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the testes with a history of cryptorchidism.14 The decrease of semen 
quality (sperm cell number, motility, and sperm cell malformations), 
and the presence of immature forms of spermatozoa with uncondensed 
nuclei, aberrant acrosomes, and large cytoplasmic residues have been 
reported in men who underwent orchidopexy for cryptorchidism 
during childhood.15–17 Serum hormones level also deviates from normal 
values so an increase of follicle-stimulating and luteinizing hormones 
or a decrease of inhibin was, for example, detected in men subjected 
to orchidopexy in the childhood.18

Autophagy is a catabolic pathway which takes place in all eukaryotic 
cells. It provides the transport of nonessential, old or damaged 
components to lysosomes for lysosome-mediated degradation and 
turnover process.19 Autophagic degradation of damaged mitochondria 
(mitophagy) is a sort of selective autophagy. It plays critical roles in 
fundamental biological processes such as terminal differentiation of 
red blood cells and paternal mitochondrial degradation, as well as 
in pathological states, including some neurodegenerative diseases, 
ischemia or drug-induced tissue injury.20 In contrast to apoptosis, 
which is a programmed cell death,21 autophagy is primarily a cell 
survival process, which intervenes under various conditions of cellular 

INTRODUCTION
Cryptorchidism or maldescended testes is the most common 
developmental abnormality, with the incidence of 2%–8% in full-term 
boys and 30%–33% in premature boys.1 Factors influencing testicular 
descend are grouped as genetic, hormonal and environmental, or 
their combination.2 Сryptorchidism is associated with impaired 
spermatogenesis.3,4 Abnormal intra-abdominal environment of 
cryptorchid testes and exposition to elevated temperature strongly 
affect both germ and somatic cells, which display dramatic changes 
in morphology, function, and gene expression.5 Aberrant structure 
of Leydig cells,6,7 vacuolization of Sertoli cell, abnormal cell adhesion 
and disruption of Sertoli-cell supported blood-testis barrier are the 
consequences of cryptorchidism in human6,8,9 and animal experimental 
models.7,10,11 Besides, epididymal anomalies are often associated with 
the undescended testis.12,13

Cryptorchidism is recognized as one of the strongest risk factors 
for infertility in adulthood,14–16 as confirmed by experimental and 
epidemiologic studies.5 While the surgical correction of cryptorchidism 
(orchidopexy) in children is considered as an efficient mode of 
treatment, both structural and functional alterations are detected in 
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stress, such as starvation, hyperthermia, and different cytotoxic insults, 
thereby conferring adaptation to the changing environment.19,20 

Nevertheless, uncontrolled activation of autophagy can promote 
cell death, of which morphological appearance differs from those of 
apoptosis.19,21

Autophagy is regulated by the autophagy-related (ATG) genes 
originally identified in yeast and their mammalian homologs.19 Being 
initiated, autophagy progresses through a series of consecutive steps, 
starting from the formation of a pre-autophagosomal membrane 
phagophore, its further maturation into a double-membrane-limited 
autophagosome, which then fuses with lysosome for degradation of 
sequestered cargoes. Several proteins can be used as specific markers 
to evaluate the progression of autophagy such as ATG9 protein at the 
phagophore assembly, microtubule-associated protein, 1A/1B-light 
chain 3 (LC3)-II protein (membrane form of LC3 protein) at the 
stage of elongation and formation of autophagosome or p62 protein 
(which is a selective autophagy substrate protein) at the final stage 
of autophagy.19 Nevertheless, high-resolution transmission electron 
microscopy allowing to distinguish double-membrane-limited vacuoles 
filled with different cargoes remains the “gold standard” to assess 
autophagy in tissues.22

Autophagy has been shown to regulate germ cell maturation in 
animal models.23,24 It interferes at the spermiation stage when round 
spermatids undergo metamorphosis process leading to the formation 
of the streamlined spermatozoa.25 Conditional knockout of autophagy-
related genes in mice severely affects the fertility, resulting in generation 
of functionally disabled spermatozoa showing the signs of immaturity 
(malformed and/or absent acrosome, large cytoplasmic droplet, and 
decreased motility23,24), resembling those observed in cryptorchid 
animals.26–28

Autophagy is known to be initiated in hyperthermic conditions 
under which it acts as the primary cytoprotective mechanism, 
preventing the accumulation of protein aggregates and damaging 
organelles formed in cells exposed to heat shock.29 Elevated 
environmental temperature within the body cavity is believed to be 
a primary factor affecting spermatogenesis in cryptorchid testes.30–32 
While the molecular mechanisms behind this have not been fully 
determined, later stage haploid germ cells seem to be the most 
susceptible when exposed to abdominal temperature.5 A study from 
experimental cryptorchid rat model revealed an involvement of 
autophagy in testicular spermatogenesis damage.33

To our knowledge, no information on autophagy status in sperm 
cells from patients with cryptorchid history is available to date. In this 
work, we aimed to evaluate the status of autophagy in spermatozoa 
from patients who underwent orchidopexy during childhood by 
immunohistochemistry and electron microscopy.

