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Abstract

HIV-1 replicative capacity (RC) provides a measure of within-host fitness and is determined in the context of phenotypic
drug resistance testing. However it is unclear how these in-vitro measurements relate to in-vivo processes. Here we assess
RCs in a clinical setting by combining a previously published machine-learning tool, which predicts RC values from partial
pol sequences with genotypic and clinical data from the Swiss HIV Cohort Study. The machine-learning tool is based on a
training set consisting of 65000 RC measurements paired with their corresponding partial pol sequences. We find that
predicted RC values (pRCs) correlate significantly with the virus load measured in 2073 infected but drug naı̈ve individuals.
Furthermore, we find that, for 53 pairs of sequences, each pair sampled in the same infected individual, the pRC was
significantly higher for the sequence sampled later in the infection and that the increase in pRC was also significantly
correlated with the increase in plasma viral load and with the length of the time-interval between the sampling points.
These findings indicate that selection within a patient favors the evolution of higher replicative capacities and that these in-
vitro fitness measures are indicative of in-vivo HIV virus load.
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Introduction

Measuring the fitness of HIV-1 is notoriously difficult. At the

between-host level, fitness can be interpreted as the transmission

potential which is defined as the expected number of transmissions

in the course of an infection [1]. This quantity can however only

be measured in cohorts of untreated patients with known infection

status that are followed over long time periods [1]. At the within-

host level, fitness is determined by the average number of

secondary infected cells resulting from a single infected cell in

vivo. This hypothetical quantity is difficult to determine [2] but

can be approximated by in-vitro measurements of the replicative

capacity (RC) (see [3]). However, the in-vivo relevance of such in

vitro fitness values is largely unclear.

In a recent publication, some of the authors of this article

described a computational method to predict RC values on the

basis of viral amino-acid sequences [3]. To this end, a machine-

learning algorithm based on a quadratic fitness model was applied

to a training data set of 65,000 amino-acid sequences of the pol

gene and the associated RC values. The resulting RC-predictor

could explain roughly 40% of the deviance of RC values in a test-

data set consisting of 5,000 sequences, which had not been used

for the inference of this predictor. In the present study, we apply

this computational predictor to clinical data from the Swiss HIV
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Cohort Study (SHCS) (www.shcs.ch) in order to obtain an

assessment of the RC-predictor in an independent dataset and

to study its correlation with plasma HIV RNA viral load, a known

surrogate marker associated with disease progression [3].

Methods

Ethics statement
The Swiss HIV cohort study was approved by individual local

institutional review boards of all participating centers (www.shcs.

ch). Written informed consent was obtained for each SHCS study

participant.

RC-prediction
Fitness is measured as the log replicative capacity of HIV-

derived amplicons [representing all of Protease(PR) and most of

Reverse Transcriptase (RT)] inserted into a constant backbone of

a resistance test vector. The models are then trained to predict this

fitness from the amino-acid sequence of the amplicons. Details on

the experimental measurement of the RC values and on inferring

the predictor have been published in [3]. Here, we briefly reiterate

the principles of the models fitted.

In essence, the predictor is based on fitting the data consisting of

amino acid sequences s and the corresponding log-RC values (w)

with the following model

log (w(s))~Iz
X

ij

mijsijz
X

ijkl

eij;klsijskl ðM1Þ

sij denotes the presence (sij = 1) or absence (sij = 0) of allele j at

position i. (or more generally, if an ambiguity in the population

sequencing is consistent with several amino acids at a given position,

sij denotes the probability of allele j at position i). The model

parameters I, mij and eij;kl can be interpreted as intercept, main

effects, and epistatic effects. As the number of parameters exceeds

the number of data-points, the model M1 has been fitted to the data

on the basis of a machine learning approach (generalized kernel

ridge regression). With this approach over-fitting is no concern

because the sub-dataset on which the predictor is evaluated is

independent from the sub-dataset from which the predictor is

inferred (see supplementary material of Hinkley et al. [3] for a

detailed description of the fitting procedure).

