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A B S T R A C T   

Erosion of piping components, e.g., elbows, is a hazardous phenomenon that frequently occurs 
due to sand flow with fluids during petroleum production. Early prediction of the sand’s erosion 
rate (ER) is essential for ensuring a safe flow process and material integrity. Some models have 
been applied to determine the ER of the sand in the literature. However, these models have been 
created based on specific data to require a model for application to wide-range data. Moreover, 
the previous models have not studied relationships between independent and dependent vari
ables. Thus, this research aims to use machine learning techniques, namely linear regression and 
decision tree (DT), to predict the ER robustly. The optimum model, the DT model, was evaluated 
using various trend analysis and statistical error analyses (SEA) techniques, namely the correla
tion coefficient (R). The evaluation results proved proper physical behavior for all independent 
variables, along with high accuracy and the DT model robustness. The proposed DT method can 
accurately predict the ER with R of 0.9975, 0.9911, 0.9761, and 0.9908, AAPRE of 5.0%, 6.27%, 
6.26%, and 5.5%, RMSE of 2.492E-05, 6.189E-05, 9.310E-05, and 5.339E-05, and STD of 13.44, 
6.66, 8.01, and 11.44 for the training, validation, testing, and whole datasets, respectively. 
Hence, this study delivers an effective, robust, accurate, and fast prediction tool for ER deter
mination, significantly saving the petroleum industry’s cost and time.   

1. Introduction 

Sand erosion is a critical dilemma in the petroleum industry. Erosion causes equipment damage, thereby producing environmental 
risks, decreasing the equipment lifespan, and increasing the maintenance cost of the equipment [1]. Therefore, it is necessary to predict 
erosion early before this issue becomes complicated and expensive. 

Some scholars have attempted to determine erosion using various approaches. Jordan [2] introduced a model to assess erosion 
using multiphase flow based on Shirazi’s [3] model. One limitation of these models is that they do not consider liquid holdup. A 
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Nomenclature 

ER erosion rate, mm/kg 
VSL superficial liquid velocity, m/s 
VSG superficial gas velocity, m/s 
D pipe diameter, m. 
dp particle size, μm 
μL liquid viscosity, (cP) 
CFD computational fluid dynamics 
DIM direct impingement model 
DT decision tree 
PVT pressure-volume-temperature 
PB physical behavior 
cP centipoise. 
SEA statistical error analyses 
TA trend analysis 
APRE average-percent-relative-error 
R correlation coefficient 
AAPRE average-absolute-percent-relative-error 
RMSE root-mean square-error 
Emax maximum-absolute-percent-relative-error 
SD Standard-deviation 
Emin minimum absolute-percent-relative-error  

Fig. 1. Flowchart of the proposed scheme.  
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computational-fluid-dynamics (CFD) method was utilized to obtain the sand’s erosion rate (ER). However, the CFD method has 
shortcomings: it uses only gas production systems [4]. Mohyaldinn et al. [5] created a model based on Salama’s [6] model to find ER. 
However, their model was used in pure gas and high and low gas-liquid ratio conditions. A random-forest regression model was utilized 
to obtain the erosion in the elbows. However, this method is limited in predicting specific liquid-dominant flow regimes [7]. A 
probability model was used to forecast ER in elbows under annular flow. However, the probability model cannot be used for other 
multiphase-flow patterns [8]. 

In the 2020s, the direct impingement model (DIM) was utilized to determine the ER, indicating that the model has the Salama [6] 
model’s simplicity and the DIM model’s accuracy [9]. Zhang and Xu [10] developed a least-squares-boosting model to determine the 
ER and applied it to single and multiphase-flow patterns. A Gaussian process regression was utilized to obtain the ER; however, the 
model has limitations. The model was based on specific datasets and had a relative error of approximately 20% [11]. Therefore, ER 
prediction models are required to obtain better accuracy and to improve the model performance using a wide range of datasets. 
Furthermore, previous models have not proved the proper physical behavior (PB). 

