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Abstract

Home-work commuting has always attracted significant research attention because of its impact on human mobility. One of
the key assumptions in this domain of study is the universal uniformity of commute times. However, a true comparison of
commute patterns has often been hindered by the intrinsic differences in data collection methods, which make observation
from different countries potentially biased and unreliable. In the present work, we approach this problem through the use
of mobile phone call detail records (CDRs), which offers a consistent method for investigating mobility patterns in wholly
different parts of the world. We apply our analysis to a broad range of datasets, at both the country (Portugal, Ivory Coast,
and Saudi Arabia), and city (Boston) scale. Additionally, we compare these results with those obtained from vehicle GPS
traces in Milan. While different regions have some unique commute time characteristics, we show that the home-work time
distributions and average values within a single region are indeed largely independent of commute distance or country
(Portugal, Ivory Coast, and Boston)–despite substantial spatial and infrastructural differences. Furthermore, our comparative
analysis demonstrates that such distance-independence holds true only if we consider multimodal commute behaviors–as
consistent with previous studies. In car-only (Milan GPS traces) and car-heavy (Saudi Arabia) commute datasets, we see that
commute time is indeed influenced by commute distance. Finally, we put forth a testable hypothesis and suggest ways for
future work to make more accurate and generalizable statements about human commute behaviors.
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Introduction

With the advent of various big data initiatives and their

concomitant analytics, it has become increasingly feasible to study

human behavior at a massive scale. One particular avenue of

research that has attracted considerable attention has been in

human mobility. Researchers have made progress in this effort

using a variety of data sources such as circulating bank notes [1],

taxi trip records [2,50–51], Foursquare check-in data [3], Tweets

[52], and even GPS devices [4–6].

While these different sources are promising, and lead to many

similar conclusions about human mobility, they are often limited

in scale (GPS traces and taxi records), limited in data resolution

(bank notes), or limited in adaptation (Foursquare). In contrast,

currently, mobile phone records seem to be the source that

overcomes all these inherent constraints: a mobile phone is

typically carried by an individual throughout the day and thus

accurately tracks the mobility pattern on an individual level, and is

widespread enough in terms of adaptation–even in developing

countries–that it allows us to adequately sample the country-wide

population (unlike taxi, Foursquare, or GPS traces). Indeed,

previous studies have utilized cellphone call detail records (CDRs)

to infer various characteristics of human mobility. For example,

González et al. [7], using a European dataset, quantified the scale-

free nature of human mobility at different length scales. Likewise,

Song et al. [8] subsequently answered the more fundamental

question about how predictable human mobility is from the CDR

data. Simini et al. [9], were able to propose a universal model for

human mobility based on observations in the census data and

confirmed the model with mobile phone data. Similarly, Amini et

al. compared the CDR data from different countries to infer the

influence of social/cultural boundaries on human mobility

[35,42]. Despite criticisms regarding the potential sampling biases

of CDRs [10–11], to date CDRs remain as one of the most

comprehensive and versatile data sources in helping us understand

large-scale human mobility.

Of specific interest in this domain is the study of human

mobility in the context of our commute behaviors, as insights from

such pursuits often have potent and far-reaching implications in

urban planning, infrastructure construction, and even epidemiol-

ogy. The first forays into this area using CDRs come from Becker

et al. [12], who used the bulk mobile network data to understand

the daily and nightly profiles of activities in Morristown, NJ. More

recently, Issacman et al. [13] undertook a comparative study of

daily commute patterns over two U.S. cities (New York and Los
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Angeles). While these studies have laid the groundwork for some

key insights into the behavioral patterns in human commuting,

they have been rather limited in scope. By focusing on a few select

cities specifically in the U.S., the similarities and differences

observed are perhaps more accountable to regional determinants,

as opposed to fundamental cultural and/or evolutionary factors. If

we really wish to understand the characteristics of human

commute patterns, we also need to set our eyes more broadly to

countrywide datasets that come from different parts of the world.

As a proof of concept, we have focused on Portugal (in Europe)

and Ivory Coast (in Sub-Saharan Africa) for our study.

Of particular note, there exists a long-lasting debate about the

universal uniformity of commute times, to which our analyses are

poised to contribute. For example, in the prior studies on

commuting patterns, Levinson and Kumar [14] noted that while

commute speed and distance traveled may depend on the

residential density, the effect on commute time seems ambiguous.

