio.es/). In order to maintain data

consistency, the transcriptome data from different sources were

converted to TPM form. Genes with zero expression in more than

70% samples were filtered out from each cohort, and batch

correction was performed via “ComBat” function in R packet

“sva”. The sample number of each cohort was presented in

Table S1.
Construction of background
interaction network

Reactome (http://www.reactome.org) was an expert-

authored and peer-reviewed biomolecular pathway database,

aiming to provide bioinformatic tools for visualization and

interpretation of a network of biological interactions (10). The

core unit of the Reactome data mode is the reaction of different

entities, including nucleic acids, proteins, complexes, anticancer

therapeutics and small molecules (11). Thus, Reactome is a good

choice. We used the ReactomeFIPlugIn of Cytoscape to
frontiersin.org
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download all gene interactions of Reactome pathways, and

merged them into a large background interaction network.

Specifically, this background interaction network is a gene

interaction network based on Reactome pathways, including

protein–protein interactions, gene coexpression, protein domain

interactions, Gene Ontology (GO) annotations and text-mined

protein interactions.
Construction of the edge-
perturbation matrix

As shown in the previous study (11), the construction of

edge-perturbation matrix (EPM) mainly includes three steps:

Firstly, according to the expression levels of genes in the

background interaction network, we obtained the rank of genes

in GBM samples and normal samples, respectively. The rule is

that the lower expression level corresponds to the smaller rank,

and the higher expression level corresponds to the greater rank.

The expression matrix was then transformed to a rank matrix.

Secondly, we refer to the interaction relationship of gene

pairs in the background interaction network. If two genes

interact with each other, there will be an edge connecting

these two genes in the network. We then calculated the rank

difference of this edge in two genes, and further obtained the

delta rank matrix whose rows and columns represented edges in

the background interaction network and samples, respectively.

The delta rank was calculated as follows:

de, s =  ri, s−rj, s

where ri, s denotes the rank of gene i in sample s. de, s denotes
the delta rank of edge e in sample s. Gene i and gene j are

connected by edge e.

Thirdly, it was agreed that the gene interaction of normal

samples is highly conserved, while the interaction perturbations

were more frequent in cancer samples (12). Next, we constructed

the rank matrix based on the mean expression values of genes in

normal samples and calculated the delta rank in the same

manner. The delta rank of normal samples was set as the

benchmark delta rank vector ( �de), which represents the

average relative ranks of gene pairs in all normal samples.

Hence, the gene interaction perturbations of samples can be

measured by compared their delta rank with the benchmark

delta rank vector. Finally, the EPM was constructed with the

element De, s of each sample, which was calculated as follows:

De, s = de, s−�de

where De, s represents the perturbation of edge e in sample s.

Each column of the EPM represents the edge perturbations of an

individual sample. Then, we could take advantage of the EPM to

perform clustering analysis of GBM samples.
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Clustering analysis of GBM samples
based on feature edges

To get meaningful clusters of GBM samples, we performed the

unsupervised consensus clustering analysis based on the selected

feature edges, which had the capacity to easily distinguish GBM

samples from normal samples and didn’t lose the heterogeneity

within GBM samples. By using the Kruskal–Wallis test, we first

selected the top 60000 significantly different edges between GBM

samples and normal samples. Next, we calculated the standard

deviation (SDs) of the edge perturbations of all GBM samples and

identified the top 60000 edges with high SDs. Taking the

intersection of two parts, we finally obtained the GBM sample

matrix with 21754 feature edges containing 4402 genes. By using R

packet “ConsensusClusterPlus”, the clustering analysis was carried

out based on these feature edges. The clustering distance was

Euclidean and the clustering algorithm was PAM. One thousand

repetitions were conducted to guarantee the stability of the

cluster outcomes.

To verify the clustering performance of edge perturbation, we

repeated the same procedure in a validation cohort (CGGA-

mRNA-array_301). The in-group proportion (IGP) of each

cluster was calculated to evaluate the consistency between clusters

derived from two independent cohorts (13). A larger IGP value

indicates a higher consistency between clusters. Given that the

transcriptome data of TCGA cohort and CGGA-mRNA_array_301

cohort were generated in different ways, which were RNA-seq and

microarray, respectively, we normalized the edge-perturbation value

to Z-score before IGP analysis. The IGP analysis was performed by

using R packages “clusterRepro”.
Characteristic analysis of edge
perturbation-based clusters

