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Recent successes in therapeutics for Ebola virus disease: 
no time for complacency
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The PALM trial in the Democratic Republic of the Congo identified a statistically significant survival benefit for two 
monoclonal antibody-based therapeutics in the treatment of acute Ebola virus disease; however, substantial gaps 
remain in improving the outcomes of acute Ebola virus disease and for the survivors. Ongoing efforts are needed to 
develop more effective strategies, particularly for individuals with severe disease, for prevention and treatment 
of viral persistence in immune-privileged sites, for optimisation of post-exposure prophylaxis, and to increase 
therapeutic breadth. As antibody-based approaches are identified and advanced, promising small-molecule antivirals 
currently in clinical stage development should continue to be evaluated for filovirus diseases, with consideration of 
their added value in combination approaches with bundled supportive care, their penetration in tissues of interest, 
the absence of interaction with glycoprotein-based vaccines, and filoviral breadth.

Introduction
The Pamoja Tulinde Maisha (Swahili for together save 
lives; PALM) study1 was a randomised, controlled 
trial (RCT) of three investigational agents (mAb114,2,3 
REGN-EB3,4,5 and remdesivir6) compared with a control 
group that included ZMapp7 for the treatment of patients 
with Ebola virus disease, caused by Ebola virus 
(Filoviridae: Ebolavirus).8 This trial was part of the 
emergency response to the ongoing Ebola virus disease 
outbreak in the Democratic Republic of the Congo (DR 
Congo) that started in August, 2018,9 and has included at 
least 3463 cases and 2280 deaths (as of May 28, 2020).10 
The overall outbreak case fatality rate (CFR; number of 
deaths per number of infected patients) has steadily 
approximated 66%, although this number has con
sistently included large numbers of community deaths—
ie, patients with Ebola virus disease who never arrived at 
the treatment centres.

On Aug 12, 2019, a year after the outbreak was initially 
declared, the Institut National de la Recherche Bio
médicale (DR Congo), WHO, and the US National 
Institutes of Health announced that an independent data 
and safety monitoring board reviewed interim data from 
the PALM study and recommended early termination of 
the trial on the basis of observed survival benefit in 
patients treated with either of the investigational agents 
mAb114 or REGN-EB3. The Board further recommended 
that all future patients with Ebola virus disease at the 
study sites should be randomised in an extension phase 
to receive either mAb114 or REGN-EB3, while terminating 
the remdesivir experimental and ZMapp control groups.11 
The PALM study results, published in 2019, support 
a statistically significant survival benefit in patients treated 
with mAb114 or REGN-EB3, with the greatest benefit 
seen in patients receiving early therapy or those with 
higher Ebola virus RT-PCR nucleoprotein gene (NP) cycle 
threshold (CT) values (an inverse proxy for higher Ebola 
virus load) at admission.1

The PALM effort represents a landmark achievement 
in the development of Ebola virus disease medical 
countermeasures, with the study team conducting 
a rigorous, well controlled study in a historically difficult 
outbreak setting, made even more challenging by armed 
conflict and instability.12 For the first time since the 
discovery of Ebola virus in 1976,13–15 clinical outcomes of 
patients with Ebola virus disease arriving at treatment 
centres in DR Congo were shown to be improved 
by particular therapeutic agents beyond the likely 
(but unproven) benefits of optimised supportive patient 
care (oSOC) alone. In the PALM study control group, the 
28-day CFR in patients treated with oSOC plus ZMapp 
(a mixture of three monoclonal antibodies [mAbs] pre
venting Ebola virus particle cell entry)7 was 50% (84 of 
169), which was statistically similar to the 53% (93 of 175) 

Key messages

•	 The PALM randomised controlled trial in the Democratic 
Republic of the Congo was the first to identify two 
effective antibody-based therapeutics for Ebola virus 
disease, but substantial room to improve outcomes 
remains.

•	 Combinations of therapeutics, including mechanistically 
independent antivirals bundled with a high level of 
supportive care, might improve outcomes in severely ill 
patients at highest risk of dying.

•	 Therapeutic penetration into immune-privileged sites 
might mitigate public health risk and improve clinical 
sequelae associated with viral persistence in Ebola virus 
disease survivors.