A decision tree (DT) is a non-parametric supervised learning technique applied for classification or regression in this study [12]. 
More details about the DT approach are discussed in the following subsection, i.e., 2.2 Decision tree method. The DT model has been 
successfully used in petroleum engineering applications. Almashan et al. [13] used the DT method to determine 
pressure-volume-temperature properties. The liquid holdup in the two-phase gas and liquid flow was determined using the DT method 
[14]. The multiphase flow parameters, namely pressure drop, were determined using the DT method [15]. Drilling fluid loss was 
predicted using the DT approach [16]. The DT method is used to find drilling lithology rocks by applying sonic data [17]. However, 
previous models utilized the DT method without studying the PB. Therefore, this study uses DT with trend analysis (TA) to show the 
PB. 

The novelty of this research lies in developing a DT model to determine the ER robustly and accurately. Therefore, datasets were 
gathered from various references to utilize a wide range to represent a robust model. The developed DT model was evaluated using 
various techniques to demonstrate a robust and accurate proposed method. The datasets were divided into three subsections, training, 
validation, and testing, for overcoming overfitting and underfitting issues. Several statistical error analyses (SEA), that is, the absolute- 
average-percentage-relative-error (AAPRE), correlation coefficient (R), average-percentage-relative-error (APRE), standard-deviation 
(SD), maximum-absolute-percent-relative-error (Emax), root-mean-square-error (RMSE), and minimum-absolute-percent-relative-error 
(Emin) have been used to assess and demonstrate the DT model’s accuracy. Moreover, TA can be utilized to assess the proposed model 
and to prove proper PB. 

2. Methodology 

This study was conducted following the stages demonstrated in Fig. 1. Initially, the datasets were gathered from different studies to 
obtain a wide range of datasets. Subsequently, the collected datasets were cleaned for use as actual datasets and to increase the models’ 
performance. Then, the cleaned datasets were used to apply regression learner to select the optimum algorithm to determine the sand’s 
erosion rate (ER). Then, the cleaned data were split to three subdivisions: testing, validation, and training to train the optimum al
gorithm: decision tree (DT) to determine the ER. The validation and training datasets were used to train and validate the model. The 
training and validation datasets were shuffled to ensure the model did not have any overfitting or underfitting. The testing dataset was 
used to compare all the models with the same dataset to make a fair comparison between the models. In addition, all datasets were 
computed to demonstrate the DT model’s performance. After dividing the datasets, the proposed DT model was optimized to determine 
the ER robustly and accurately. Trend analyses were performed to show the correct PB. After all independent variables followed the 
precise trends, the proposed DT model’s accuracy was checked using some SEA, namely RMSE and R. 

Table 1 
The gathered data’s statistical description.  

Parameter Pipe diameter 
(D), (m) 

Particle size 
(dp), (μm) 

Liquid viscosity 
(μL), (cP) 

Superficial liquid velocity 
(VSL), (m/s) 

Superficial gas velocity 
(VSG), (m/s) 

Erosion rate (ER), 
(mm/kg) 

Minimum 0.0254 20.00 0.00 0.00 3.50 3.7 × 10− 6 

Maximum 0.1016 550.00 10.00 6.20 222.00 0.26200 
Mean 0.0715 260.66 1.07 0.29 34.57 0.01289 
Standard Error 0.0012 6.00 0.10 0.04 1.67 0.00214 
Median 0.0762 300.00 1.00 0.04 27.00 0.00038 
Mode 0.0762 300.00 1.00 0.00 15.00 0.00146 
Standard 

Deviation 
0.0242 117.63 2.04 0.82 32.77 0.04203 

Sample 
Variance 

0.0006 13836.44 4.14 0.68 1073.83 0.00177 

Kurtosis − 0.6806 0.67 14.69 28.95 10.28 17.4033 
Skewness − 0.4687 0.49 3.94 5.23 3.05 4.15241 
Range 0.0762 530.00 10.00 6.20 218.50 0.26200  
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2.1. Data collection and pre-processing 

Collecting numerous data to build a model is time-consuming and difficult. However, in this study, 384 datasets were collected 
from various sources [4,7,18–26] to use wide data ranges. The ranges of the collected datasets are listed in Table 1. Table 2 shows 
samples of the collected datasets. Fig. 2(a–f) displays the histograms of the parameters for the gathered datasets. 