In order to explore the heterogeneity characteristic among

edge perturbation-based clusters, we obtained multidimensional

characteristic parameters of GBM samples of TCGA cohort from

relevant published studies. The tumor purity and ploidy

information of GBM samples were derived from a Pan-Cancer

analysis project of TCGA database (14). The stemness features of

GBM samples were evaluated via the mRNA expression-based

stemness index (mRNA-si) and the epigenetically regulated-

mRNAsi (EREG-mRNAsi), which were developed via the one-

class logistic regression (OCLR) machine learning algorithm

(15). Unsupervised transcriptome analysis additionally

identified four transcriptomic subtypes, referred to as classical,

mesenchymal, neural, and proneural, which were closely

correlated with genomic abnormalities (16). Three important

indicators, namely large-scale transition (LST) score, telomeric

allelic imbalance (TAI) score and loss of heterozygosity (LOT)

score, were used to assess the chromosomal instability levels
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(17). Homologous recombination deficiency (HRD) score and

neoantigen load were extracted from a previous study about the

immune landscape of cancers in TCGA database (18).

Additionally, some characteristic data was produced by

running corresponding algorithms or with the aid of online

tools. The infiltration levels of 22 types of immune cells were

measured via the CIBERSORT algorithm. The Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm was performed

online (http://tide.dfci.harvard.edu/) to assess the potential

response to immune checkpoint inhibitor (ICI) therapy.

Patients with lower TIDE scores were more likely to show

better responses to ICI therapy. By using R package

“Maftools”, we analyzed and visualized the somatic mutation

profiles among edge perturbation-based clusters. The tumor

mutation burden (TMB) was calculated as mutations per

megabase (mut/Mb). The PreMSIm algorithm (19) was used

to obtain the microsatellite instability (MSI) status of GBM

samples, which were categorized as MSI-High (MSI-H), MSI-

Low (MSI-L) and microsatellite stability (MSS). By using the

GISTIC2.0 model on GenePattern (https://cloud.genepattern.

org/gp/pages/index.jsf), we compared the copy number

variation (CNV) frequency and presented the distribution of

CNV regions among edge perturbation-based clusters.
Cluster-specific pathway enrichment
analysis

By using the Z-score method, we normalized the EPM of

GBM samples to a matrix with a mean of zero for each row to zero

and a variance of one. Then, we performed the following steps to

screen genes used for pathway enrichment analysis. First, the

normalized feature edges were clustered hierarchically by the

complete linkage method. The number of groups was set to 100,

and the groups with less than 30 feature edges were filtered out.

Second, we calculated the percentage of the feature edges whose

absolute value of perturbation mean was greater than 0.5 in all

feature edges in each retained group. Finally, the group with a

percentage greater than 0.7 was a characteristic group of edge

perturbation-based cluster. All the genes contained in the

corresponding feature edges of the characteristic groups were

used for pathway enrichment analysis, which was performed on

Metascape (http://metascape.org). We retained the KEGG and

Reactome pathways with P value less than 0.01.
Constructing the sample-specific
perturbation of gene interaction score

By using the R package “limma”, the pairwise comparison

was performed among edge perturbation-based clusters to

identify the hub differently expressed genes (DEGs). The

intersection of DEGs was utilized for subsequent univariate
Frontiers in Immunology 04
Cox regression analysis. Genes with P value less than 0.05

were regarded as the prognostic genes and were incorporated

into the least absolute shrinkage and selection operator (LASSO)

Cox regression by using the R package “glmnet”. The SPGIScore

was consequently constructed by selecting the optimal penalty

parameter l correlated with the minimum 10-fold cross-

validation. The calculation formula of SPGIScore is shown

below:

SPGIScore =on
i=1Coefi*xi

where xi and Coefi represent the expression level of each selected

gene and corresponding coefficient, respectively. The median

SPGIScore was used as the cut-off value for the high/low-

SPGIScore grouping. The prognostic value of SPGIScore was

tested in multiple cohorts of GBM samples.
Cell lines and tissue samples

The normal human astrocyte HA1800 cell line (HA) and

human GBM U87, A172, LN229, U251 and U373 cell lines were

purchased from Cell Bank of the Chinese Academy of Sciences.