PATIENTS AND METHODS
Patients
Semen samples were obtained from the French Biobank 
GERMETHEQUE from 10 patients with cryptorchid history and 8 as 
control individuals attending the Laboratory of Reproductive Biology 
CECOS (University Hospital Center of Rennes, Rennes, France) for 
assisted reproduction technology or before vasectomy, respectively. 
All patients displayed a normal karyotype and neither radiotherapy 
history nor chemotherapy. The study was approved by the Local Ethics 
Committee (CE GMR 17-03 Rennes, France) and was conducted in 
accordance with the Helsinki II declaration and with the French law 
on clinical research. Informed and written consent was obtained from 
all individual participants included in the study.

Semen collection
Semen samples of the patients were collected by masturbation after 
3–5 days of sexual abstinence and examined after liquefaction for 
30 min at 37°C. Sperm volume and pH, concentration and motility 
of spermatozoa were evaluated according to the World Health 
Organization guidelines.34

Immunocytochemistry
S emen samples  were  smeared  on Thermo S c ient i f ic™ 
SuperFrost™microscope glass slides (Z692255-100EA, Sigma-Aldrich, 
St. Louis, MO, USA). Samples were then fixed with 4% paraformaldehyde 
(PFA)/PBS (R37814, Invitrogen, Waltham, MA, USA; BE17-512F, 
Lonza, Basel, Switzerland) for 10 min, washed three times with PBS and 
dried out at room temperature for 1 h. The samples were permeabilized 
with 0.1% Triton X-100/PBS (T8787, Sigma-Aldrich), briefly washed 
and incubated overnight with primary antibodies diluted 1:250 in 1% 
bull serum albumin (BSA)/PBS (A9647, Sigma-Aldrich) at 4°C. All 
primary antibodies were rabbit polyclonal antibodies from Novus 
biologicals (anti ATG9 [NB110-56893], anti LC3 [NB100-2220] 
and anti p62 [NBP1-48320]; Centennial, CO, USA). Next day the 
samples were washed in PBS, and then incubated with secondary 
antibodies (Chicken anti-Rabbit Alexa-448, dilution 1:500 in 1% 
BSA/PBS; A-21441, Invitrogen), at room temperature for 1 h, washed 
and counterstained with 0.5 µg ml−1 4,6-diaminido-2-phenylindole 
(DAPI, 62247, Thermo Fisher Scientific, Waltham, MA, USA). To check 
for the specificity of antibodies, the control experiments were carried out 
using the control peptides from Novus biologicals: NB110-56893PEP 
(for ATG9) and NB100-2220PEP (for LC3) according to the supplier’s 
protocol. To this end, 5 μl (10 × excess) of blocking peptide was added to 
250 μl of the primary antibody (dilution 1:250 in 1% BSA/PBS). The mix 
was incubated for 1 h at room temperature with gentle stirring, and then 
dropped on the slides. The slides were incubated overnight at 4°C and 
then processed as described above. In additional control experiments, 
a nonimmune rabbit serum (933B-02, MERCK, Darmstadt, Germany; 
dilution 1:250 in 1% BSA/PBS) was applied instead of the primary 
antibody. The slides were observed under an upright Nikon Eclipse 
NiE microscope (Nikon Instruments Europe B.V., Amstelveen, the 
Netherlands). The pictures were taken using an Orca–R2 C10600 camera 
(Hamamatsu, Hamamatsu City, Japan).

