
Computational and Structural Biotechnology Journal 20 (2022) 5218–5225
journal homepage: www.elsevier .com/locate /csbj
Revealing a novel contributing landscape of ferroptosis-related genes in
Parkinson’s disease
https://doi.org/10.1016/j.csbj.2022.09.018
2001-0370/� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: 87 #, Xiangya Road, Changsha, Hunan, China.
E-mail address: lebin001@csu.edu.cn (B. Li).
Xingxing Jian a,b, Guihu Zhao a, He Chen c, Yanhui Wang b, Jinchen Li a,b,d,e, Lu Xie a,b,f, Bin Li a,⇑
aNational Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
bBioinformatics Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
cQingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong 266034, China
dCenter for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
eDepartment of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
f Instutute for Geonome and Bioinformatics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC)
and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
a r t i c l e i n f o

Article history:
Received 1 April 2022
Received in revised form 9 September 2022
Accepted 9 September 2022
Available online 14 September 2022

Keywords:
Parkinson’s disease (PD)
Substantia nigra
Ferroptosis
Transcriptomics
a b s t r a c t

Transcriptomics studies have yielded great insights into disease processes by detecting differentially
expressed genes (DEGs). In this study, due to the high heritability of Parkinson’s disease (PD), we per-
formed bioinformatics analyses on nine transcriptomic datasets regarding substantia nigra from Gene
Expression Omnibus database, including seven microarray datasets and two next-generation sequencing
datasets. As a result, between age-matched PD patients and normal control, we identified 630 DEGs, of
which 22 hub DEGs involved in PD or ferroptosis were found to be associated with each other at the tran-
scriptional level and protein-protein interaction network, suggesting their high correlations among these
hub genes. Moreover, 16 DEGs were singled out due to their comparable AUC (>0.6) in random forest
classifiers, including seven PD-related genes (MAP4K4, LRP10, UCHL1, PAM, RIT2, SNCA, GCH1) and nine
ferroptosis-related genes (GCH1, DDIT4, RGS4, MAPK9, CAV1, RELA, DUSP1, ATP6V1G2, ATF4 and ISCU).
Furthermore, to probe the potential of those hub genes in predicting the PD progression and survival,
we constructed a Cox model featured by an eight-gene signature, including four PD-related genes
(SNCA, UCHL1, LRP10, and GCH1) and four ferroptosis-related genes (DDIT4, RGS4, RELA, and CAV1), and
validated it successful in an independent dataset, indicating that it would be an effective tool for clinical
research to predict PD progression. In conclusion, ferroptosis-related DEGs identified in this study were
closely correlated with the known PD-related genes, revealing the involvement of ferroptosis in the
development of PD. This study presented the potential of several ferroptosis-related genes as novel clin-
ical biomarkers for PD.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Parkinson’s disease (PD) is the second most common age-
depended neurodegenerative disease [1,2]. The prevalence of PD
increases with age, and reaches up to 5 % in individuals older than
85 years [3]. With an aging society around the world, the number
of PD patients is expected to increase more than 1.5 times by 2030,
creating a huge social burden [4]. Clinically, PD patients are often
characterized by several motor syndromes traits and/or non-
motor symptoms traits. That is, resting tremor, rigidity, bradykine-
sia, and postural instability are the typical motor syndromes, while
dementia, depression and sleep disorders belong to non-motor
symptoms [1]. Pathological hallmarks of PD include the loss or
pathological changes of dopamine neurons in the substantia nigra
pars compacta associating with the nigrostriatal pathway [5].

In the recent 20 years, with the development of high-
throughput sequencing technologies, many rare variants and can-
didate genes have been reported to contribute familial and spo-
radic cases of PD [6,7]. Although several environmental factors
have also been identified to contribute to the development of PD
[8], more than 100 loci associated with PD risk were screened
out at the genome-wide significance level by genome-wide associ-
ation studies (GWAS), which could be the potential risk factors and
biomarkers for PD [8,9]. Our team have replicated more than nine
PD-related genes in Chinese population [10]. Furthermore, we have
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also reported gene expression of PD associated genes and age at
onset features for the first time [11].