The cells were cultured in DMEM medium (Corning, USA)

containing 1% penicillin/streptomycin (Gibco, USA), and 10%

fetal bovine serum (Gibco, USA), at a condition of 37°C with 5%

CO2. Fifteen clinical samples from GBM patients were collected

from July 2020 to October 2021 at the Neurosurgery Department

of Wuhan Union Hospital. In addition, ten cases of normal brain

tissues (resected from surgery in patients with acute traumatic

brain injury) were collected as the control group. The GBM

tissues and non-tumor brain tissues (NBT) obtained from the

patients were immediately frozen into the liquid nitrogen,

followed by storing at -80°C before further analysis. This study

was approved by the Ethics Committee of the hospital, and

written informed consent was obtained from each patient.
Quantitative real-time polymerase chain
reaction (qRT-PCR) and
immunohistochemistry (IHC)

The total RNAs were extracted by TRIZOL reagent

(Ambion, USA) from the tissues and cells. cDNA was

synthesized by reverse transcription using HiScript® III RT

SuperMix for qPCR (+gDNA wiper) (Vazyme, China) as the

manufacturer’s instruction. The qRT-PCR was carried out by

applying AceQ® qPCR SYBR Green Master Mix (Vazyme,

China). All expression data was normalized to b-actin as an

internal control using the 2–DDCt method. The experiments were

independently repeated at least three times. All primers used

were chemically synthesized by GeneCreate Biological

Engineering Co. Ltd. (Wuhan, China). Specimen tissues were

formalin fixed, paraffin embedded and sectioned into 4-μm serial
frontiersin.org
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sections. The specimen slices were dewaxed, then hydrated and

boiled in citrate buffer (pH=6) for 8 minutes to recover the

antigen. Subsequently, the sections were treated to quench

endogenous peroxidase activity. Rabbit serum was used for

blocking non-specific binding. The slides were then stained

with primary antibody overnight at 4°C and secondary

antibodies were incubated for 1 h at room temperature.

Diaminobenzidine was applied before being counterstained

with hematoxylin. Finally, the samples were sealed, viewed,

and photographed by light microscope. The intensity of

positive staining of ANK1, GRN and SEMA6A in glioma and

non-tumor brain tissue sections were measured through

Image-Proplus 6.0 software. All the images were taken using

the same microscope and camera sets. The intensity of positive

staining in tissue sections was analyzed by average optic density per

stained area (mm2) (IOD/Area) for positive staining. Primers and

Antibodies can be found in Tables S2, S3, respectively.
Western blot

Protein was extracted from the human GBM cell line, U87.

Total proteins were extracted in RIPA Lysis Buffer (Beyotime,

China) with protease inhibitor cocktail (Beyotime, China). BCA

assays (Beyotime, China) were utilized to quantify all proteins.

20 mg protein samples were separated onto 10% SDS-PAGE,

transferred to PVDFmembrane (Millipore, France) and revealed

with ECL (EpiZyme, China). The blots were incubated with

primary antibodies against ANK1 (Cloud-Clone Corp, USA),

GRN (ABclonal, China), SEMA6A (CUSABIO, China), and

GAPDH (ABclonal, China). The secondary antibodies used

were HRP-conjugated anti-rabbit (ABclonal, China) antibodies.
Cell transfection assays

Control siRNA, CRNDE siRNA and GRN siRNA were

purchased from Genecreate Company (Genecreate, China).

The sequences of siRNAs for the indicated target genes can be

found in Table S4. ANK1 pcDNA3.1 vector (ANK1), SEMA6A

pcDNA3.1 vector (SEMA6A) and empty vector (Vector) were

subcloned into the vector pcDNA3.1 (Genecreate, China). U87

cells were transfected using lipofectamine 2000 (ThermoFisher,

USA) according to the manufacturer’s protocols. qRT-PCR and

western blot were performed at 48–72h later to assess the

transfection efficiency.
CCK8 assay and transwell assay

Cell Couting Kit-8 (CCK8, Biosharp, China) was utilized to

perform CCK8 assay. Cells to be examined were seeded into 96-
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well plates with 4000 cells per well. 10mL CCK8 reagents were

added into the wells. The whole process needs to avoid light.

Then, these 96-well plates were incubated at 37°C and 5% CO2

for 2 h. Finally, the optical densities of the wells were read on a

microplate reader at 450 nm. The experiments were performed

in triplicate.

Transwell migration and invasion assays were carried out

with transwell chambers (8.0mm pore size), which were pre-

coated with (for invasion assay) or without (for migration assay)

50 mL matrigel (Conring, USA). Briefly, transwell chambers were

placed into the 24-well culture plate, the chamber was called the

upper chamber, and the culture plate was called the lower

chamber. 10^4 cells were resuspended in 100 mL serum-free

medium and seeded into the upper chamber, and 700 mL
complete-medium supplemented with 20% FBS was added

into the lower chamber. Then, these 24-well plates were

incubated at 37°C and 5% CO2 for 48 h. Afterwards, cells were

fixed with 4% paraformaldehyde for 20 min and stained with

0.1% crystal violet for 30 min. Five regions were randomly

selected in each chamber to count migrating or invading cells.