Transmission electron microscopy (TEM)
Semen samples were diluted in Ferticult IVF medium (FECV050, Fertipro, 
Beernem, Belgium) 1:5 (v/v), then centrifuged at 600g for 10 min 
(Heraeus Multifuge X1R Centrifuge 75004250, Thermo Fisher Scientific, 
Osterode am Harz, Germany). The pellet was fixed in 2.5% glutaraldehyde 
(16220, Electron Microscopy Sciences, Hatfield, PA, USA)/cacodylate 
buffer (0.1 mol l−1, pH 7.2; 11650, Electron Microscopy Sciences), at room 
temperature for 1 h, then washed in cacodylate buffer for a further 30 min. 
The samples were postfixed in 1% osmium tetroxide (19150, Electron 
Microscopy Science) for 1 h at room temperature, then dehydrated through 
graded alcohol series (20821.296, VWR Chemicals, Radnor, PA, USA), 
and embedded in Epon 812 resin (45345, Sigma-Aldrich). Ultrathin 
sections of 80 nm were cut using Leica Ultracut UCT Ultramicrotome 
(Leica Biosystems, Wetzlar, Germany), contrasted with uranyl acetate 
and examined at 120 kV with a JSM-4000 electron microscope 
(JEOL, Tokyo, Japan). Images were captured digitally by an Orius 
1000 camera (Gatan, Abingdon, United Kingdom).

Statistical analyses
GraphPad Prism Software (GraphPad Software, Inc., San Diego, CA, 
USA) was used to conduct statistical analyses. Two-tailed Student’s t-test 
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for unpaired data was used to evaluate single comparisons between 
different experimental groups, which exhibited Gaussian distribution 
as checked by Shapiro–Wilk normality test using GraphPad Prism 
Software. Differences were considered statistically significant for a 
value of P < 0.05.

RESULTS
Clinical data
Ten cryptorchid patients attending the Laboratory of Reproductive 
Biology CECOS (University Hospital Center of Rennes, France) for 
assisted reproduction technology and eight normozoospermic individuals 
before vasectomy were enrolled in this study. The results from clinical 
analysis are summarized in Table 1. The data show a strong decrease of 
semen parameters (concentration, mobility, and the percentage of normal 
forms of spermatozoa) in men with cryptorchid history.

Immunolocalization of autophagy-related proteins in spermatozoa 
from cryptorchid and control patients
To assess the autophagy status in cryptorchid spermatozoa, we 
analyzed the immunodistribution of autophagy proteins which are 
specific markers of different stages of autophagy in comparison with 
the control samples.

In both normal and cryptorchid spermatozoa, the early 
autophagy marker ATG9 protein was mainly detected in the sperm 
head, namely, in its apical region (Figure 1). Isolated anti-ATG9 
points were also detected in the spermatozoon neck, probably in 
association with the basal body (Figure 1a, inset 1, arrowhead). In 
some spermatozoa from both normal and cryptorchid patients, a 
very strong anti-ATG9 immunoreactivity was noticed in the sperm 
head equatorial segment, whereas the apical region was almost free of 
anti-ATG9 immunostaining (Figure 1a, inset 2; Figure 1b, inset 2). 
In control preparations (treatment of samples with primary antibody 
preincubated with ATG9 blocking peptide), only a faint homogenous 
green staining was observed in both spermatozoon head and tail 
(Figure 1c). We divided the ATG9 staining profiles in the specimens 
from control and cryptorchid patients into two types (type 1 and 
type 2; Figure 1 legend). Statistical analysis did not reveal significant 
difference in the repartition of ATG9 staining profiles between both 
groups analyzed (Figure 1d).

The immunolocalization of the autophagosome marker LC3 
protein was not the same as that of ATG9. In control spermatozoa, 
the anti-LC3 immunostaining was detected in the acrosome 
and in the midpiece of the tail (Figure 2a). In some cases, faint 
immunostaining was also detected in the flagellum (Figure 2a). Some 
spermatozoa from normozoospermic patients also exhibited a strong 
anti-LC3 immunoreactivity in the sperm head equatorial segment 
(Figure 2a, arrow). In spermatozoa from men with cryptorchid 
history, anti-LC3 immunoreactivity was more pronounced compared 

to the control. The strongest anti-LC3 immunoreactivity was detected 
in the spermatozoon tail. Indeed, the neck and the midpiece were 
strongly stained with anti-LC3 antibodies (Figure 2b). Of note is that 
both the axial filament and the end piece of the flagellum were also 
stained with anti-LC3 antibodies. We divided LC3 staining profiles in 
the specimens from control and cryptorchid spermatozoa into two 
types (type 1 and type 2; Figure 2 legend). In type 1 spermatozoa, a 
faint anti-LC3 immunostaining was detected in spermatozoa head 
and tail, including axial filament, whereas in type 2 spermatozoa, 
anti-LC3 immunostaining was present in the equatorial segment, in 
the acrosome and in the midpiece of the tail. Control experiments 
using LC-3 blocking peptide demonstrated the specificity of LC-3 
staining (Figure 2c). Statistical analysis revealed the quasi-equivalence 
of type 1 and type 2 LC3-immunodistribution in cryptorchid patients 
compared to the control, in which the type 2 immunodistribution was 
prevalent (Figure 2d).