As a newly discovered mode of cell death different from apop-
tosis and other known cell programmed death pathways, ferropto-
sis is characterized by iron-dependent lipid peroxidation
accumulation [12,13]. Simultaneously, several PD features have
been well established as known key features and/or triggers in
the ferroptosis cell death pathway, such as iron overload [14],
reduced GSH levels [15], elevated lipid peroxidation [16], DJ-1
depletion [17], XCT downregulation [18], and CoQ10 reduction
[19]. This strongly implicated that ferroptosis plays a role in the
neurodegeneration observed in PD [20]. Indeed, PARK7 and PLA2G6,
two known PD-deleterious genes linked to autosomal-recessive
early onset PD, were reported to be associated with the regulation
of ferroptosis, in which PARK7 was identified to act as a ferroptosis
inhibitor by preserving the transsulfuration pathway [17] while
PLA2G6 could be strongly associated with increased lipid peroxida-
tion levels [21]. That indicated that there were some ferroptosis-
related genes in the occurrence and development of PD. However,
it remains unclear which ferroptosis-related genes are involved in
the pathogenesis of PD.

Genome-wide expression profiling, or transcriptomics is a novel
powerful approach for generation of new research method for the
pathogenesis of PD [22]. High throughput transcriptomics study is
a great tool for detecting DEGs from two or more samples [23]. This
will be very helpful to improve the detection of the pathogenic
genes and identify functional pathways among DEGs to reveal bio-
logical themes contributing to the disease process [22]. Due to high
heritability in PD, transcriptomics study has the potential to reveal
significant insights into disease processes.

The integration of the data from different studies would
increase the statistical power when prioritizing disease related
genes [24]. In order to more accurately study the important role
of gene transcription in the pathogenesis of PD, we would integrate
previously published transcriptomic data based on the substantia
nigra of the brain, and re-analyze the differentially expressed
genes (DEGs), with matching the basic situation of patients and
controls in this study. This study provides a novel comprehensive
landscape of ferroptosis-related genes for clinical diagnosis and
therapy for PD.
2. Materials and methods

2.1. Data source and processing

We searched the Gene Expression Omnibus (GEO, https://www.
ncbi.nlm.nih.gov/geo) with keywords ‘‘Parkinson” and ‘‘substantia
nigra”. A total of nine transcriptomic datasets were obtained and
presented in Table 1 and Table S1, including microarray and
next-generation sequencing (NGS). Herein, the raw ‘‘CEL” files of
those microarray datasets, i.e. GSE7621, GSE20141, GSE49036,
GSE20164, GSE20163, GSE20292 and GSE34865, were down-
Table 1
The datasets used in this study.

GEO datasets Platform Method

GSE7621 GPL570 microarray
GSE20141 GPL570 microarray
GSE49036 GPL570 microarray
GSE20164 GPL96 microarray
GSE20163 GPL96 microarray
GSE20292 GPL96 microarray
GSE34865 GPL517 microarray
GSE166024 GPL20301 NGS
GSE114517 GPL18573 NGS
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loaded, normalized, and log2 transform with R package affy (ver-
sion 1.68.0). Then, we merged those datasets sequenced by
microarray to remove batch effect with R package sva (version
3.38.0), including 66 Parkinson’s disease (PD) samples and 114
normal control (NC) samples. Similarly, the two NGS datasets, i.e.
GSE166024 and GSE114517, were also merged to remove batch
effect with R package sva, including 31 PD samples and 12 NC sam-
ples. Those PD-related genes were collected, including PD-
deleterious genes from a recognized systematic review [25] and
PD-risk genes from iPDGC Locus Browser [26] integrating with
three GWAS researches.

2.2. Identification of DEGs and enrichment analysis

The differentially expressed genes (DEGs) between PD samples
and NC samples were identified by using R package limma (version
3.46.0). We set thresholds at the P value of less than 0.05 and the
absolute log2 fold change (log2FC) of greater than 0.4. Subse-
quently, the down-regulated DEGs and up-regulated DEGs were
separately applied for GO enrichment and KEGG enrichment by
using R package clusterProfiler (version 3.18.1).