Photographs were taken in a light microscope and ImageJ

Software was used for cell counts. The experiments were

performed in triplicate.
Results

Constructing a background interaction
network based on Reactome database

The overall flow diagram of this study was presented in

Figure 1. Based on molecular interactions from Reactome

database, we constructed an original background interaction

network, comprising a total of 7360 nodes and 169710 edges.

Additionally, genes with zero expression over 70% samples in

TCGA cohort or GTEx cohort were excluded. After correcting

the plate batch effects, the GBM expression profiles contained

23890 genes and 155 samples, and the normal expression

profiles contained 23890 genes and 1152 samples. Then, we

filtered out 1166 nodes that were outside the 23890 genes and

constructed a new background interaction network, which was

composed of 6194 nodes and 142974 edges (Figure 2A).

Obviously, the background interaction network was closely

connected internally and most nodes had higher degrees.

According to the degree of nodes in the background

interaction network from large to small, the top 100 were

selected and visualized as a heatmap (Figure 2B). In

addition, the degree distribution of the background interaction

network was illustrated in Figure S1, and the determination

coefficient R2 was 0.674, indicating that this network was

relatively scale free.
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Stronger edge perturbation in
GBM samples

The perturbation of background interaction network

inevitably leads to the change of interaction. The perturbation

of gene pairs in the network can be reasonably used to reveal the

pathological environment of individuals in disease states. To

measure the perturbation degree of background interaction

network at an individual level, we constructed EPMs for GBM

and normal samples, respectively, based on their differences in

gene expression fluctuations. To present the difference in edge-

perturbation distribution between GBM and normal samples, we

then randomly selected 1000 features from all gene interaction

features. The edge-perturbation amplitudes of these 1000 features

were quantified as log2(|△es|+1), and were significantly different

between GBM and normal samples (Figure 2C). In addition, in
Frontiers in Immunology 06
order to visually present the difference in the edge-perturbation

distribution between GBM and normal samples, the mean edge-

perturbation amplitude of the 1000 selected features with a similar

log2 transformation was plotted in Figure 2D. The edge

perturbation of GBM samples (orange points) is stronger than

that of normal samples (blue points). These findings provided a

reliable basis for further analysis using EPM to explore the

heterogeneity of GBM samples.
Identification of four clusters of GBM
samples based on the edge-
perturbation matrix

A total of 21754 feature edges were selected from the EPM of

GBM samples, and formed a network with 4402 genes (Figure S2).
FIGURE 1

The flow diagram of the research process.
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https://doi.org/10.3389/fimmu.2022.944030
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2022.944030
This network was also a scale-free network, whose determination

coefficients R2 was 0.933 (Figure S3). Next, the clustering analysis

of GBM samples was carried out based on 21754 selected feature

edges. According to the relative change in the area under the CDF

curve and the consensus heatmap, k = 4 was picked as the most

optimal number of clusters (Figures 3A, B and Figure S4). As a

result, 155 GBM samples from TCGA cohort were categorized

into 4 clusters, namely cluster 1 (n=52), cluster 2 (n=49), cluster 3

(n=32) and cluster 4 (n=22). As the Kaplan-Meier curve showed,

there were significant survival differences among four clusters

(P=0.04, Figure 3C). Cluster 3 had the worst prognosis compared

with other three clusters, while cluster 2 and cluster 4 exhibited

relatively better prognosis.

To verify the clustering performance of edge perturbation,

we also used another independent cohort of GBM samples

(CGGA-mRNA-array_301) as the validation cohort. The IGP

values of each cluster were calculated to evaluate the consistency

within clusters. Results showed that there were relatively high

IGP values of cluster 2 (63.3%) and cluster 3 (86.4%), suggesting

that the sample clustering trend of the verification cohort may be

more consistent with cluster 2 and cluster 3 (Figure 3D).
Frontiers in Immunology 07
Correlation of edge perturbation-based
clusters with clinicopathological
characteristics and somatic mutations

We next explored the correlation between the clusters and

clinicopathological phenotypes. Fisher exact tests showed that

there were no significant differences in terms of age, gender, IDH

mutation status and MGMT promoter methylation status

among edge perturbation-based clusters (Figures 4A–D).

However, the distribution of transcriptomic subtypes differed

significantly (Figure 4E). Cluster 2 was mainly comprised of

Classical and Proneural subtypes. Mesenchymal subtype and

Neural subtype occupied a dominant portion of Cluster 3 and

Cluster 4, respectively. Further, we sought to assess the genomic

heterogeneity indicators among four clusters. Cluster 3, with the

worst prognosis, had a significantly lower tumor purity than the

other three clusters (Figure 4F). No significant differences in

genome ploidy were detected among four clusters (Figure 4G).