Indeed, according to Kenworthy and Laube [15], and later to the

2010 American Community Survey [16], for American cities of

various sizes (area and population), commute time seems

surprisingly consistent at about 25–35 minutes. This is reflected

in Figure S1, where we see that–despite wide differences in

population size–mean commute times appear steady. A recent

report by OCED in 2011 [17] echoes similar conclusions for

various developed countries. Schwanen and Dijst [18], using the

1998 Dutch National Travel Survey, also proposed that the

commute time as a fraction of total work time is roughly constant

at 10%, which for an individual working 8 hours is about

30 minutes. Other studies have variously reported this ‘‘daily time

constant’’ as 1.1 hours [19], 1.2 hours [20], or 1.3 hours [21].

This, in general, reflects what is known as Marchetti’s constant, or

what we will call the ‘‘constant travel time budget hypothesis’’,

which posits that humans, since Neolithic times, budget approx-

imately one hour per day on travel, independent of location,

modes of transport, and other lifestyle considerations [22]. While

we cannot easily infer individuals’ commute behaviors that far

back in time, an analysis [14] of datasets from Washington, DC

from 1957–1988 suggests that the commute time is fairly stable at

least within these three decades. Another camp of researchers has

argued against this hypothesis. Goodwin [36], for example,

reasoned that from the point of view of human psychology, a

constant time budget would not be reasonable. Golob et al. [37]

also pointed out that time expenditures tend to be inflexible in the

short term (thereby giving rise to the apparent constant travel time

observation), but more flexible in the long term. This view is

corroborated by van Wee et al. [38], who showed that from various

Dutch datasets, the commute time seems to have increased over

the past decade. Similar conclusions were reached by Levinson

and Wu, who studied commuting in the Twin Cities (USA) from

1990–2000 [39]. In addition, there are also studies showing that

commute times not only vary by the cities within the same country

[23], but also by the timing of the commute [24].

Mokhtarian and Chen [25], by agglomerating the findings from

various studies, put together perhaps the most comprehensive

review of the constant travel time budge hypothesis. They posited

that travel time expenditures seem to change with factors such as

income level, gender, and modes of transport. However, as the

authors acknowledged, there still exists the possibility that travel

time is constant over a city’s entire commuting population (without

subdividing the commuters into groups by mode of transport,

income level, etc.). The researchers conceded that there may be

significant limitations to their analyses, as their conclusions were

borne out of a meta-analysis of diverse commute-related datasets,

and as a result, there may very easily be confounding factors–such

as survey types/questions [26], analysis units [27–28], types of

trips included [29–30]–in how the data are collected/analyzed

that would have influenced the observed outcomes.

We propose the use of mobile phone signaling data to minimize

these possible confounding factors. While there is no guarantee

that individuals across all countries/cultures share the same call

patterns, these cellphone datasets still contain some ‘‘common

denominators’’ from which mobility behaviors have been inferred

in previous studies. Therefore, given access to different mobile

phone datasets at the country level (Ivory Coast, Portugal, and

Saudi Arabia) and the city level (Boston), as well as a car-only GPS

tracking dataset (Milan), we attempt to support/refute the constant

travel time budget hypothesis. Investigating this hypothesis has

important implications at the policy level, as it dictates how the

population behaves when new modes of transport, roads, or other

infrastructures are built [31].

In this study, we focus on a specific type of commute known as

home-work commuting. While the term ‘‘commute’’ may be more

broadly defined to include any repeated trip between two or more

locations, most of the studies cited above explore commute in the

specific context of that between home and work. We first describe

a methodology for inferring the home/work locations and

aggregate commute patterns from mobile phone calls in different

countries/cities, in comparison with the car-only GPS traces from

Milan. While it is generally not possible for commute times to be

accurately measured using mobile phone calls alone, the timing of

the last call from home and the first call from the workplace is used

(only for users who make frequent calls) as a proxy from which an

individual’s morning commute time can be gauged, and vice versa,

for the evening commute time. We then test the methodology by

investigating some interesting commute patterns. We close this

study by testing a specific version of the constant travel time

budget hypothesis with respect to people’s commute behaviors.

While this proxy for commute time, as defined above, generally

results in an overestimation of the commute interval, we also

describe approaches in which the actual commute time can be

more accurately estimated in future studies.

Materials and Methods

We examined five different datasets. The first four sets (‘‘Ivory

Coast’’, ‘‘Portugal’’, ‘‘Saudi Arabia’’, and ‘‘Boston’’) are mobile

phone signaling data, while the fourth set (‘‘Milan’’) consists of

GPS traces of cars. More details about these datasets can be found

in the Results section below, as well as in Table 1.