2.3. Correlation analysis of DEGs and PPI network analysis

The Pearson’s correlations between DEGs were calculated and
visualized by R package Corrplot (version 0.92). In addition, the
STRING database (https://string-db.org/) was downloaded and
used to filter the protein–protein interactions (PPI) among DEGs.
Then, the Cytoscape software (version 3.6.1) were used to visualize
the PPI network. Therein, nodes represented genes, and their sizes
denoted node degree in the network. Edges stood for the interac-
tions between genes, and their sizes reflected the degree of
relationships.

2.4. Construction of classification model

The R package randomForest (version 4.6–14) was applied to
construct classification models, in which we set the parameters
of ntree and mtry at 500 and 4, respectively. Here, we randomly
selected 80 % samples as training set, and the rest 20 % samples
as test set. The receiver operating characteristic (ROC) curves were
plotted by R package pROC (version 1.18.0), and the area under
curves (AUC) were used to evaluate the predictive power of
classifiers.

2.5. Construction of prognostic model

Those important DEGs mentioned above were considered as
features to perform multivariable Cox proportional hazards regres-
sion model by R package survival (version 3.2–13). Therein,
Kaplan–Meier survival curve was implemented by R package surv-
miner (version 0.4.9) and log-rank test was used to determine the
significance. The risk score was fitted as follows:
Tissue PD samples NC samples

substantia nigra 16 9
substantia nigra 10 8
substantia nigra 15 8
substantia nigra 6 5
substantia nigra 8 9
substantia nigra 11 18
substantia nigra 0 57
substantia nigra 14 0
substantia nigra 17 12

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
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Risk score ¼
X8

i¼1

Coefi � Featurei ¼
X8

i¼1

lnHRi � Featurei

in which the i denotes the i-th feature, and the Feature and Coef rep-
resent its expressed value and coefficient in the fitted Cox model,
respectively. And, the Coef is equal to the natural logarithm of haz-
ard ratio (HR).

In dataset, the median of risk score was applied to stratify sam-
ples into high- and low-risk groups. And, between high- and low-
risk groups, univariable Cox proportional hazards regression anal-
ysis was applied to determine the HR, 95 % confidence interval (CI),
and P value.
3. Results

3.1. Identification of differentially expressed genes in PD

As shown in Table 1, seven datasets sequenced by microarray
were obtained from GEO and merged with the removal of batch
effect, including 66 PD samples and 114 normal control (NC) sam-
ples. When ignoring the effect of samples’ age, all samples derived
from PD and NC groups were applied to perform differential anal-
ysis. However, only 182 DEGs were identified (Table S2A). As the
age of most samples used in this study is not available, to accu-
rately identify DEGs, the age-matched PD and NC samples were
singled out, including 21 PD samples and 21 NC samples. Mean-
Fig. 1. Identification and analysis of differentially expressed genes in Parkinson’s dise
matched PD samples and normal controls. (B) The significant KEGG pathways enriched
down-regulated genes in PD.
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while, we identified 630 DEGs, including 161 up-regulated genes
and 469 down-regulated genes (Fig. 1A, Table S2B). Interestingly,
in addition to the 182 DEGs, more genes were identified in the
age-matched PD and NC samples (Fig. S1A), which seems to be
consistent with the fact that PD is an age-related disease.

To further explore the involved biology pathways in DEGs iden-
tified in age-matched PD and NC samples, those down-regulated
DEGs were separately applied for KEGG enrichment analysis and
GO enrichment analysis, respectively (Table S3A, B). In the signif-
icant KEGG pathways enriched by those down-regulated genes, in
addition to PD-related pathways, i.e. Parkinson disease and synaptic
vesicle cycle, we also found several important pathways, such as
oxidative phosphorylation and chemical carcinogenesis - ROS
(Fig. 1B). Furthermore, similar biology process (BP) related to PD
were also observed in GO enrichment analysis, such as axonogen-
esis, synapse assembly, synaptic vesicle endocytosis, and synaptic
vesicle exocytosis (Fig. 1C). Simultaneously, the enrichment of cell
component (CC) and molecular function (MF) was also found to
involve synaptic vesicle, presynaptic membrane, dopaminergic
synapse, and syntaxin-1 binding (Fig. 1C). Notably, several key BP
were enriched as well, such as mitochondrial ATP synthesis cou-
pled electron transport, transferrin transport, and iron ion trans-
port. And, several key MF were enriched as well, such as ATPase-
coupled transmembrane transporter activity and ferrous iron bind-
ing (Fig. 1C). Thus, we speculated that the ferroptosis played a role
in patients with PD, leading to the occurrence and development of
PD.
ase (PD). (A) Volcano plot shows the differentially expressed genes between age-
by down-regulated genes in PD. (C) The significant GO biology process enriched by
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3.2. Screening of ferroptosis-related DEGs in PD