In previous studies, the mRNAsi was used for assessing the

degree of oncogenic dedifferentiation. Here, we obtained the

mRNAsi of GBM samples at transcript level and epigenetically
B

C D

A

FIGURE 2

The edge-perturbation of gene interactions in GBM and normal samples. (A) The filtered background interaction network with 6194 nodes and
142974 edges. (B) The expression heatmap of nodes with top 100 degree in the background interaction network. (C) Comparing the edge-
perturbation of 1000 randomly selected features between GBM and normal samples. (D) A scatterplot showed the edge-perturbation
distribution of 1000 randomly selected features between GBM and normal samples.
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regulated level, and found that cluster 3 had lower mRNAsi and

EREG-mRNAsi (Figures 4H, I).

Previous studies have demonstrated that the somatic

mutations of key oncogenes or tumor-suppressor genes were

tightly correlated with the survival and therapeutic response of

cancer patients (20). Accordingly, we were particularly interested

in whether the edge perturbation-based clusters differed in

somatic mutations. Figure 5A showed the mutation distribution

of nine common genes with mutation frequencies in the top50 in

four clusters. In order to characterize the mutation proportion of

high-frequency mutated genes more granularly, we drew a line

chart of these nine genes, and easily observed that there were

noticeable differences among four clusters (Figure 5B).

Particularly, Cluster 4 had the highest mutation rate of
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epidermal growth factor receptor (EGFR). It has been

demonstrated that EGFR is one of the most frequently altered

genes in GBM, and the most common mutation type is the in-

frame deletion of exons 2-7 (EGFRvIII), which can reduce the

apoptosis and increase proliferation and invasiveness of GBM cells

(21–23). Cluster 3 had the highest mutation rate of TTN, whose

mutation was found to be correlated with increased TMB and

greater response to ICI therapy in patients with solid tumors (24).

However, the mutation ratios of MUC16, SRCAP, FBN2,

PAPPA2, REV3L, ABCA6 and ARID1A were all lowest in

cluster 3 compared with the other three clusters. The frequency

of CNV was also compared, whereas no significant difference was

found among edge perturbation-based clusters (Figure 5C). The

distributions of CNV regions were visualized in Figure 5D.
B

C
D

A

FIGURE 3

Unsupervised consensus clustering analysis identified four edge perturbation-based clusters of GBM samples in TCGA cohort. (A) Relative
change in area under CDF curve for k=2-6. (B) Consensus clustering matrix for the optimal cluster number (k=4). (C) Kaplan-Meier curve
showed the significant survival differences among edge perturbation-based clusters. (D) The IGP values of four edge perturbation-based clusters
were calculated in CGGA-mRNA_array_301 cohort to evaluate the consistency between two cohorts.
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Different tumor immune landscapes and
immunotherapeutic responses among
edge perturbation-based clusters

Currently, the clinical efficacy of immunotherapy in GBM

patients is far from satisfactory. Some patients have seen notable

response with immunotherapeutic intervention, whereas a

substantial proportion of patients have experienced small or

no clinical benefit with the same treatment (25, 26). The

heterogeneity of immune landscape is a major factor

complicating therapeutic options, as well as leading to different

outcomes. Thus, we sought to investigate the difference in tumor

immune landscape among edge perturbation-based clusters.

Immune cells are the crucial component of tumor

microenvironment. By using CIBERSORT algorithm, we found

that there were prominent differences in the distribution of most

immune cells among four clusters (Figure 6A and Figure S5).

The expression levels of most immune checkpoints, cytokines

and receptors also varied substantially across clusters

(Figure 6B). Especially, Cluster 2 was remarkably rich in
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innate immune cells, including naïve CD4+ T cells, follicular

helper T cells, activated NK cells, M0 macrophages and resting

mast cells, but exhibited lower infiltration of M2 macrophages,

which is the main immunosuppressive cell in immune

microenvironment of GBM. In addition, Cluster 2 had

significantly lower expression levels of immune checkpoints,

such as PD-1, PD-L1, PD-L2, CTLA-4, LAG-3, TIM-3 and

B7H3, and immunosuppressive cytokines or receptors,

including CCL2, CXCR4, IL1A and IL6. These may suggest

more active immune response and antitumor reaction in Cluster

2, which also matched a survival advantage of Cluster 2.

Conversely, an evident immunosuppressive landscape was

observed in Cluster 3 with low infiltrations of innate immune

cells, high infiltration of M2 macrophages, and high expression

levels of immune checkpoints, immunosuppressive cytokines,

and receptors. It could be reasoned that Cluster 3 was in a

stronger immunosuppressive microenvironment, which

contributed to tumor immune escape and dismal survival.