•	 Consideration of post-exposure prophylaxis requires 
understanding of the potential interactions between 
glycoprotein-based vaccines and therapeutic strategies.

•	 Anticipation of future filovirus disease outbreaks requires 
consideration of therapeutic breadth.
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CFR in the group treated with oSOC plus remdesivir (an 
RNA-directed RNA polymerase-inhibiting nucleoside).16,17 
ZMapp was chosen as the control on the basis of positive 
but inconclusive data from the PREVAIL 2 study.18 
However, the 28-day CFR was significantly reduced to 
34% (52 of 155) in patients receiving oSOC plus mAb114 
(a single mAb preventing Ebola virus particle cell entry)2,3 
and to 35% (61 of 174) in those receiving oSOC plus 
REGN-EB3 (a mixture of three mAbs preventing Ebola 
virus particle cell entry).4,5

Although the overall reduction to a residual 34–35% 
CFR with the most effective mAb-based therapeutics 
represents a remarkable step forward, the PALM results 
suggest substantial room to improve outcomes in acute 
Ebola virus disease. Additionally, outside the scope of 
acute disease, broader questions of the role of therapeutic 
intervention in the human–filoviral interaction still need 
to be considered. Regarding the filovirus-specific human 
therapeutic portfolio, key areas for attention are immed
iately apparent: (1) more effective strategies for individuals 
with severe disease at highest risk of death, (2) therapeutic 
penetration and combination therapy to reduce risk of 
relapse from immune-privileged sites and prevention or 
treatment of viral persistence, (3) consideration of the 
interaction between vaccination and therapeutic strategies 
for post-exposure prophylaxis, and (4) therapeutic breadth. 
We argue that further development of small-molecule 
therapies with broad-spectrum activity and unique pene
tration of immune-privileged sites should continue to be 
pursued, both to improve current benchmarks and to 
complement mAb-based therapeutic intervention.

Room for improvement: severe Ebola virus 
disease
The cautious note from the PALM RCT is perhaps most 
apparent in outcome data from patients presenting 
with the highest risk of death—namely, the 40% of 
study patients who presented at admission with Ebola 
virus RT-PCR CT NP of 22 or less. Although the survival 
benefits for mAb114 and REGN-EB3 versus ZMapp 
(and by inference, remsdesivir) were maintained in this 
subset, the absolute CFRs remained unacceptably high 
(CFR was 70% with mAb114 and 64% with REGN-EB3) 
even with the most effective therapeutics. The contri
bution of viral load to risk of death is likely to 
be a continuous (ie, non-binary) variable; the frequency 
of poor outcomes is probably even higher in patients 
presenting with the highest viral loads. In these 
highest-risk patients, who often also presented late into 
illness with severe multiorgan dysfunction or failure, 
further improvement of outcomes will require 
considerable effort to improve filovirus-specific thera
peutics and supportive care approaches. There is an 
urgent need to develop more effective, efficient 
strategies than are currently available, including the 
provision of monitoring and critical care in resource-
constrained settings.

Should we be surprised by the relative lack of efficacy 
in patients presenting late in the course of the disease? 
All four investigational agents examined in the PALM 
RCT were evaluated at the US Army Medical Research 
Institute of Infectious Diseases and its many partners for 
efficacy in rhesus monkeys (Macaca mulatta) exposed 
to Ebola virus by the intramuscular route, essentially 
mimicking a needlestick injury. Detailed characterisations 
of the timing and progression of the disease in this 
model have shown that many of the key disease signs 
observed in human patients can be recapitulated, 
although at an accelerated pace.19 Preclinical evaluation 
of therapeutics has been based on the initiation of 
treatment at the time of virus exposure or shortly after 
disease signs were observed. No published studies have 
described the efficacy of treatments initiated at later 
timepoints to animals with severe disease. Published 
landmark studies thus far have described the admin
istration of candidate medical countermeasures only as 
late as 4–5 days after viral exposure.2–5,7,16,17 Preclinical 
studies might, therefore, overestimate the effects of a 
given agent in patients with advanced disease.