Poor quality data cause substantial problems in developing machine-learning models [27]. Therefore, data cleaning plays a crucial 
role, pre-empting the presence of duplicated and corrupt datasets to build the proposed models. Some of the collected datasets had 
different output values for the same input values because the experimental datasets were measured more than once without 
considering the average. Therefore, the average of the outputs for the same input values was determined to obtain one output for each 
input parameter. Subsequently, the outliers of the collected datasets were detected and removed using a box and whisker plots were 
clarified in detail [28]. The box and whisker plot was established by Tukey [29]. The box and whisker consist of some parameters, 
namely interquartile-range (IQR), as shown in Fig. 3. Any values less than the lower boundary or higher than the upper boundary can 
be the outliers [30]. 

After the outliers of the collected datasets were removed, the particle size and liquid viscosity were 300 μm and 1 cP (cP) for all 
datasets. The particle size and liquid viscosity were constant in the clean datasets; therefore, these parameters were removed from the 
clean datasets. 72% of the total collected datasets were removed because of many duplicated and corrupt datasets in the gathered 
datasets. The clean data comprised 106 datasets without duplicated and/or corrupt datasets. Statistical descriptions of the clean 
datasets are presented in Table 3. Some samples of the clean data are shown in Table 4. However, the histograms of the parameters for 
the clean datasets are demonstrated in Fig. 4(a–f). The various studies [4,7,18–26] considered pipe diameter, particle size, liquid 
viscosity, and superficial liquid and gas velocities as inputs to determine the erosion rate. In this study, the same input parameters are 
considered to predict the erosion rate; however, the particle size and liquid viscosity were constant in the clean datasets; therefore, 
these parameters were not used to predict the erosion rate. 

2.2. Machine learning techniques evaluation 

Different machine learning approaches were applied to determine the ER. The methods are decision tree with small leaf size, 
ensemble boosted trees, interactions linear regression, stepwise linear regression, simple linear regression, robust linear regression, 
support vector machine (SVM) with Gaussian kernel function and 1.7 kernel scale, ensemble bagged trees, decision tree with medium 
leaf size, SVM with Gaussian kernel function and 0.43 kernel scale, SVM with linear-kernel-function, squared-exponential Gaussian- 
process-regression (GPR), rational-quadratic-GPR, SVM with Gaussian-kernel-function and 6.9 kernel-scale, Matern 5/2 GPR, decision 
tree with large leaf size, exponential GPR, SVM with three kernels polynomial order, and SVM with two kernels polynomial order. The 
different machine-learning methods were validated. After that, all machine learning methods were compared using RMSE, coefficient- 
of-determination (R2), mean-square-error (MSE), and mean-absolute-error (MSE) to select which algorithm to use for determining the 
ER. The decision tree with a small leaf size and a minimum leaf size of 4 had the lowest error as the best model to obtain the ER. Then, 
the best model, the decision tree, was evaluated and studied in detail to accurately determine the ER with the proper relations between 
the independent variables and dependent variable to show the accurate PB and prove the robust model. 

2.3. Decision tree technique 

A decision tree (DT) can approximate discrete-valued target functions. The DT is expressed as a set of if-then rules [31]. It comprises 
parameters, including the root, decision, and leaf nodes, as shown in Fig. 5. In addition, the terms used in the DT method include 
splitting, subtree or branch, and pruning, which implies eliminating specific nodes, as shown in Fig. 5. Depending on the case used, a 
DT can be a regression or classification tree [32]. 

Decision trees categorize instances by arranging them in a bottom-up approach from the root to leaf nodes, indicating the cate
gorization of the instances. Each node implies testing an instance attribute, and each subtree descends from the node to one of the 

Table 2 
Samples of the gathered data.  