Spatial and Temporal Filtering
For the cellphone-based datasets, because of the inhomoge-

neous arrivals of the calls from each user, in order to create some

temporal uniformity required for Markov modeling, we employed

time filtering by subsampling the data at 10-minute intervals. In

instances where the inter-event period is more than 10 minutes

apart, we assumed that the caller stayed at the original cell tower

during this time period. Because for callers in areas with dense

overlapping cell towers, it is a concern that the cellphone could

randomly switch amongst different cell towers even if the caller

actually did not move, we also employed spatial filtering using the

same method as described in Calabrese et al. [32]. Essentially, we

treated all movements within 1-km radius of the original cell tower

as ‘‘noise’’ and counted movements that only exceeded this 1-km

circle. In the case of the Milan GPS dataset, in order to make the

data comparable to the CDR data, we first discretized the Milan

Metropolitan Area into a mesh of grids 0.5 km by 0.5 km in size.

The individual’s GPS trace is accordingly discretized in the

Exploring Universal Patterns in Human Commuting from Mobile Phone Data
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context of these grids, and applied a 1 km by 1 km low-pass step

filter. If any user exhibited unusual mobility behaviors (such as

moving at unrealistic speeds of 120 km/h or more), then typically

the entire trace is discarded.

Constructing Individuals’ Travel Portfolios
Before we defined the home/work locations of each user, we

first constructed an individual’s ‘‘travel portfolio’’: a list of cell

towers that the individual frequented, ranked by the time the

individual spent in each place. Namely, the tower where the caller

spent most of his/her time would be given a rank of 1, and so

forth. This allowed us to construct a profile of each user’s

movement as he/she moved from a tower of a certain rank to a

tower of a different rank, or spent a certain time in a tower of a

given rank. In the case of the Milan GPS dataset, having obtained

each user’s GPS trace in a series of grids, we then identified the

most frequently visited grids (measured by the cumulative time

spent in each grid). Then the frequently visited places were ranked

at the grid-level resolution. The sample GPS trace of one user is

shown in Fig. S2(b) as an illustration of this method.

Identifying Home/Work Locations
To identify the home/work locations, we first filtered out calls

on Saturdays and Sundays, because in the countries/cities of

study, people tend not to go to work on these days of the week.

Due to the fact that weekends are defined differently in Saudi

Arabia, we filtered out all activity on Thursdays and Fridays in the

STC dataset. Then we filtered out the call sequences that are too

infrequent to give a meaningful estimate. To do this, we only

considered sequential calls that are spaced less than 16 h apart,

and assumed that after a call, the caller stays at the same location

until the time of the next call. From this analysis, we were able to

assign the total daytime and nighttime periods spent in each

location, with the thresholds set at 8 a.m. and 8 p.m., respectively.

If an inter-call period happened to span across the day/night

thresholds (of 8 a.m. and 8 p.m.), then we split the interval at the

threshold and assign the daytime and nighttime intervals

correspondingly. For each user, we identified the daytime and

nighttime locations in which the user spends the maximum dwell-

time, as long as such location accounts for more than 50% of the

total observed daytime and nighttime dwell-times in the user’s

travel portfolio. If such pair of day/night places existed, then we

assigned these places accordingly as the home (night) and work

(day) locations. If such places do not exist for the user, we

disregarded the user. Our method is roughly similar to that used

by Phithakkitnukoon et al. [33], but we imposed a more stringent

filtering by requiring each user to spend more than 50% of the

total observed daytime/nighttime dwell-times for the place to be

identified as the work/home location. While this stringent filtering

ensures that spurious signals are minimized, it also limits the scope

of our study by excluding certain occupations without a fixed

location at a fixed time of the day (such as salesmen, drivers, etc.).

While it is certainly possible that people with these occupations still

have well-defined office spaces and homes, their home/work

locations will be much more challenging to identify using our

methodology described above. Insofar that these people consist of

a small fraction of all commuting population, we have chosen to

ignore them from our study. In brief, our analysis is for steady

working people with clear home and work locations. In general,

due to our stringent filtering method, about 7% (Portugal) to 11%

(Ivory Coast and Saudi Arabia) of all users available in a dataset

will have well-defined home/work location pairs from which

further analysis can proceed.

In the Milan GPS dataset, the home/work locations are

estimated in a similar manner, with the assumption that the

individual always stays in proximity to his/her car. This

assumption is not always valid, as the individual may park his/

her car and run several errands at the same time. Despite potential

inaccuracies that arise due to these behaviors, the nature of the

GPS dataset makes accounting for such behaviors impossible,

unless the same dataset can be overlaid user-by-user against other

mobility-related datasets (such as a CDR dataset of Milan, which

was not available to us).