Clinical and sequence data
We assessed the RC-predictor by using two datasets collected

from untreated, chronically infected patients. The latter criterion

was introduced because HIV RNA levels are usually very high

during acute HIV infection, and it was ensured by discarding data

points measured within the first 180 days after the first positive

HIV test. The patients were enrolled in the Swiss HIV Cohort

Study, a longitudinal multicenter observational cohort study

(SHCS) (www.shcs.ch) [4]. These datasets consist of clinical data

(Table 1) and the corresponding viral amino acid sequences from

the SHCS drug resistance database [5]. We focus on patients, for

whom amino-acid sequences of the entire protease and the first

303 amino acids of the reverse transcriptase were available. We

only consider sequences, which have been obtained from therapy-

naı̈ve patients infected with HIV-1 subtype B because the training

set originated solely from subtype B strains. The first set consists of

nucleotide sequences with the corresponding HIV RNA virus load

measurements (plasma viral load set; n = 2073 patients). Selection

of viral load measurements is restricted to values obtained within

30 days before or after the genotypic tests, but before initiation of

antiretroviral therapy. The second set contains 53 patients for

whom genetic sequences are available at two time points, which

are at least 6 months apart (median [interquartile] distance

between the two measurements: 3.9 [1.9; 7.4] years; longitudinal

set) (see [6] for more details on this dataset).

Statistical analyses
Relationships between HIV RNA and pRC were modelled by

the use of univariable and multivariable linear regression. Model

assumptions were verified by inspecting residual versus fitted plots

and by checking for unequal variance across fitted values

(heteroskedasticity) and outliers. Because these diagnostics sug-

gested the presence of heteroskedasticity we performed ‘‘robust’’

versions of linear regressions, which estimate a weighted variance

based on the Huber2White method.

Statistical calculations were carried out with Stata 11.2 (Stata

Corp., College Station, TX, USA). The level of significance was

set at 0.05, and all p-values are two sided.

Results

Demographic and clinical characteristics of our study popula-

tion are displayed in table 1. We assessed the predicted RC (pRC)

with respect to two clinically relevant quantities or processes:

Firstly, the relation between pRC and virus-load measurements

measured around the same time and, secondly, the temporal

change of pRC within ART-naive individuals.

In the plasma viral load dataset (2073 patients), values for RC

predictions (pRC) were ranging from 21.07 to 1.43 units (median

[interquartile range] 0.62 [0.40; 0.81]), and corresponding median

[interquartile] HIV RNA levels were 4.7 log10 copies/mL [4.1;

5.2]. Using univariable linear regression analysis, we find a highly

significant effect of the pRC value on virus load (F2Test p,0.001;

see Figure 1A): a 1 unit increase in pRC is associated with an 0.57

increase [95% confidence interval 0.45; 0.69] in log10 HIV RNA.

The fraction of variance in virus load explained through the pRC

(R2) is 4.4%. Although somewhat attenuated, this effect of pRC on

virus load remains highly significant (p,0.001; 0.29 [0.18; 0.40]

log10 copies/mL HIV RNA per 1 unit increase in pRC ;table 1) if

we control in a multivariable regression model for age, ethnicity,

risk group, sex, CDC C stage and CD4 count at time of viral

sequencing, and the laboratory that generated the sequence data.

The association between HIV RNA and pRC changes only

minimally when the fully adjusted regression model is re-estimated

Author Summary

Determining how well different genotypes of HIV can
replicate within a patient is central for our understanding
of the evolution of HIV. Such in vivo fitness is often
approximated by in vitro measurements of viral replicative
capacities. Here we use a machine-learning algorithm to
predict in vitro replicative capacities from HIV nucleotide
sequences and compare these predicted replicative
capacities with clinical data from HIV-infected individuals.
We find that predicted replicative capacity correlates
significantly with the concentration of HIV RNA in the
plasma of infected individuals (virus load). Furthermore,
we show that the predicted replicative capacity increases
in the course of an infection. Finally, we found that the
temporal increase of replicative capacity correlates signif-
icantly with the temporal increase of virus load within a
patient. These results indicate that (predicted) replicative
capacity is a useful measure for viral fitness and suggest
that virus genetics determines virus load at least to some
extent via replicative capacity.