In control specimens, immunostaining against autophagy 
substrate p62 protein was detected in the postacrosomal region of the 
spermatozoa and in the midpiece of the tail (Figure 2e). No specific 
anti-p62 immunostaining was detected in sperm cells from the 
patients with cryptorchid history (Figure 2f). Control experiments 
using rabbit non-immune serum demonstrated the specificity of p62 
staining (Figure 2g). Only rare spermatozoa from cryptorchid patients 
presented a faint anti-p62 immunostaining (Figure 2f and 2h).

Table  1: Semen parameter values  (mean±standard error) of men with 
cryptorchid history and fertile control

Variables Cryptorchid 
history (n=10)

Control 
(n=8)

Age (year) 34.5±1.6 33.5±2.3

Volume of ejaculate (ml) 2.5±0.4 3.6±0.3

Sperm concentration (106 ml−1) <0.1 90.5±17.8

Motility (%) 10.0±5.7 53.5±3.8

Morphology (percentage of normal forms, %) NDa 48.2±3.9

Cryptorchid’s laterality (unilateral/bilateral) 5/5 0
aAccording to David classification. ND: not determined  (data are missing about morphology 
of cryptorchid spermatozoa because they were rare)

Figure 1: Immunodistribution of ATG9 protein in spermatozoa from (a) normal 
and (b) cryptorchid patients. IF analysis shows anti-ATG9 staining (green) in 
apical region of sperm head (type 1 staining), spermatozoon neck (arrowhead) 
and sperm head equatorial segment (type 2 staining, arrow). The pictures were 
merged with DAPI-stained nuclei (blue). 1 and 2 are higher magnifications 
of fragments from a and b. (c) A control specimen treated with the primary 
antibody preincubated with corresponding blocking peptide (see Patients and 
Methods; upper panel). Bottom panel is the merge with DAPI-stained nuclei. 
All pictures in a, b, and c were taken at the same exposition time. (d) Histogram 
showing the relative quantity of type 1 and type 2 spermatozoa in the 
preparations from normal and cryptorchid patients. ATG9: autophagy-related 
9; IF: immunofluorescence; DAPI: 4,6-diaminido-2-phenylindole.
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Thus, the distribution of several autophagy-related proteins 
in cryptorchid spermatozoa shows a deviation compared to the 
control. To confirm our immunocytochemistry results, we carried 
out a TEM analysis to compare spermatozoa from control and 
from patients.

TEM analysis of spermatozoa from cryptorchid and control patients
TEM analysis revealed numerous morphological abnormalities 
in sperm samples from cryptorchid patients. Immature forms of 
spermatozoa were extremely frequent in those specimens. Immature 
cells were recognized by misshapen, round or elliptic nuclei with 
uncondensed chromatin, large cytoplasmic droplets, coiled altered 
axonemes, and aberrant acrosomes (Figure 3 and 4).

The midpiece of cryptorchid spermatozoa did not present regularly 
arranged mitochondria. While in control specimens, mitochondria 
were approximately equal in size and regularly arranged (Figure 3a), 
in cryptorchid specimens they had a more disordered arrangement 
and showed more variation in size (Figure 3b–3e). In rare cases, 
acephalic spermatozoa with abnormally large mitochondria were 
also detected (Figure 3d). In contrast to control (Figure 3a), in 
cryptorchid sperm, a large body of mitochondria were scattered in 
cytoplasmic droplets without forming the gyres around the axoneme 
(Figure 3b–3d). The asymmetry of mitochondrial gyres with an 
increased number of mitochondria was also detected (Figure 3e). In 
overall, mitochondria from patients with cryptorchid history often 
looked swollen (Figure 3d) and partly disorganized (Figure 3b and 3c) 
compared to the control (Figure 3a).