To explore the relationship between ferroptosis and PD, we
firstly wonder whether there were ferroptosis-related genes in
the 630 DEGs of PD samples. We obtained 259 ferroptosis-
related genes from FerrDb [27], and 107 PD-related genes that
we previously reviewed from literatures [11] (i.e. PD-deleterious
genes or PD-risk genes). Subsequently, as shown in Fig. 2A, we
found that nine DEGs belonged to PD-related genes (including
three PD-deleterious genes [25,28] (SNCA, UCHL1, LRP10) and six
PD-risk genes [29] (GCH1, SH3GL2, MAP4K4, PAM, INPP5F, RIT2),
and 14 DEGs were considered as ferroptosis-related genes (i.e.
GCH1, GPX4, RGS4, RELA, MAPK9, ATP6V1G2, CAV1, ISCU, GOT1,
ATF4, DUSP1, SLC7A5, DDIT4, VEGFA), suggesting that the 22 unique
DEGs may act as the link between ferroptosis and PD (Fig. 2B,
Fig. S1B). Especially, GCH1 was considered as a PD-related gene,
and also belonged to a ferroptosis-related gene. The PD-related
genes SNCA and PAM, as well as the ferroptosis-related genes
MAPK9, ATP6V1G2, and GOT1, were clustered in BP of response to
metal ion. Moreover, genes SNCA and ISCU were enriched in MF
Fig. 2. Analysis of 22 hub differentially expressed genes in PD. (A) Venn diagram present
in age-matched PD samples and normal controls. (C) Pearson’s correlation at the transcr
interaction network among the 22 hub differentially expressed genes. Nodes in cyan, i
deleterious genes, respectively. Edges denote the interaction, and its size reflect the inten
referred to the web version of this article.)
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of ferrous iron binding, and genes ISCU and ATP6V1G2 were
enriched in BP of iron ion transport. It suggested that PD-related
genes were highly correlated with ferroptosis.

Furthermore, the 22 hub DEGs mentioned above were further
applied to investigate their Pearson’s correlations and protein–pro-
tein interactions (PPI), respectively. Primarily, as shown in Fig. 2C,
we found that some DEGs were positively correlated with each
other, in which MAPK9, GPX4, ATP6V1G2, RGS4, GOT1, and ISCU
were considered as ferroptosis-related genes, while SNCA, PAM,
INPP5F, UCHL1, SH3GL2, and RIT2 belonged to PD-related genes.
These significant positive correlations indicated that they were
associated at the transcriptional level.

Moreover, an interacted functional network containing 18 of
the 22 hub DEGs were developed based on the STRING data-
base (Fig. 2D). In particular, we observed that those
ferroptosis-related genes were interacted with each other, and
were interacted with PD-related genes, such as SNCA, UCHL1,
GCH1, SH3GL2, RIT2, LRP10, and MAPK4. These seemed to indi-
cate the relationship between ferroptosis and PD at the PPI
network.
s the genes intersection. (B) The abundance of 22 hub differentially expressed genes
iptomic level among the 22 hub differentially expressed genes. (D) Protein-protein
n pink, and in red represent the ferroptosis-related genes, PD-risk genes, and PD-
sity. (For interpretation of the references to colour in this figure legend, the reader is
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3.3. Construction of classifiers based on the key DEGs in PD