Predicted HIV-1 RC in a Clinical Setting
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on individuals without any evidence for transmitted drug

resistance mutations as defined by the most recent WHO

surveillance list [7] (n = 1909; regression coefficient [95%

confidence interval] 0.30 [0.18; 0.42] log10 copies HIV RNA

per unit change pRC).

For the longitudinal dataset, we find that the pRC value

increases in the course of an infection. Among the 53 patients with

two viral sequences available taken at least 6 months apart, the

median [interquartile] difference in pRC is 0.10 units [0.04; 0.25]

and is statistically significantly different from 0 (p sign

rank,0.001). Unadjusted linear regression estimates this increase

in pRC at 0.020 units per year [95% confidence interval 0.006;

0.035] (figure 1B). At the same time, HIV RNA also tended to be

higher at the second, later time point, with a median of 0.42 log10

copies/mL [20.28; 0.88] (sign rank p = 0.005). Consequently, we

find a statistically significant association between the change in

pRC correlates and the change in HIV RNA over time in these 53

patients when applying a linear regression model to the data,

which predicts a rise of 0.90 [0.01; 1.79] log10 copies/mL in HIV

RNA per 1 unit increase in pRC over time (figure 1C). This

finding suggests that within-host evolution seems to be character-

ized by a trend towards higher replication rates, and consequently

higher plasma HIV RNA viral loads.

The above analyses were based on untreated patients sampled

after the acute phase of the infection. We find similar results if we

exclude patients, which have been sampled in the AIDS phase

(defined as patients with at least one CDC stage C event, n = 206).

In particular, we still find a highly significant (p,0.001)

correlation between pRC and RNA load (slope: 1 unit increase

in pRC is associated with an 0.54 increase [95% confidence

interval 0.41; 0.66] in log10 HIV RNA) and a significant

(p = 0.0058) increase of RC over time (increase in pRC at 0.020

units per year [95% confidence interval 0.006; 0.035]). Only the

significance-level of the correlation between the temporal change

of pRC and the temporal change of RNA load changes from

‘significant’ (p = 0.04) to ‘trend’ (p = 0.058); however even in this

Table 1. Multivariable regression model to assess the association of log10 HIV RNA load with the predicted replicative capacity.

N (%)a
Regression Coefficient [95%
Confidence Interval] b P-value

Median [IQR] c estimated replicative capacity 0.62 [0.40 to 0.81] 0.29 [0.18 to 0.40] ,0.001

Sex 0.02

Male 1685 (82.3%) Reference

Female 388 (18.7%) 20.12 [20.22 to 20.02]

Median [IQR] age 37 [31 to 43] 0.02 [20.02 to 0.06] d 0.242

Mode of HIV acquisition ,0.001

Heterosexual contacts 483 (22.3%) 20.20 [20.29 to 20.11]

Homosexual contacts 1144 (55.2%) Reference

Intravenous drug use 446 (21.5%) 20.19 [20.28 to 20.10]

Ethnicity 0.015

White 1925 (92.9%) Reference

Black 24 (1.2%) 20.41 [20.66 to 20.16]

Hispanic 68 (3.3%) 20.10 [20.27 to 0.07]

Asian 35 (1.7%) 20.05 [20.22 to 0.12]

Other 21 (1.0%) 0.13 [20.18 to 0.43]

Sequence generating laboratory 0.087

A 215 (10.4%) Reference

B 420 (20.3%) 20.05 [20.19 to 0.09]

C 1438 (69.4%) 20.12 [20.24 to 0.01]

Median [IQR] year of sequence generation 2008 [2006 to 2008] 20.03 [20.05 to 20.01] e

Median [IQR] CD4 counts/microliter at time of sampling for
genotyping

298 [162 to 464] not donef

CD4 count groups (by 25th percentiles) f ,0.001

0 to 162 542 (25%) Reference

163 to 298 542 (25%) 20.41 [20.50 to 20.32]

299 to 464 543 (25%) 20.63 [20.72 to 20.53]