In addition to immunosuppressive microenvironment,

inherent immune escape, which means that tumor cells can
B

C D

E

F G H I

A

FIGURE 4

Phenotype heterogeneities among edge perturbation-based clusters. (A–E) The distributions of age (A), gender (B), IDH mutant status (C),
MGMT promoter methylation status (D) and transcriptomic subtypes (E) among edge perturbation-based clusters. (F–I) Comparison of tumor
purity (F), genome ploidy (G), mRNAsi (H) and EREG-mRNAsi (I) among edge perturbation-based clusters.
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mediate their own immune escape directly, also plays an

essential role in the process of escaping immune-mediated

killing. Tumor cell immunogenicity is well known as an

important aspect of inherent immune escape. Next, some

potential indicators were used to reflect the level of tumor

cell immunogenicity, including HRD score, LST score, LOH

score, SNV neoantigen load, Indel neoantigen load. As

Figures 6C–H illustrated, all HRD score, LST score and SNV

neoantigen load differed significantly among four clusters.

Particularly, Cluster 2 showed higher levels of HRD score,

LST score and SNV neoantigen load compared with clusters,

whereas Cluster 3 exhibited the opposite trend. These results

demonstrated that Cluster 3 might have a stronger inherent

immune escape ability.

Currently, immune checkpoint inhibitor (ICI) therapy has

undoubtedly been a very promising strategy of immunotherapy,
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which made a breakthrough in antitumor treatment. First, we

compared the TMB and the distribution of MSI status among

edge perturbation-based clusters (Figures 6I, J). No apparent

difference in TMB was observed. Interestingly, Cluster 3 and

Cluster 4 had a greater proportion of MSI-H status, which has

been validated as a positive indicator of stronger response to ICI

therapy (27). Consistent result was obtained by TIDE algorithm.

Cluster 3 and Cluster 4 exhibited lower TIDE scores, which also

represented a stronger response to ICI therapy (Figure 6K).

Further, subclass mapping analysis revealed that Cluster 3 was

more likely to respond to PD-1 inhibitor (Bonferroni corrected

P = 0.002) and CTLA-4 inhibitor (Bonferroni corrected P =

0.045), and Cluster 4 showed response to CTLA-4 inhibitor

(Bonferroni corrected P = 0.003; Figure 6L). These interesting

findings suggested that the edge perturbation-based clusters may

be informative for immunotherapeutic options to eliminate GBM.
B

C

D

A

FIGURE 5

Comprehensive analyses of genomic alterations among edge perturbation-based clusters. (A) The somatic mutation profiles showed the
mutation distribution of nine common genes with mutation frequencies in the top50 in all edge perturbation-based clusters. (B) A line chart
presented the difference in the mutation ratios of nine genes among edge perturbation-based clusters. (C) Comparison of CNV frequency
among edge perturbation-based clusters. (D) Copy number profiles for edge perturbation-based clusters showed gains and losses of copy
numbers of genes, which were placed based on their location on chromosomes, ranging from chromosome 1 to chromosome 22.
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Distinct pathway enrichments of edge
perturbation-based clusters

Clustering of 21754 feature edges of the GBM sample matrix

was visualized as a heatmap (Figure 7A). The distribution of
Frontiers in Immunology 11
color bars was not consistent in specific blocks at the same level,

representing that the perturbation patterns of specific feature

edges differed among edge perturbation-based clusters. The blue

color corresponds to a negative perturbation, and the red color

corresponds to a positive perturbation. Remarkably, most blocks
B C D

E F G H

I J K L

A

FIGURE 6

Analyses of tumor immune landscape and prediction of immunotherapeutic responses for edge perturbation-based clusters. (A) The infiltration
levels of 22 immune cells in different edge perturbation-based clusters. (B) The expression levels of immune checkpoints, cytokines, and
receptors in different edge perturbation-based clusters. (C–H) Comparison of potential indicators reflecting the immunogenicity of edge
perturbation-based clusters, including HRD score (C), LST score (D), TAI score (E), LOH score (F), SNV neoantigen load (G), and Indel
neoantigen load (H). (I, J) Comparison of TMB (I) and distribution of MSI status (J) among edge perturbation-based clusters. MSI-L, MSI-Low;
MSS, microsatellite stability; MSI-H, MSI-High. (K, L) Prediction of responses to immune checkpoint inhibitor (ICI) therapy for edge perturbation-
based clusters through TIDE algorithm (K) and Subclass mapping analysis (L). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, No
significance.
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were in the opposite perturbation directions between Cluster 2

and Cluster 3. This revealed that the disorder mechanisms of

Cluster 2 and Cluster 3 were in close agreement but in different

directions. This finding was also in corroboration with the

previous results that the performances of these two clusters

were opposite in multiple aspects.