Extrapolation of therapeutic benefit from non-human 
primate (NHP) models to human disease is a challenge 
particularly well illustrated by PALM data that shed light 
on the dramatically different timing of therapeutic 
intervention in human Ebola virus disease. Notably, study 
patients with Ebola virus disease did not seek medical help 
until an average of 5·5 days after the onset of symptoms, 
often deep into illness and already with multi-organ 
dysfunction. An addition of this prolonged symptomatic 
period (5·5 days) onto even a conservative estimate of the 
typical human incubation period (6–10 days) suggests that 
clinical intervention (with medical countermeasures or 
supportive care) are frequently only applied 11–12 days 
after the likely Ebola virus exposure. This timeframe is in 
stark contrast to the preclinical NHP benchmark to receive 
clinical intervention 4–5 days after viral exposure, routinely 
referred to as a so-called success.1 This delay might reflect 
a limitation in the NHP model in assessing drug efficacy 
in severe disease. Clearly, effective therapeutic strategies 
for these highest-risk patients are needed that address not 
only viral replication but also amelioration of systemic 
inflammatory response and organ failure.

Strategy: bundled combination therapy for 
acute Ebola virus disease
The PALM results support an important anchoring role 
for effective mAb-based strategies, prioritising further 
development and optimisation of current lead clinical and 
advanced preclinical candidates. These include improving 
potency (neutralisation and antibody Fc region effector 
function), drug delivery, and therapeutic half-life in disease 
states. Potential synergies from combined administration 
of an mAb-based product with a mechanistically inde
pendent small molecule might improve early outcomes as 
well as subsequent viral clearance from extravascular 
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tissue compartments in the recovery phase. mAb-based 
therapies are proposed to exert their antiviral effects by 
binding and neutralising virus particles present in 
circulation, thus inhibiting cell entry, and by sequestering 
viral products such as sGP, a secreted non-structural Ebola 
virus glycoprotein.20 However, reports of human Ebola 
virus disease cases in Africa reveal plasma viral RNA 
concentrations of 10⁴–10⁸ genome equivalents per mL at 
the time of patient admission into studies.9 With such high 
titres of circulating virus particles, many cells in multiple 
organs are probably already infected at treatment initiation, 
and a substantive effect of mAb treatments in infected cells 
is unlikely. Because small-molecule antivirals could 
penetrate cellular membranes to inhibit viral replication, 
administration in combination with mAbs might protect 
both infected and uninfected cells. Such a combination 
might help reduce viral titres, clear the virus from 
immune-privileged sites, and potentially decrease the 
likelihood of treatment-escape mutants.21–24 Anecdotally, 
the first newborn survivor of perinatal Ebola virus trans
mission received experimental ZMapp and remdesivir in 
western Africa (as defined by the UN Geoscheme) in 
2016.25

To date, no published studies have described the efficacy 
of combination mAb and small-molecule treatment 
regimens in humans or even NHP models. This absence 
of research is due in part to difficulties in showing synergy 
in existing NHP models, as well as proprietary barriers to 
undertaking combination studies. At a minimum, how
ever, proof-of-concept studies showing the non-inter
ference and safety of combining mAb-based and 
appropriate small molecules are urgently needed to lend 
first-do-no-harm confidence to clinicians and researchers 
at the bedside. In addition to lethality, secondary endpoints 
of interest in both NHPs and humans include the 
differential effect of combination therapy on viral decay 
kinetics, development of treatment-emergent resistance, 
severity of organ dysfunction, seeding of immune-
privileged tissues and viral persistence, and downstream 
clinical sequelae in Ebola virus disease survivors (as 
mentioned in the following section).

Equally important, although outside the scope of this 
Personal View, bundled combination approaches to 
severely ill patients with Ebola virus disease should inc
lude further optimisation of supportive care in the field 
setting. As appropriate antibiotic therapy is necessary but 
far from sufficient in patients with sepsis related 
to bacterial infection, the degree of organ dysfunction at 
admission in the PALM data suggests that effective 
filovirus-specific therapeutics cannot be uncoupled from 
requisite supportive care and will require coordinated 
development in both fields. Indeed, future combinations 
in selected patients might also include strategies 
targeting the host response that might mitigate immuno
pathology without compromising effective immunity; 
specific immunomodulation and general optimisation of 
supportive care could open and extend therapeutic 

windows both for mAb-based and small-molecule drugs 
that otherwise appear less effective.