No. D, (m) dp, (μm) μL, (cP) VSL, (m/s) VSG, (m/s) ER, (mm/kg) 

1 0.0762 300 1 0.37 27.2 0.00037 
2 0.0762 300 1 0.55 27.4 0.000191 
3 0.0762 300 1 0.47 31.1 0.000242 
4 0.0762 300 1 0.46 49 0.000743 
5 0.0762 20 10 0.42 27.2 0.00000965 
6 0.0762 150 10 0.53 10.8 0.00000369 
7 0.0762 150 10 0.5 18.5 0.0000151 
8 0.0762 150 10 0.3 27.2 0.000146 
9 0.0762 300 10 0.44 11.2 0.0000145 
10 0.0762 300 10 0.36 18.2 0.0000708 
11 0.0762 300 10 0.29 27.3 0.000291 
12 0.0762 300 10 0.32 27.3 0.000281  
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possible values for this attribute. An instance can be categorized by beginning at the root node, checking the attribute identified by this 
node, and moving down the subtree corresponding to the attribute value in a specific example. This procedure is repeated for a subtree 
rooted at a new node [31]. 

The DT method is one of the most commonly applied techniques in prediction and has been used in different applications. 
Furthermore, the DT method is robust to noisy data [33,34]. It can automatically control missing values [35]. Another benefit of DT is 
that it effectively solves nonlinear problems [36]. The DT can use continuous and categorical variables as inputs to develop a model 
[37]. The DT technique can provide high performance [38]. 

Fig. 2. Histograms of the parameters (a) pipe diameter, (b) particle size, (c) liquid viscosity, (d) superficial liquid velocity (e) superficial gas ve
locity, and (f) erosion rate for the gathered datasets. 
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2.4. Trend analysis (TA) 

The purpose of conducting a trend analysis (TA) is to assess how well a model can handle uncertainty. It involves examining the 
connections between independent and dependent variables in the model. By identifying errors in the models, TA reveals unexpected 
relationships between these variables, highlighting the importance of demonstrating the models’ reliability. Additionally, TA helps 
identify and eliminate unnecessary components in the model structure [39]. Furthermore, TA has been used to identify significant links 
among observations, model inputs, and predictions, guiding the development of robust models [40]. Therefore, TA plays a crucial role 
in this study. 

In this investigation, a specific independent parameter is selected for analysis, while other parameters are held constant at their 
mean values [41–43]. The proposed model determines the values of these parameters by modifying the studied independent variables. 
Subsequently, graphs are plotted with the independent parameter values on the x-axis and the dependent parameter values on the 
y-axis. The objective is to ensure that the relationship between the independent and dependent variables follows the correct behavior 
(PB). The independent variables chosen for TA in this study are pipe diameter (D), (m), superficial liquid velocity (VSL), (m/s), and 
superficial gas velocity (VSG), (m/s). 

Fig. 3. The box and whisker plot.  

Table 3 
The clean data’s statistical description.  

Parameter D, (m) VSL, (m/s) VSG, (m/s) ER, (mm/kg) 

Minimum 0.0762 0.0000 11.000 7.3× 10− 5 

Maximum 0.1016 0.1630 41.500 0.00178 
Mean 0.0898 0.0744 27.052 0.00047 
Standard Error 0.0011 0.0046 0.664 3.0× 10− 5 

Median 0.1016 0.0555 27.000 0.00042 
Mode 0.1016 0.0400 36.000 0.00043 
Standard Deviation 0.0124 0.0542 7.739 0.00035 
Sample Variance 0.0002 0.0029 59.894 1.2× 10− 7 

Kurtosis − 1.9692 − 1.2534 − 0.806 2.39626 
Skewness − 0.1490 0.4176 − 0.100 1.60101 
Range 0.0254 0.1630 30.500 0.00171  

Table 4 
Samples of the clean data.  

No. D, (m) dp, (μm) μL, (cP) VSL, (m/s) VSG, (m/s) ER, (mm/kg) 

1 0.0762 300 1 0.02 15.2 0.000303 
2 0.0762 300 1 0.01 15.2 0.000305 
3 0.0762 300 1 0.01 15.2 0.000234 
4 0.0762 300 1 0.1 11 7.98E-05 
5 0.0762 300 1 0.09 27 0.00154 
6 0.1016 300 1 0.15 15 0.000102 
7 0.1016 300 1 0.1 22 0.000116 
8 0.1016 300 1 0.01 23 0.000375 
9 0.1016 300 1 0.01 21 0.000278 
10 0.1016 300 1 0.02 22 0.000181 
11 0.1016 300 1 0.02 22 0.00019 
12 0.1016 300 1 0.04 23 0.000256  
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2.5. Statistical error analysis (SEA) 

The SEA can be applied to present models’ accuracy. In this study, different SEA are used: namely, APRE, RMSE, R, AAPRE, and SD. 
The SEA’ equations are provided in the Supporting information. 