To probe the potential as characteristics to PD, these 22 identi-
fied hub DEGs were used to construct the random forest classifiers,
respectively, and their AUCs were evaluated. Meanwhile, 16 classi-
fiers, including MAP4K4, LRP10, UCHL1, PAM, RIT2, SNCA, GCH1,
DDIT4, RGS4, MAPK9, CAV1, RELA, DUSP1, ATP6V1G2, ATF4 and ISCU,
were found to achieve the AUC of greater than 0.6, indicating that
their featured genes had a promising potential to characterize PD
(Fig. 3). In particular, the classifiers featured by PD-related genes
MAP4K4, LRP10 and UCHL1 showed the AUCs of greater than 0.7
(Fig. 3A-C), and the classifiers featured by ferroptosis-related genes
DDIT4, RGS4, MAPK9 and RELA also showed the AUCs of greater
than 0.7 (Fig. 3H-K). That indicated the potential of these genes
Fig. 3. Random forest classifiers with the AUC of greater than 0.6 constructed by the hub
PAM, RIT2, SNCA, and GCH1. (HAP) ROC curves of the ferroptosis-related genes, includin
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as classification biomarkers for PD, and specifically suggested these
ferroptosis-related genes may act as novel PD-related genes.

3.4. Survival analysis based on the key DEGs in PD

Since the substantia nigra samples used in this study were all
sampled within a few hours after the death of the patients, thus
the key DEGs mentioned above were further used to explore their
potential for survival analysis in PD. Here, we selected those PD
samples with age information from those microarray samples,
and then regarded the age of patients as survival time to perform
multivariable Cox proportional hazards regression analysis. As
shown in Fig. 4A, when eight of these features were combined,
the Cox model exhibited an excellent concordance index (0.79)
genes. (A-G) ROC curves of the PD-related genes, including MAP4K4, LRP10, UCHL1,
g DDIT4, RGS4, MAPK9, RELA, CAV1, DUSP1, ATP6V1G2, ATF4, and ISCU.



Fig. 4. Survival analysis based on an eight-gene signature. (A) Forest plot of the Cox model. (B) Kaplan-Meier survival curve comparing the high- and low-risk groups in the
training dataset. (C) Kaplan-Meier survival curve comparing the high- and low-risk groups in the independent dataset.
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with significance of less than 0.05. Notably, we observed that the
ferroptosis-related gene DDIT4 presented a significant hazard ratio
(HR) of greater than 1, indicating that the greater the expression of
DDIT4, and the faster the PD pathogenic process. Indeed, DDIT4was
defined as a mark of ferroptosis in ferrDB, and Tian et al reported
silencing DDIT4 partially reversed the erastin-induced ferroptosis
in LUAD cell line, validating the role of DDIT4 as ferroptosis driver
in vitro [30]. In addition, we found that the ferroptosis-related
genes CAV1, RGS4 and RELA all presented significant HR of less than
1, indicating that the greater the expressed value, the lower the
risk of poor survival. In ferrDB, CAV1 [31] and RELA [32] was
defined as a suppressor of ferroptosis, while RGS4 was defined as
marker. Overexpression of CAV1 was indeed found to inhibit the
process of ferroptosis in head and neck squamous cell carcinoma
and autoimmune hepatitis [31,33].

After fitting the risk score of each PD sample with the eight
characteristic genes, we observed that the median of risk score
was able to significantly stratify these samples into high- and
low-risk groups (Fig. 4B, HR = 2.72, 95 % CI: 1.58–4.67, P = 9e-
05), and the high-risk group exhibited a poor overall survival (age).

To validate the significance of the above prognostic model, an
independent test dataset merged by two NGS datasets was used.
Similarly, the risk score of each PD samples was fitted by the eight
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characteristic genes and their coefficients in the training model.
Expectedly, the median risk score also remarkably divided samples
into high- and low-risk groups, and high-risk group exhibited a
poor overall survival (Fig. 4C, HR = 2.27, 95 % CI: 1.03–5.01,
P = 0.03858), validating that the eight genes had good prognostic
ability.
4. Discussion

Efficient high-throughput sequencing and bioinformatics analy-
sis have contributed to our understanding of the molecular mech-
anisms of disease occurrence and development, which is necessary
to identify novel potential clinical biomarkers. In this study, tran-
scriptome datasets from substantia nigra were integrated and used
to explore the (DEGs characterized to PD by bioinformatics analy-
sis. Interestingly, in addition to some known PD-related signaling
pathways, some DEGs were also found to enrich in ferroptosis-
related biology pathways, such as iron ion transport, oxidative
phosphorylation and chemical carcinogenesis - ROS. Particularly,
the PD-related genes SNCA and PAM, as well as the ferroptosis-
related genes MAPK9, ATP6V1G2, and GOT1 were enriched in the
same biology pathway, i.e. response to metal ion. That suggested
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that ferroptosis may contribute to the occurrence and develop-
ment of PD.