Room for improvement: viral persistence and 
clinical sequelae in Ebola virus disease survivors
Surviving acute Ebola virus disease by no means 
guarantees a healthy outcome. The understanding of 
Ebola virus disease-associated sequelae continues to 
develop as more careful attention is paid to increasing 
numbers of Ebola virus disease survivors who have 
made near-term,26 medium-term,27 and long-term28,29 
observational studies feasible, building on case reports30 
derived from earlier outbreaks, including the 1995 Ebola 
virus disease outbreak in Zaire (now DR Congo).31–33 
Survivors have reported a range of sequelae, colloquially 
referred to as post-Ebola (virus disease) syndrome,34 
which manifest as mild, moderate, or severe compli
cations within a few weeks of discharge and which could 
last for years.26–28

During acute Ebola virus disease, Ebola virus might 
seed immune-privileged tissues, including the brain, 
eyes, and testes,35 leading to viral persistence potentially 
consequential both for the individual survivor—
ie, recrudescent organ-specific inflammatory syndromes 
(eg, meningoencephalitis, uveitis)—as well as for the 
public—ie, the risk of person-to-person transmission 
and reignition of outbreaks. Ebola virus RNA has been 
detected in the cerebrospinal fluid36–38 during acute 
illness,36,39 in the weeks shortly after serum Ebola virus 
clearance,37 and most notably 9 months after discharge 
in an Ebola virus disease survivor with severe meningo
encephalitis.38 More than 2 months after clearance of 
viraemia and recovery, persistent viable Ebola virus has 
been detected in the aqueous humour of a survivor with 
severe sight-threatening unilateral panuveitis.40 Ebola 
virus and Ebola virus RNA is commonly detected in the 
semen of male survivors in the first 3–6 months after 
survival,41 and long-term semen persistence of Ebola 
virus RNA has been described repeatedly.41–43 Although a 
rare event, sexual transmission of Ebola virus has been 
proven or strongly suspected eight times, with the 
first molecular evidence shown in 2016,44 and several 
events leading to multiple generations of transmission 
and reignition flare-ups at the tail end of outbreak 
timelines.42,44–48 Ebola virus RNA has been detected in the 
breastmilk of a female survivor 500 days after acute 
infection, although long-term viral persistence in this 
fluid has not been convincingly shown.49 Undefined at 
present is the potential for Ebola virus persistence in 
immune-privileged tissues to cause remote inflammatory 
sequelae in survivors (eg, generalised fatigue, arthritis, or 
myalgia syndromes). 

The relatively new understanding of clinical sequelae 
and viral persistence was substantially informed by 
survivors of the 2013–16 western Africa Ebola virus disease 
outbreak. In the current and future outbreaks, the number 
of people with viral sequelae and persistence will increase. 
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Nearly all of the more than 1000 survivors exiting treatment 
centres in DR Congo during the ongoing outbreak have 
received an experimental therapeutic, either under the 
PALM RCT or via an emergency compassionate use 
protocol. This proportion is by stark contrast with the 
2013–16 Ebola virus disease outbreak, during which far 
less than 5% of survivors received an Ebola virus-specific 
therapeutic. The differential class or specific therapeutic 
effect on viral persistence or clinical sequelae, if any, are 
unknown, but it should be pointed out that the organ-
specific inflammatory meningoencephalitis38 and uveitis40 
syndromes associated with Ebola virus persistence were 
described in very ill Ebola virus disease survivors receiving 
Ebola virus-specific therapeutics and extraordinary 
advanced levels of supportive care. Whether historical 
concern about the relationship between a specific 
therapeutic class (eg, receipt of convalescent plasma and 
downstream neurological syndromes in patients with 
Argentinian haemorrhagic fever)50,51 and clinical sequelae 
or viral persistence is relevant here is an important and 
outstanding question. Concerns about potential Ebola 
virus disease relapse or recrudescent disease in DR Congo6 
highlight the need to understand the human–filovirus–
therapeutic relationships, including best approaches to 
prevent and treat relapse, viral persistence in immune-
privileged sites, and associated organ-specific inflammatory 
or more generalised sequelae.