Fig. 4. Histograms of parameters (a) pipe diameter, (b) particle size, (c) liquid viscosity, (d) superficial liquid velocity (e) superficial gas velocity, 
and (f) erosion rate for clean datasets. 
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Fig. 5. Diagram of decision tree and its parameters and terms.  

Table 5 
Used parameters for machine learning methods.  

No. Model Model Type 

1 Decision tree with small leaf size Minimum-leaf-size: 4; Maximum: 105; Merge leaves: on; Prune: on; Split criterion: mse; Surrogate-decision- 
splits: off. 

2 Ensemble boosted trees Learning-rate: 0.1; Minimum-leaf-size: 8; Method: tree boosting with least squares (LS); Number-of-learners: 
30. 

3 Interactions linear regression Terms: interactions; Robust option: off. 
4 Stepwise linear regression Initial-terms: linear; Upper-bound-on-terms: interactions; Maximum-number-of-steps: 1000. 
5 Simple linear regression Robust option: off; Terms: linear. 
6 Robust linear regression Robust option: on; Terms: linear. 
7 SVM with Gaussian kernel function and 

1.7 kernel scale 
Kernel-function: Gaussian; Standardize: true; Kernel-scale: 1.7; Box-constraint: 3.9585e-04; Epsilon: 3.9585e- 
05. 

8 Ensemble bagged trees Number-of-learners: 30; Minimum-leaf-size: 8; Learning-rate: 1. 
9 Decision tree with medium leaf size Surrogate-decision-splits: off; Minimum parent: 24; Maximum splits: 105; Merge leaves: on; Prune: on; 

Minimum-leaf-size: 12. 
10 SVM with Gaussian kernel function and 

0.43 kernel scale 
Kernel-function: Gaussian; Standardize: true; Kernel-scale: 0.43; Box-constraint: 3.9585e-04; Epsilon: 
3.9585e-05. 

11 SVM with a linear kernel function Kernel-function: linear; Standardize: true; Kernel-scale: automatic; Box constraint: 3.9585e-04; Epsilon: 
3.9585e-05. 

12 Squared exponential Gaussian process 
regression (GPR) 

Basis-function: constant; Kernel-function: squared exponential; Signal-standard-deviation: automatic; Kernel- 
scale: automatic; Optimize-numeric-parameters: true; Standardize: true; Use-isotropic-kernel: true. 

13 Rational quadratic GPR Basis-function: constant; Signal-standard-deviation: automatic; Optimize-numeric-parameters: true; Sigma: 
automatic; Kernel-function: Rational-quadratic; Standardize: true; Use-isotropic-kernel: True; Kernel-scale: 
automatic. 

14 SVM with Gaussian kernel function and 
6.9 kernel scale 

Kernel-function: Gaussian; Box-constraint: 3.9585e-04; Epsilon: 3.9585e-05; Kernel-scale: 6.9; Standardize: 
true. 

15 Matern 5/2 GPR Basis-function: Constant; Kernel-function: Matern 5/2; Signal-standard-deviation: automatic; Optimize- 
numeric-parameters: true; Standardize: true; Use isotropic-kernel: true; Sigma: automatic; Kernel-scale: 
automatic. 

16 Decision tree with large leaf size Minimum-leaf-size: 36; Surrogate-decision-splits: Off; Minimum parent: 72; Maximum splits: 105; Merge 
leaves: on; Prune: on. 

17 Exponential GPR Basis-function: constant; Sigma: automatic; Kernel-function: exponential; Optimize-numeric-parameters: true; 
Use isotropic-kernel: true; Kernel-scale: automatic; Standardize: true; Signal-standard deviation: automatic. 

18 SVM with 3 kernel polynomial order Kernel-function: polynomial; Standardize: true; Kernel-scale: automatic; Box constraint: 3.9585e-04; Epsilon: 
3.9585e-05; Kernel polynomial order: 3. 