We often detected double-membrane-limited vacuoles in large 
cytoplasmic droplet in cryptorchid spermatozoa, close to disorganized 

mitochondrial gyres (Figure 4a and 4b). By morphological criteria, 
these vacuoles corresponded to autophagosome vesicles. We also 
detected autophagosomes in close proximity to aberrant nuclei 
in sections passing through postequatorial segments of sperm 
head (Figure 4c and 4e). The content of autophagic vacuoles was 
heterogeneous, so that some of these vacuoles were filled with partly 
degraded vesicular material (Figure 4b–4d), others contained the 
remnants of mitochondria (Figure 4e and 4f). On the contrary, we 
never observed double-membrane-limited autophagosome vesicles 
in the sperm cells from control patients.

Collectively, TEM data are in agreement with immunofluorescence 
(IF) analysis, manifesting activation of autophagy in cryptorchid 
spermatozoa. To our knowledge, we reveal for the first time the 
presence of autophagosomes filled with heterogeneous content in 
human cryptorchid spermatozoa.

DISCUSSION
Here, we show for the first time an increased status of autophagy 
in sperm cells from cryptorchid patients, probably related to testis 
hyperthermic conditions. Autophagy is involved in spermatogenesis.35–37 
Autophagosomes are detected in cultured rat spermatocytes.38 In mouse 
germ cells, heat stress induces autophagy in addition to apoptosis.39 
Moreover, exposition of ejaculates to elevated temperature also 
increases autophagy in human sperm.40

In the present study, the activation of autophagy in the cryptorchid 
sperm was demonstrated by IF and TEM experiments. Using antibodies 
against the main autophagy membrane protein LC3-II, we revealed a 
pronounced immunostaining in the midpiece of the tail in cryptorchid 
sperm compared to control. Such strong anti-LC3 immunostaining in 

Figure 2: Immunodistribution of LC3 and p62 proteins in spermatozoa from normal and cryptorchid patients. (a) Faint anti-LC3 immunoreactivity (green) 
is detected in spermatozoa head and tail including axial filament (type 1 staining); in head equatorial segment (arrow), acrosome and the midpiece of the 
tail (type 2 staining). Note no staining in the axial filament and the end piece of flagellum in type 2 spermatozoa (arrowhead). (b) Pronounced anti-LC3 
immunostaining is detected in acrosome and along the tail of cryptorchid spermatozoa including axial filament and end piece of flagellum (type 1 staining); 
very strong anti-LC3 immunostaining is present in the midpiece (b, arrowhead), but not in the axial filament in type 2 spermatozoa. (c) A control specimen 
treated with the primary antibody preincubated with LC3-blocking peptide (see Patients and Methods; upper panel). Bottom panel is the merge with 
DAPI-stained nuclei. (d) Histogram showing the relative quantity of type 1 and type 2 spermatozoa in the preparations from normal and cryptorchid patients. 
(e) Postacrosomal region (arrow) of control spermatozoa and the midpiece of the tail were stained with anti-p62 antibodies. (f) Anti-p62 immunostaining 
in cryptorchid spermatozoa. (g) Control specimen incubated with nonimmune rabbit serum instead of the primary antibody (upper panel). Bottom panel is 
the merge with DAPI-stained nuclei. (h) Histogram showing the relative quantity of spermatozoa stained with anti-p62 antibodies in the preparations from 
normal and cryptorchid patients. **P<0.05. LC3: microtubule-associated protein, 1A/1B-light chain 3; DAPI: 4,6- diaminido-2-phenylindole.
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sperm tail midpiece was also reported after the treatment of ejaculates 
from normozoospermic patients with bafilomicin A, a drug currently 
used to assess autophagic flux.40 Anti-LC3 immunoreactivity was also 
observed in the acrosome and in the equatorial segment in both patient 
and control sperms. These data were confirmed by TEM analysis, 
which discerned numerous double-membrane-limited vacuoles, 
filled with heterogeneous contents in cryptorchid sperm. Autophagic 
vacuoles were detected not only in sperm tail midpiece, but also in the 
sperm head and in cytoplasmic droplets, which were often present in 
cryptorchid specimens. Of note, no autophagic vacuole was observed in 
sperm cells from normozoospermic controls. The presence of anti-LC3 
immunostaining detected in the acrosome of control specimens could 
be due to the soluble form of LC3 protein, which is not associated with 
autophagic vesicles.19

Remarkably, the most frequent cargoes enclosed into the 
autophagosomes from cryptorchid sperm contained partly degraded 
mitochondria. This attests to the activation of mitophagy – a sort 
of selective autophagy which specifically targets the aberrant and 
damaged mitochondria.41 The p62 protein is a specific adaptor 
in autophagy/mitophagy;42 it accumulates when autophagy is 
inhibited, whereas it is degraded when autophagy is induced.40 

Thus, the undetectable level of p62 in cryptorchid sperm is in good 
agreement with TEM observations revealing the strong signs of 
autophagy/mitophagy in cryptorchid specimens.