Strategy: targeting immune-privileged sites in 
acute Ebola virus disease and survivors
Therapeutics that can access immune-privileged sites at 
clinically meaningful concentrations are likely to be 
required to completely clear Ebola virus infection whether 
during acute Ebola virus disease or after survivors exit 
treatment centres. Antibodies tend to be limited to the 
circulatory system. By contrast, nucleoside analogues are 
designed as prodrugs that foster their distribution to 
immune-privileged sites through cellular uptake and 
metabolism into directly acting antiviral drugs targeting 
intracellular viral replication and transcription.17 In 
accordance, studies with remdesivir have shown robust 
penetration in the brain, eyes, and testes in crab-eating 
macaques (Macaca fascicularis) after a single intravenous 
dose.16 Treatment of the recrudescent meningo
encephalitis described above with remdesivir and high-
dose corticosteroids was followed by clinical recovery and 
Ebola virus RNA concentration decline and eventual 
clearance.38 Although a single case is insufficient to find 
out whether the antiviral altered the clinical course of the 
disease, the recovery is illustrative of a potential utility of 
small-molecule therapeutics and the need for further 
study. A randomised, placebo-controlled clinical trial was 
initiated in Liberia and Guinea to evaluate Ebola virus 
RNA clearance from semen by remdesivir;52 although 
results are pending, similar questions are at hand 
regarding Ebola virus disease survivors in the current and 
future outbreaks.

Room for improvement: post-exposure 
prophylaxis in high-risk contacts
Although experimental therapeutics and vaccines have 
been used occasionally in DR Congo for post-exposure 
prophylaxis (PEP) after high-risk health-care worker 
exposures to Ebola virus, increasing attention has 
focused on the potential use of Ebola virus-specific 
therapeutics for PEP in non-health-care workers—ie, in 
the highest risk contacts of newly identified Ebola virus 
disease cases. Decision-making around this question has 
been confounded by the fact that these contacts routinely 
now receive a recombinant vesicular stomatitis Indiana 
virus vaccine expressing Ebola virus glycoprotein 
(VSVΔG-ZEBOV-GP; Ervebo; Merck, New Jersey, USA)53 
(approved by the US Food and Drug Administration 
[FDA] and European Medicines Agency) as part of an 
outbreak-wide ring vaccination strategy, some of whom 
are essentially receiving the vaccine as PEP. Potential 
bidirectional interaction between the vaccine (and 
developing immune responses) and specific therapeutics 
is unknown. This concern applies especially to mAb-
based therapeutics targeting the Ebola virus glycoprotein, 
which is expressed by rVSV∆G-ZEBOV-GP and Ebola 
virus. Indeed, uncertainty about any interaction has so 
far precluded the use of mAb-based therapeutics as PEP 
in vaccinated high-risk close contacts. However, as long 
as there is no interaction with the rVSV∆G vaccine vector, 
effective antivirals might avoid potential interaction 
around the glycoprotein axis. Indeed, remdesivir is 
not active against this vector17 and could plausibly be 
considered as PEP in just-vaccinated high-risk contacts 
before the development of active vaccine-induced 
immunity. Although the vaccine is reported to provide 
high levels of protection from Ebola virus 10 days or 
more after vaccination, infection rates match those of 
unvaccinated control participants at less than 10 days 
after vaccination.53 Post-exposure antiviral prophylaxis 
offered by a small molecule might provide immediate 
protection from clinical disease by reducing the severity 
or preventing emergence, in addition to augmenting 
protection provided by vaccination.