19 SVM with 2 kernel polynomial order Kernel-function: polynomial; Standardize: true; Kernel-scale: automatic; Box constraint: 3.9585e-04; Epsilon: 
3.9585e-05; Kernel polynomial order: 2.  
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3. Results and discussions 

3.1. Machine learning methods’ results 

Table 5 shows the hyperparameters for the different machine learning methods to obtain the ER: decision tree with small leaf size, 
ensemble boosted trees, interactions linear regression, stepwise linear regression, simple linear regression, robust linear regression, 
SVM with Gaussian kernel function and 1.7 kernel scale, ensemble bagged trees, decision tree with medium leaf size, SVM with 
Gaussian kernel function and 0.43 kernel scale, SVM with linear-kernel-function, squared exponential-Gaussian-process regression 
(GPR), rational-quadratic-GPR, SVM with Gaussian-kernel-function and 6.9 kernel scale, matern 5/2 GPR, decision tree with large leaf 
size, exponential GPR, SVM with three kernels polynomial order, and SVM with two kernels polynomial order. The regression learner 
in MATLAB was applied to obtain optimum hyperparameters of all models to determine the ER. 

After that, the different machine learning methods were evaluated using RMSE, R2, MSE, and MAE [44]. Then, the machine 
learning methods to determine the CTD are ranked based on the low RMSE and high R2, Table 6. The first rank model to determine the 
ER is the fine decision tree with RMSE of 0.000150 and R2 of 0.850, while the second rank model is the ensemble boosted trees with 
RMSE of 0.000152 and R2 of 0.850. The third rank model to obtain the ER is the interactions linear regression with RMSE of 0.000205 
and R2 of 0.730. The decision tree (DT) was chosen as the optimum ER model. Finally, the DR was evaluated to accurately determine 
the ER with the proper TA to demonstrate the proper relations between the independent and dependent variables and display the 
appropriate PB to prove the robust model. 

3.2. Decision tree model 

The proposed DT model was applied to determine the ER accurately and robustly using MATLAB software. The optimized pa
rameters for the DT model are presented in Table 7. In this study, the fitted binary DT for regression was successfully applied to 
determine the ER with high accuracy. Tree inputs, D, VSL, and VSG, were used to predict the ER. Merge leaves “on” indicates that the 
models obtained from the similar parent node can merge and acquire a sum. The optimal sequence of pruned branches was subse
quently obtained; however, it cannot prune the regression tree [45]. The algorithm that chooses the best predictor uses a separate 
predictor to maximize the split-criterion gain over all possible predictor splits [46]. Prune “on” implies that the model can grow the 

Table 6 
Evaluation of the machine learning methods.  

Rank Model RMSE R2 MSE MAE 

1 Decision tree with small leaf size 0.000150 0.850 2.25E-08 8.48E-05 
2 Ensemble boosted trees 0.000152 0.850 2.31E-08 9.30E-05 
3 Interactions linear regression 0.000205 0.730 4.19E-08 1.38E-04 
4 Stepwise linear regression 0.000206 0.720 4.25E-08 1.38E-04 
5 Simple linear regression 0.000223 0.670 4.98E-08 1.69E-04 
6 Robust linear regression 0.000224 0.670 5.00E-08 1.69E-04 
7 SVM with Gaussian kernel function and 1.7 kernel scale 0.000234 0.640 5.46E-08 1.72E-04 
8 Ensemble bagged trees 0.000240 0.620 5.78E-08 1.69E-04 
9 Decision tree with medium leaf size 0.000246 0.600 6.05E-08 1.67E-04 
10 SVM with Gaussian kernel function and 0.43 kernel scale 0.000266 0.540 7.08E-08 2.17E-04 
11 SVM with a linear kernel function 0.000275 0.500 7.59E-08 2.05E-04 
12 Squared exponential Gaussian process regression (GPR) 0.000295 0.430 8.68E-08 2.22E-04 
13 Rational quadratic GPR 0.000295 0.430 8.68E-08 2.22E-04 
14 SVM with Gaussian kernel function and 6.9 kernel scale 0.000299 0.410 8.97E-08 2.43E-04 
15 Matern 5/2 GPR 0.000312 0.360 9.74E-08 2.40E-04 
16 Decision tree with large leaf size 0.000322 0.320 1.03E-07 2.26E-04 
17 Exponential GPR 0.000391 0.000 1.53E-07 3.17E-04 
18 SVM with 3 kernel polynomial order 0.000797 − 3.160 6.35E-07 6.57E-04 
19 SVM with 2 kernel polynomial order 0.000846 − 3.690 7.16E-07 6.71E-04  

Table 7 
Used parameters for the DT model.  