Figure 7B showed the specific pathway enrichments of each

edge perturbation-based cluster. The pathway with the highest

enrichment in Cluster 1 was constitutive signaling by aberrant

PI3K in cancer, which is in the central position of the signaling

cascade affecting GBM progression (28). The enriched pathways

of Cluster 2 and Cluster 3 were highly overlapped, including

some immune-associated pathways, such as antigen processing:

ubiquitination and proteasome degradation, chemokine

signaling pathway, and interleukin-3, interleukin-5 and GM-

CSF signaling. This was in correspondence with our speculation

that the disorder mechanisms of Cluster 2 and Cluster 3 were
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similar but in different directions. The enriched pathways of

Cluster 4 were mainly correlated with cell cycle and genetic

information processing, such as G2/M transition, DNA repair,

processing of capped intron-containing pre-mRNA,

transcriptional regulation by TP53, DNA double-strand break

repair and cell cycle.
Constructing and verifying the sample-
specific perturbation of gene
interaction score

We sought to construct a SPGIScore with prognostic value.

First, the DEGs were screened out by pairwise comparison

among four edge perturbation-based clusters. The upset plot

showed the number of DEGs of each pairwise group and the

number of intersections of different combinations (Figure S6). A
B

A

FIGURE 7

Pathway enrichment analyses of edge perturbation-based clusters. (A) Clustering of the 21754 feature edges of the GBM sample matrix. The
dotted boxes represent the identified blocks with opposite trend between Cluster 2 and Cluster 3. (B) The specific pathway enrichments of edge
perturbation-based clusters.
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total of 1058 DEGs were selected as they were identified at least

in four pairwise comparisons. This was done in order to avoid

the selected DEGs that only differed from one cluster with the

other three clusters, respectively. By performing univariate Cox

regression analyses with the criterion of P< 0.05, eighty-one

prognostic DEGs were identified from 1058 DEGs. The forest

plot presented the top 20 prognostic DEGs according to the P

value from small to large (Figure S7). The LASSO regression was

then performed based on these eighty-one prognostic DEGs,

twelve of which stood out for the construction of SPGIScore

(Figures 8A–C). As shown in Figure 8D, SPGIScore was ranked

from low to high to show the correlation between SPGIScore and

clinicopathological features, edge perturbation-based clusters,

and expression levels of twelve hub DEGs, respectively. Next,

GBM patients were stratified into the high- and low-SPGI

groups using the median SPGIScore as the cut-off value. The

Kaplan-Meier curve suggested that patients in high-SPGI group

exhibited worse survival outcomes in TCGA cohort (Figure 8E),

CGGA-mRNAseq_325 cohort (Figure S8A) and Rembrandt

cohort (Figure S8E). A satisfactory prognosis predictive power

of SPGIScore was confirmed by the area under the receiver

operating characteristic (ROC) curve (AUC) for 1-, 3- and 5-

year overall survival, which were 0.821, 0.832 and 0.813 in the

TCGA cohort (Figure 8F), 0.591, 0.678 and 0.751 in the CGGA-

mRNAseq_325 cohort (Figure S8B), 0.568, 0.661 and 0.673 in

the Rembrandt cohort (Figure S8F). The distribution plot of

SPGIScore and survival status showed that the higher the risk

score, the more deaths of GBM patients (Figures 8G, H and

Figures S8C, D, G, H).
Expression levels and biological
functions of selected SPGIScore-related
genes in GBM

We detected the expression levels of four selected

SPGIScore-based genes (CRNDE, ANK1, GRN and SEMA6A)

in cell lines and tissue samples. As Figures 9A, B showed, the

transcript levels of CRNDE and GRN were both elevated in

human GBM cell lines and GBM tissues, while the transcript

levels of ANK1 and SEMA6A exhibited an overall downward

trend in human GBM cell lines and GBM tissues. As CRNDE is a

non-coding gene, only the protein levels of ANK1, GRN and

SEMA6A were qualitatively assessed via IHC staining. It could

be seen intuitively that compared with NBT, GRN was up-

regulated, but ANK1 and SEMA6A were down-regulated in

GBM tissues (Figure 9C).