To further investigate the occurrence of ferroptosis in PD
patients, 22 hub DEGs that have been reported to relate with PD or
involve in ferroptosis were screened out for subsequent analysis.
Therein, significant correlations at the transcriptional level and pro-
tein–protein interaction between PD-related genes and ferroptosis-
related genes were observed, revealing the 22 unique DEGsmay act
as the link between ferroptosis and PD. It is worth pointing out that
GCH1 appeared in both PD-related genes and ferroptosis-related
genes. We have identified GCH1 as a PD-risk gene in Chinese PD
patients [34,35], and it was also reported to suppress ferroptosis
by selectively preventing depletion of phospholipids with two
polyunsaturated fatty acyl tails [36]. Besides,GPX4, a knownkey reg-
ulator of ferroptosis [37], was demonstrated to be up-regulated in
neurons of substantia nigra and associated with dystrophic axons
in striatum of Parkinson’s brain [38]. Furthermore, 16 of the 22
hub genes were used to respectively construct classifiers to charac-
terize PD, in which seven PD-related DEGs (MAP4K4, LRP10, UCHL1,
PAM, RIT2, SNCA and GCH1) stood out. As we know, SNCA, one of
the first identified PD pathogenic genes, encodes the a-synuclein
protein that constitutes the major protein component of Lewy bod-
ies [39]. However, the abnormal aggregation of a-synuclein plays a
key role in the formation of the LBs and other a-synuclein patholog-
ical aggregates and is regarded as a critical step in the molecular
pathogenesis of PD [40,41]. Besides, UCHL1 is another gene that
was first reported to cause PD two decades ago, while the
pathogenicity of LRP10 is firstly identified in 2018 [42]. MAP4K4,
PAM, RIT2 andGCH1were report to be risk genesworking to be asso-
ciated with neuroprotection [43] and neurological function [44].
Besides, nine ferroptosis-related DEGs were found to classify PD
samples from normal controls with comparable AUCs, suggesting
the high association between ferroptosis and PD. Especially, four
random forest classifiers featured by DDIT4, RGS4, MAPK9 or RELA
all presented the AUC of greater than 0.7, suggesting that these
ferroptosis-related DEGs may be used as diagnostic targets for PD.
Moreover, a significant prognostic model characterized by an
eight-gene signature was constructed to stratify PD samples into
high- and low-risk groups, in which the high-risk group presented
a poorer prognosis with successful validation in an independent
data. In the eight-gene signature, in addition to four known PD-
related DEGs, four ferroptosis-related genes were also included, i.e.
DDIT4, RGS4, RELA and CAV1, suggesting that these ferroptosis-
related DEGs may be used as therapeutic targets for PD. Indeed,
DDIT4was reported to be an inhibitor of mTOR pathway [45], while
RGS4 is related with system x(c)(-)-mediated glutamatergic dys-
function [46]. Both the two signal pathways are closely related to
the pathogenesis of PD. Above all, these hub genes are highly associ-
atedwith PD. It follows that these ferroptosis-relatedDEGswere the
potential PD risk genes.

In addition, there are three limitations in this present study.
Firstly, the integrated dataset derived from several sequencing
platforms was used to identified the DEGs, although we corrected
the bias by removing the batch effect to maintain the reliability of
research results as much as possible. Secondly, after strictly match-
ing basic information such as age, the number of samples used in
the study was small, which may reduce the statistical effectiveness
of the research results. However, we believed that the improved
statistical power by strict matching was more obvious and more
significant. Thirdly, the hub DEGs in this study need verified the
pathogenic mechanism with cell lines or animal experiments.

5. Conclusion

Taken together, based on the transcriptomics data of substantia
nigra from PD patients, we performed functional analysis, such as
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enrichment and correlation analysis, classification model and prog-
nostic model construction, to reveal the potential contribution of
ferroptosis related genes to PD. Notably, we firstly reported that
the risk score fitted by the eight genes was used to reflect the
development of PD and predict the survival of patients. Meanwhile,
several ferroptosis-related genes were, for the first time, uncovered
to differentially express in PD, which could be used as novel poten-
tial clinical targets for PD.
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