Parameter Optimum value 

Method Tree 
Type regression 
Minimum number of branch node observations 2 
Min. leaf 1 
Merge leaves on 
Prune on 
Split criterion mse 
Prune criterion mse 
Quadratic error tolerance 1e-6  

F.S. Alakbari et al.                                                                                                                                                                                                    



Heliyon 9 (2023) e17639

10

regression tree and find the optimum sequence of pruned branches; however, it should not prune the regression tree [45–47]. 
Consequently, the proposed DT with these optimized parameters could accurately predict the ER. After the model was developed, it 

was evaluated using different methods, which will be discussed in the next section. The optimum hyperparameters of DT were chosen 
by applying the grid search method. The grid search is a process that systematically searches through a specified subset of the 
hyperparameter space of the targeted algorithm [48]. In the grid search technique, each parameter changes in their types or values 
while keeping the other fixed. After that, the DT model’s accuracy and the proper trend analysis were checked. Finally, the best 
hyperparameters were chosen for the highest accuracy with the proper trend analysis, as shown in Table 7. 

3.3. Decision tree model evaluation 

The proposed DT model was evaluated using various procedures. The data was split into three subdivisions to solve overfitting and 
underfitting problems by checking SEA for the three subdivisions. Statistical-error analyses, namely RMSE, STD, R, and plots (i.e., error 
histograms), were achieved to represent high accuracy of the DT model for the training, validation, testing, and whole datasets. The 
closed SEA values of the three subdivisions indicate no overfitting or underfitting. However, the different SEA values show overfitting 
or underfitting issues. TA was performed to show proper PB. 

3.3.1. Statistical error analysis 
The different SEA, APRE, AAPRE, Emin, Emax, RMSE, STD, and R of the proposed DT model for all datasets, are shown in Table 8. The 

leading indicators in this study were AAPRE and R. The training, validation, testing, and whole datasets had AAPRE of 5%, 6.27%, 

Table 8 
SEA of the DT model.  

Datasets APRE (%) AAPRE (%) Emax (%) Emin (%) RMSE R STD 

Training 5.00 5.00 72.73 0 2.492E-05 0.9975 13.44 
Validation 6.27 6.27 24.72 0 6.189E-05 0.9911 6.66 
Testing 6.26 6.26 24.72 0 9.310E-05 0.9761 8.01 
All 5.50 5.50 72.73 0 5.339E-05 0.9908 11.44  

Fig. 6. (a). Cross-plot of the erosion rate for the training dataset. (b). Cross-plot of the erosion rate for the validation dataset. (c). Cross-plot of the 
erosion rate for the testing dataset. (d). Cross-plot of the erosion rate for the whole datasets. 
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6.26%, and 5.50%, and R values of 0.9975, 0.9911, 0.9761, and 0.9908, respectively. Therefore, the training, validation, testing, and 
whole datasets have a low error, that is, AAPRE, proving that the DT model can accurately obtain the ER. In addition, all datasets have 
the closest AAPRE and R, confirming the robustness of the proposed DT model without any overfitting or underfitting problems. 

3.3.2. Cross-plotting 
Fig. 6(a–d) present the cross-plotting of the different datasets: training, validation, testing, and whole data. As shown in Fig. 6 (a), 

the cross-plotting of the training dataset implies that most data points are in a straight line, proving the accurate DT model for the 
training dataset. The cross-plotting for the validation, testing, and whole datasets are shown in Fig. 6(b–d). Most data points are in a 

Fig. 7. Measured/predicted erosion rate (mm/kg) for training, validation, and testing datasets.  
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straight line for the validation, testing, and entire datasets, Fig. 6(b–d), indicating the accuracy of the proposed DT model in deter
mining the ER for these datasets. Furthermore, Fig. 6(a–d) show an excellent match between the actual and predicted values. In 
addition, the actual or measured and predicted ER data points for the different datasets, that are, training, validation, and testing 
datasets, are displayed in Fig. 7, demonstrating that the actual ER data points match the predicted ER data points for the different 
datasets, that are, training, validation, and testing datasets. The cross-plotting in Fig. 6(a–d) and measured/predicted ER plots in Fig. 7 
prove that the DT model can robustly determine the ER without any over-fitting or under-fitting problems. 