Room for improvement: therapeutic breadth
It is important to note that the three mAb treatments 
tested in the PALM RCT have a narrow therapeutic 
spectrum and are ineffective against ebolaviruses other 
than Ebola virus (eg, Bundibugyo, Sudan, and Taï Forest 
viruses) and the closely related lethal Marburg viruses. By 
contrast with these mAb treatments, remdesivir has 
broader-spectrum in vitro activity against the Sudan virus 
and Marburg virus that cause filovirus disease, as well as 
paramyxovirids (eg, Hendra virus, Nipah virus, and 
human parainfluenza virus), pneumovirids (eg, human 
respiratory syncytial virus), mammarenaviruses (eg, Lassa 
virus), several flaviviruses,54 betacoronaviruses, including 
severe acute respiratory syndrome-related coronavirus and 
Middle East respiratory syndrome-related coronavirus,55 
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and deltacoronaviruses.56 In vivo, remdesivir protected 
grivets from Nipah virus disease and death.57

It is crucially important to point out that remdesivir is 
far from unique in its broad-spectrum antiviral activity—
several small-molecule antivirals share these properties. 
Although there are many examples to enumerate, notable 
compounds include FDA-approved hepatitis drugs, such 
as ribavirin, with some clinical activity against Lassa 
fever and Crimean–Congo haemorrhagic fever among 
others;58 and sofosbuvir with activity against dengue59 
and yellow fever60 viruses. Those in clinical development 
include favipiravir61 and galidesivir, both with activity 
against multiple haemorrhagic fever viruses.62 In addition 
to directly acting antivirals, indirect and host-directed 
therapeutics should also be considered for potential 
broad-spectrum activity and reduced potential for the 
development of viral resistance.63,64

Room for improvement: enhanced 
understanding of antiviral pharmacology
Given existing evidence, small-molecule antivirals might 
have use as a component of combination therapy for 
acute Ebola virus disease, in the treatment of post-Ebola 
virus disease sequelae, and potentially as PEP. However, 
a greater understanding of the pharmacology of antiviral 
drugs to treat Ebola virus disease, including remdesivir, 
is necessary. Pharmacokinetic evaluation of remdesivir 
has not yet been done in the rhesus monkey model of 
Ebola virus disease or in Ebola virus-infected humans. In 
light of substantial hepatic and renal impairment 
in Ebola virus disease, such analyses could identify 
alterations in the formation or clearance of the active 
remdesivir triphosphate form of the drug. This alteration, 
in turn, might require an in-depth reanalysis of dose and 
dose schedule that might improve survival in patients 
treated for Ebola virus disease. Alternatively, novel 
nucleoside analogues could be developed that have the 
desired pharmacokinetic properties while maintaining 
efficacy. The same imperative exists to better understand 
the pharmacology of other antiviral approaches.

Finally, special consideration should be given to the 
potential use of weaponised Ebola virus in the form of 
small-particle aerosols. Crab-eating macaques exposed 
to Ebola virions via aerosol develop systemic viraemia 
and die within a similar timeframe to animals exposed 
by the intramuscular route. Protection against aerosol 
exposure in this model has not been shown for 
mAb-based approaches. Remdesivir treatment provided 
statistically significant survival benefit to animals 4 days 
after Ebola virus aerosol exposure,65 suggesting that 
small molecules could be pursued as general anti-
bioweapon regimens when it could be expected that the 
virus used for an attack is tailored to escape mAbs in 
common use. The site of action of small-molecule 
therapeutics might offer a broader spectrum of antiviral 
activity16,54,56,57,66 and a lower likelihood of escape mutant 
evolution.

Conclusions
What seemed almost unachievable even 5 years ago—
the license of an effective therapeutic for Ebola virus 
disease—is now within reach given the encouraging 
results from the PALM trial. However, considerable 
additional work is needed to optimise Ebola virus disease 
treatment regimens for existing and future threats. The 
potential therapeutic breadth, tissue penetration, and 
absence of interaction with vaccines underscore the 
importance of continued development of small molecules 
to define therapeutic roles, along with improvements in 
supportive care in resource-limited settings.

The 2018–20 outbreak of Ebola virus disease in eastern 
DR Congo is ongoing, with recent new cases emerging 
in Nord Kivu just days before the projected end of the 
outbreak. An independent outbreak of Ebola virus 
disease was declared on June 1, 2020, in northwest DR 
Congo in which four of six patients have died. Coincident 
filoviral outbreaks (potentially colliding with severe acute 
respiratory syndrome coronavirus 2 and the world’s 
largest measles outbreak) are sobering reminders of the 
need to improve disease outcomes. There is no time for 
complacency in the post-PALM landscape.
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