Computing Commute Distance
Once the home/work locations are identified, then we

computed the commute distance as the great circle distance

between the home and work locations. There are many

approaches in literature to estimate the commute distance: for

example, the crow-fly distance (either the great circle distance or

the Euclidean distance) [44], the shortest distance path (SDP), or

the shortest time path (STP) [45]. As CDR datasets are unable to

exactly reproduce the routes of commute, unless coupled with

GPS traces or further questionnaire information, we chose to

calculate the crow-fly distance. Of the two approaches (great circle

versus Euclidean distances), the former seems to be more accurate

especially in cases where the commute distance is long. We

realized that the great circle distance is not the most accurate

measure of the actual commute distance. Depending on the modes

of commute (e.g. bus, train, car, etc.), the correction factor

between the actual commute distance and the great circle distance

may differ. In general, for a commute distance greater than 5 km,

this correction factor is quite consistent at about 1.3–1.4 for

different modes of transportation [46]. However, below 5 km, this

factor can either increase drastically (for cars), or decrease (for

public transport). Since the CDR datasets likely include mixed

modes of commute, we can at best say that the under-estimation

for medium/long commutes (,5 km or more) will be consistent,

which will impose a systematic correction factor on our great-circle

commute distance. For shorter commutes (i.e. ,2.5 km), this error

Table 1. Summary of Datasets.

# Name Sponsor Nature Scope Year Fraction represented

1 ‘‘Ivory Coast’’ Orange Mobile phone signaling data Country 2011–2 2.5%

2 ‘‘Portugal’’ Orange Mobile phone signaling data Country 2006–7 19%

3 ‘‘Saudi Arabia’’ STC Mobile phone signaling data Country 2012–13 49%

3 ‘‘Boston’’ AirSage Mobile phone signaling data City 2009 43%

4 ‘‘Milan’’ Octo Telematics GPS traces City 2013 7.5%

The fraction represented shows the approximated ratio of the number of users tracked by each dataset to the total number of potential users in the regions concerned.
doi:10.1371/journal.pone.0096180.t001
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may become significant and dependent on modes of transport, and

this may limit our ability to take accurate commute distance

measurements at short distances. However, with the lack of data

on other details about individuals’ commute, here, we simply take

the great circle distance as a proxy for the commute distance,

which will be always greater than the great circle distance.

As a validation of our method, when we calculated the commute

distances in Portugal, our results are qualitatively consistent with

those found in Phithakkitnukoon et al. [33] from a different

Portugal dataset, even after we applied more stringent filters as

described above. As further verification of the validity of the home-

work distance definition, we also tested for correlation between an

individuals’ commute distance and his/her radius of gyration

(calculated using the method described in González et al. [7], and

we found statistically significant correlations between the two

quantities. Because most of the datasets span a relatively short

period of time, we did not account for the possibility that the

phone user moved his/her home or work location during the

period, and assumed that such events are rare.

Determining Morning/Evening Commuting Times
To estimate the commuting times, we adopt the follow

algorithm. For the morning commute times, for each user, we

identify the timestamps of the last call from the ‘‘home’’ location

and the first call from the ‘‘work’’ location before noon. The

difference between these two timestamps gives us an upper

estimate of the morning commute time. Likewise, for the evening

commute times, for each user, we identify the timestamps of the

earliest call from the ‘‘home’’ location and the last call from the

‘‘work’’ location after noon. Once again, the difference gives us an

upper estimate of the evening commute time. To ensure that our

calculated commute times do not trivially reflect the calling

frequency, we further filtered the dataset so that only those who

called sufficiently frequently (on the order of one call per hour on

average) were included in the final reckoning. These stringent did

filter out more than 95% of the usable dataset, though even so, we

were still able to locate about 20000 (Ivory Coast), 50000

(Portugal), to 260000 (Saudi Arabia) users with identifiable

morning/evening commute times. Furthermore, we also concede

that in this case, our calculated commute times may still be

distorted by the fact that people may not immediate make calls

right before leaving or arriving home/work, and those who make

infrequent calls may appear to have a somewhat larger calculated

commute time. However, given that the previous literature (see the

introduction section above) that commute times typically fall

within 30–60 minutes in duration, and given that we only consider

users whose frequency of call on average are on the same order of

this duration, then if we do indeed observe moves between home/

work locations in the same timeframe, we do not expect latter

factor (inter-call times) to dominate our estimation.