Increased mitophagy implies a mitochondrial damage in 
cryptorchid sperm. It agrees with our TEM data, which unveil numerous 
abnormalities in sperm cell mitochondria. As usual, mitochondria from 
cryptorchid sperm appear swollen and partly disorganized compared to 
control ones. Besides, the abnormal assembly of mitochondria around 

the axoneme, and the asymmetry of mitochondrial gyres were observed 
(Figure 3b and 3e). Our finding corroborates the study of seminal 
plasma from cryptorchid stallion,43 in which abnormal mitochondria 
were also frequent in sperm cells. Together, these data suggest that 
sperm mitochondria are particularly vulnerable in cryptorchidism, 
being the substrate for autophagic degradation.

Because hyperthermic environment in body cavity is considered as 
the primary factor affecting spermatogenesis in cryptorchid testes,30–32 
its involvement in mitochondrial damage seems likely. We found 
no literature information on the temperature resistance of sperm 
mitochondria. Nevertheless, hyperthermia impairs heart mitochondria, 
leading to the generation of reactive oxygen species (ROS) in 
mitochondrial matrix44 and mitochondrial membrane damage. 
Interestingly, autophagic vacuoles containing damaged mitochondria 
have been found in germ cells from heat stressed mouse testes.39 
Data from adipose tissue also support the involvement of mitophagy 
in regulation of mitochondrial homeostasis during temperature 
challenge.45 Thus, the abnormal temperature environment should be 
among the factors inducing mitochondrial damage and the activation 
of mitophagy in cryptorchid sperm. Besides, impaired mitochondrial 
integrity we detected in cryptorchid samples could be related to 
epididymis anomalies. Indeed, maturation and modification of the 
outer mitochondrial membrane occur during sperm transit through 
epididymis; the failure of this process results in asthenozoospermia.46 
Because cryptorchidism is associated with epididymis anomalies,13,47 

Figure 3: Transmission electron microscopy analysis of normal and 
cryptorchid spermatozoa. (a) Longitudinal section of spermatozoa from 
control man presents 13–14 mitochondrial gyres in a regular arrangement. 
Longitudinal sections of spermatozoa from cryptorchid men manifesting (b 
and c) partly packaged, (d) unpackaged mitochondrial gyres and (b and d) 
aberrant mitochondria in large cytoplasmic droplet. Note the nuclei with an 
uncondensed chromatin in b and c, (c) partly detached nuclear envelope 
(asterisk), or (b) those (arrow) forming swirling invaginations into the 
cytoplasm, and (d) seemingly acephalic spermatozoon. (e) Cross-section 
passing through the connecting piece/midpiece of spermatozoon reveals 
both intact and damaged mitochondria (arrowhead) gyred around the correct 
axoneme. a: acrosome; ra: reacted acrosome; m: mitochondria; am: aberrant 
mitochondria; n: nucleus; si: swirling invaginations.
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Figure 4: Transmission electron microscopy analysis of cryptorchid spermatozoa 
reveals autophagic vacuoles. (a) Longitudinal section of cryptorchid 
spermatozoon, exhibiting the nucleus with uncondensed chromatin, 
partly detached nuclear envelope (arrow), and coiled axoneme (ca). The 
large cytoplasmic droplet contains the autophagic vacuoles (arrowheads), 
located next to irregular gyres of damaged mitochondria (m). (b) A higher 
magnification of the selected area from a. Note double membrane-limited 
autophagic vesicles (arrowheads) containing partly degraded vesicular 
material. Cross-sections of cryptorchid spermatozoa pass through the 
postequatorial segment of the heads, which manifest (c) chromatin 
rarefaction and (e) granulation. (e) Coiled aberrant axonemes (ca) and the 
fragments of segmented columns (sc) forming conico-cylindrical sleeve are 
scattered in the cytoplasm. (d) Double-membrane-limited autophagosomes 
(arrowheads) filled with vesicular material locate in close proximity to (c) the 
nucleus, (e) while partly degraded mitochondria (asterisk) are next to plasma 
membrane and seemingly fusion with it. d and f are higher magnifications 
from selected area from c and e, respectively showing (d) double membrane-
limited autophagosomes (arrowhead) enclosing vesicles or (f) mitochondria. 
m: mitochondria; n: nucleus.
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