465 to 1522 541 (25%) 20.90 [21.00 to 20.79]

Ever had CDC stage C event prior to genotyping 206 (9.9%) 0.10 [20.01 to 0.21] 0.085

aunless stated otherwise.
bRegression coefficients printed in bold face are statistically significant at the 5% level.
cAbbreviations: IQR interquartile range.
dRegression coefficient per 10 years increase.
eRegression coefficient per year increase.
fbecause of better regression fit the final model included CD4 cell count as 4 categories.
doi:10.1371/journal.ppat.1002321.t001
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case the point estimates for the regression coefficient are very

similar in both cases (0.9[0.01; 1.79] vs. 0.84[20.03; 1.70]).

Discussion

How do the pRCs analyzed here relate to previous findings? For

example, the 6 sequences (in our data-set) carrying the lamivudine

mutation M184V, which has a large negative fitness effect on the

virus [8] and has been associated with an 0.3 log10 copies lower

HIV RNA relative to wild type [9], had a median [interquartile

range] pRC of 0.1 [21.3; 0.6], compared to 0.6 [0.4; 0.8] in the

1909 sequences without any transmitted resistance mutations

(Wilcoxon rank sum p,0.001). Overall, the pRC varied over a

range of 2.5 units from minimum to maximum. Our unadjusted

and adjusted regression models would therefore predict a

difference in HIV RNA of approximately 1.4 and 0.73 log10

copies/mL between the lowest and the highest pRC value. Yet

HIV RNA viral loads varied over 6 logs from 1.9 to 7.9 log10

copies/mL in our dataset. This discrepancy is not very surprising

given that our predictor for RC only takes the variation of 400

amino acid positions (roughly 10% of the genome of HIV) into

account. However, the finding of a correlation of pRC and HIV

RNA is robust, as confirmed by several sensitivity analyses, and it

is consistent with a number of previous studies, which have also

shown a correlation between in vitro measurements of RC and

virus load [10,11,12,13,14].

Our findings thus support the notion that virus load is to a large

extent controlled by virus genetics [15,16,17]. The fraction of

variance explained by pRC (4.4%) is much lower than the fraction

of variance in virus load explained by virus genetics in previous

studies [15,16,17], but it should be borne in mind that the

estimates of studies [15,16,17] are based on the variation in the

entire genome (Note that this is the case even for Alizon et al.[15],

because, even though the phylogenies used in that study were

inferred from the pol-gene, they reflect the relatedness of the entire

genome provided that recombination is not too common on an

epidemiological level). It should also be noted that our results

argue that at least a part of the virus’ genetic control of the virus

Figure 1. Clinical Relevance of predicted Replicative Capacity (pRC). (A) Relation between pRC and virus load (measured as log10(copies of
RNA/ml)) in the RNA-load dataset. (B) Temporal increase of pRC in the Longitudinal Dataset: relation between time difference between sequence
samples and the change in pRC. (C) Relation between change in pRC and change in RNA-load in the Longitudinal Dataset.
doi:10.1371/journal.ppat.1002321.g001
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load established in patients appears to be mediated by the

replicative capacity of the virus. This finding that virus load is

controlled by RC contrasts the interpretation that virus load is

mainly determined by the activation-rate of CD4 cells[18].

However, the relative importance of these different factors remains

an open question. The increase of pRCs over time is also

consistent with previous observations [19], and supports the view

that, within a single host, HIV is selected for higher replicative

capacities over time.

Overall our results show on the basis of a computational

predictor, firstly that in vitro replicative capacity increases in the

course of infection, which is consistent with the interpretation that

RC is a determinant of fitness at the within-host level, and

secondly that RC is linked to virus load, which has been shown to

be a in vivo determinant of viral fitness at an epidemiological level

[1]. In our view, it is remarkable that predicted RC based on

partial pol sequences representing only 10% of HIVs genome

correlates with virus load. Accordingly, taking into account the

variation in the entire HIV genome (as will become possible in the

future) may help to develop much more accurate predictors of

virus fitness and virus load.
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