Next, we used specific CRNDE-targeting and GRN-targeting

siRNAs to knockdown the expression levels of CRNDE and

GRN in U87 cells (Figure 10A). Meanwhile, we transiently

transfected overexpression plasmid of ANK1 and SEMA6A

into U87 cells, resulting in increased expression levels of
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ANK1 and SEMA6A, respectively (Figure 10B). Results of

CCK-8 assay and Transwell assay showed that CRNDE and

GRN knockdown suppressed the cell proliferation, migration

and invasion of U87 cells, and ANK1 and SEMA6A

overexpression also suppressed the cell proliferation, migration

and invasion of U87 cells in vitro (Figures 10C–G).
Discussion

Many studies have attempted to establish novel subtyping

methods for better understanding of cancer heterogeneity. Most

of these methods were based on gene expression, inevitably

leading to the instability results due to the variability of gene

expression profiles across time and condition. In this study, we

applied a more stable and reliable method, sample-specific edge

perturbation in the gene interaction network, to explore the

heterogeneity of GBM. We identified four clusters of GBM

samples. The heterogeneities among clusters were reflected in

lots of aspects, including prognosis, phenotypic changes, somatic

genomic alterations, immune landscapes, immunotherapeutic

responses, and enriched pathways. We also constructed a

SPGIScore based on the differential gene expression among

four clusters. The SPGIScore was confirmed to possess a

robust prognostic predictive ability. The expressions of genes

involved in the SPGIScore were also validated at the cellular and

tissue levels.

The application of network science to cancer genomics has

opened new avenues for the discovery and molecular

characterization of cancer subtypes (29). Developing network-

based methods is promising for disclosing the nature of GBM

heterogeneity. Previous investigators have done much

exploration in this area. For instance, Xu et al. developed the

weighted similarity network fusion (WSNF) method and

identified three GBM subtypes with significantly different

survival patterns and enriched pathways (30). Guo et al.

exploited CSPRV (cancer subtype prediction using RV2), a

method that incorporates multi-sources transcriptome

expression data and heterogeneous biological networks, to

successfully identify more clinically meaningful GBM subtypes

(31). Notably, these network-based methods targeted the gene

sets in a network as the main body and underestimated the

weight of interactions among genes. The sample-specific edge

perturbation method used in this study had an excellent

utilization of gene interaction information. In brief, this

method used the relative gene expression value to estimate the

perturbation of gene interactions, which further represented the

perturbation of interaction network (11). In our study, there was

a striking difference in the perturbation of interaction network

between GBM and normal samples, which confirmed that the

perturbation of interaction network was able to reflect the

individual health status. Moreover, variation among
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FIGURE 8

Construction of the sample-specific perturbation of gene interaction score (SPGIScore) in TCGA cohort. (A, B) The least absolute shrinkage and
selection operator (LASSO) regression was performed with the minimum criteria. (C) LASSO coefficients of 12 hub differentially expressed genes.
(D) A heatmap showed the correlation between SPGIScore and clinicopathological features, edge perturbation-based clusters, and expression
levels of 12 hub DEGs, respectively. (E) Kaplan-Meier curve of high- and low-SPGIScore subgroups. (F) ROC curve analysis of SPGIScore in
predicting 1-, 3- and 5-year OS. (G, H) The distribution plot of SPGIScore and survival status.
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FIGURE 9

Validation of the expression levels of selected SPGIScore-based genes. (A) Scatter plots of differential transcript levels between CRNDE, ANK1,
GRN and SEMA6A in GBM cell lines and normal human astrocytes cell lines (HA). (B) Scatter plots of differential transcript levels between
CRNDE, ANK1, GRN and SEMA6A in GBM and NBT. (C) Representative IHC staining images. GBM, glioblastoma; NBT, non-tumor brain tissues;
IOD/Area Integrated optical density per stained area. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and nsNo significance.
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FIGURE 10

The biological functions of selected SPGIScore-based genes in GBM. (A, B) Verification of knockdown efficiency of CRNDE and GRN, and
overexpression efficiency of ANK1 and SEMA6A in U87 cell line. (C–G) The biological functions of four selected SPGIScore-based genes on U87
cell line were verified by CCK-8 and Transwell assays. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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individuals in the perturbation degree of interaction network

was also instructive for understanding the heterogeneity of

GBM. Our study corroborated that the edge perturbation-

based method reached a satisfactory discrimination power to

multidimensional heterogeneities of GBM. It is especially

commendable that the edge perturbation-based method

exhibits potential value for predicting prognosis and

immunotherapeutic response, which may shed new light on

individualized diagnosis and therapies.

Undeniably, there is a long path ahead before the clinical

application of the edge perturbation-based method. The good

news is that the sequencing technology has shown a spurt of

development, and has gradually gained popularity. A ready-to-

use reprocessing tool for sequencing data will help clinicians

quickly and accurately assess the individual edge perturbation in

the gene interaction network. In addition, more related studies

on other cancer types are urgently needed.
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