Fig. 8. (a). Histogram of erosion rate errors for the training dataset. (b). Histogram of erosion rate errors for the validation dataset. (c). Histogram of 
erosion rate errors for the testing dataset. (d). Histogram of erosion rate errors for the whole dataset. 

Fig. 9. Impact of pipe diameter on erosion rate.  
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3.3.3. Error histograms 
The absolute percent relative error histograms for the different datasets are shown in Fig. 8(a–d). As shown in Fig. 8(a–d), the 

training, validation, testing, and whole datasets have almost zero absolute percent relative error, indicating that the DT model has high 
accuracy in forecasting the ER for the training, validation, testing, and whole datasets. 

3.3.4. Trend analysis (TA) results 
Figs. 9–11 display the TA for the D, VSG, and VSL. The effects of the D, VSG, and VSL on the ER are represented. As demonstrated in 

Fig. 9, increasing the D decreases the ER and shows the proper relations between the D and ER. McLaury et al. [49] confirmed that 
improving the D reduced the ER. Two points of the D are shown in Fig. 9 because only two measured points have the same VSG and VSL. 
Therefore, the D TA was studied for only two points and compared with the measured values. Fig. 10 presents a VSG TA, in which the ER 
is increased by increasing the VSG. Growth in gas velocity exacerbates the ER [50]. In addition, the measured values showed that 
increasing VSG increases the ER, Fig. 10. The TA of the VSL is shown in Fig. 11. With an increase in the VSL, there is an increase in the ER, 
indicating a proper relationship to conform to the appropriate PB [51]. revealed that the rising liquid velocity increased the ER. 
Furthermore, the measured values displayed that the ER is increased by increasing the VSL, Fig. 11. 

Consequently, the TA study implies the correct relations between the independent variables, D, VSG, VSL, and the ER, to prove that 
the DT model conforms to the proper PB. 

4. Conclusion 

Different machine learning methods are used to determine the erosion rate (ER) based on D, VSG, and VSL using published datasets 
that were gathered from different references to use wide ranges of data. The various machine learning methods were evaluated and 
compared to select the best model to determine the ER. The optimum model is the decision tree (DT). The proposed DT model was 
assessed using various methods. To overcome overfitting or underfitting issues, the gathered datasets were split into three subdivisions, 
training, validation, and testing datasets. The entire dataset was computed using the proposed model to determine its accuracy. Trend 

Fig. 10. Impact of superficial gas velocity on erosion rate.  

Fig. 11. Impact of superficial liquid velocity on erosion rate.  
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analyses were performed to confirm the correct PB. Different SEA, namely RMSE and R, were performed to determine the accuracy of 
the proposed DT model for predicting the ER. The proposed DT model predicted the ER accurately with R of 0.9975, 0.9911, 0.9761, 
and 0.9908 and AAPRE of 5.0%, 6.27%, 6.26%, and 5.5% for the training, validation, testing, and whole data. The closest leading 
indicators of the DT model, R, and AAPRE, for training, validation, testing, and entire datasets, indicating the absence of under-fitting 
or over-fitting problems, demonstrating the robustness of the proposed model. The cross-plotting of training, validation, testing, and 
whole data also explains the high accuracy of the DT model. The relations between all independent variables (i.e., D, VSG, and VSL) and 
the dependent variable (i.e., the ER) were demonstrated in this research using the TA. The high accuracy of the proposed model was 
shown by drawing histograms of absolute percent relative error for the training, validation, testing, and whole datasets. 

5. Limitations 

The proposed DT model was built based on three independent variables: D, VSG, and VSL with their ranges D of (0.0762–0.1016) m, 
VSG of (11–41.5) m/s, VSL of (0–0.1630) m/s; however, this model has the high accuracy in determining the erosion rate (ER) of the 
sand. 
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