Despite these filtering and correction measures, there are still

some potential limitations about the datasets that can negatively

affect the accuracy of our results and their interpretation. Such

included the differences in the mobile phone usage behaviors

across different users, and notably, across different countries/

cultures. People who call at different times of the day with different

frequencies, for example, can affect our estimations of the

commute times in different locations. There exist more elaborate

correction mechanisms that we may employ to further screen for

these confounding factors. However, given the limited size of the

dataset already (for example, for Ivory Coast, about 500,000 total

users, each traced over only 2 weeks), such more elaborate

methodologies are beyond the scope of our study. However, in the

Discussion section, we review in greater detail the potential

impacts that these limitations may have on the accuracy of our

study of human commute behaviors.

Results

Having developed a common way to parse for home/work and

commute information that can be equally applied to different

datasets, we can then ask what insights this methodology can

reveal to us regarding human mobility and commuting. In this

section, we discuss a few topics/insights about the datasets that

stem from our methodology, and conclude by focusing on testing

the constant travel time budget hypothesis in the context of

commuting.

Data Description
The first dataset (‘‘Ivory Coast’’), provided by Orange telecom,

spans 150 days from December 1, 2011 to April 28, 2012, and

consists of the consecutive call activities of 50,000 randomized

subscribers and is provided as a part of the Data for Development

(D4D) Challenge. Each record in this dataset has the following

output: timestamp, de-identified ID of the user, and the antenna of

connection (one of the approximately 1,200 antennas in Ivory

Coast). This data set is broken into 10 subsets, each of which track

50,000 different subscribers over a two-week period. The 10

subsets are consecutively ordered by the time period so that taken

together, they span the entire period of study, though the 50,000

subscribers in each dataset are re-randomized to ensure anonym-

ity. The second dataset (‘‘Portugal’’), also provided by Orange

telecom, spans 2 years from January 1, 2006 to December 31,

2007, and is similar in its output as the Ivory Coast data set in the

context of Portugal. The size of this set is 400 million CDRs from 2

million users, and has about 6,500 antennas. The third dataset

(‘‘Saudi Arabia’’), provided by Saudi Telecom Company (STC),

covers the entire country of Saudi Arabia, with approximately 100

million daily network connections to over 10,000 unique cell

towers. The total dataset encompasses roughly 14 million devices.

Each individual record holds the caller’s location, precise time and

duration measure, type of connection, and type of service

(subscription, pre-paid, etc.). The fourth dataset (‘‘Boston’’),

provided by AirSage, consists of mobile device signaling data in

the Greater Boston area from 2 million mobile devices over the

course of 4 months from July to October 2009, containing about

900 million records per month. Finally, the fifth dataset (‘‘Milan’’),

provided by Octo Telematics, consists of GPS traces of cars (about

99,000 cars and 18 million positions) in the Milan metropolitan

area over a period of one week. Sample GPS traces and density

plots are shown in Fig. S2. A summary of these datasets is given in

Table 1. All data submitted have been anonymized prior to receipt

and are in line with all local data protection laws.

Location Resolution
There are some concerns of whether or not the distribution of

cell towers in our datasets offer sufficient spatial resolution to

interrogate human commuting behaviors, especially for country-

wide datasets such as Ivory Coast, Portugal, and Saudi Arabia.

Figure 1 in a previous study by Amini et al. [42] attempted to

characterize this spatial distribution in detail. Figure S2(c) in this

paper plots the cell tower density for Saudi Arabia. Notably, the

cell tower spacing is not uniform throughout the countries; rather,

as expected, they are most concentrated within urban areas, often

with an inter-tower spacing of less than 1 km. In rural areas with

very sparse population density, the spacing amongst cell towers

can be more than 100 km apart. This spatial inhomogeneity may

pose concerns regarding the spatial accuracy of our home/work

Exploring Universal Patterns in Human Commuting from Mobile Phone Data

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e96180



commuting characterization, especially in rural areas with large

inter-tower spacing. While in CDR datasets, unlike GPS traces for

example, typically the spatial resolution is beyond our control, we

argue that commute is most interesting and relevant in urban and

semi-urban areas, where cell towers in both Portugal and Ivory

Coast are quite uniform and closely packed. For the rural

commuters (for example, into/out of small provincial towns), the

sparse spacing in rural areas may cause inaccuracies in two

accounts: (1) it can grossly over-estimate the commute distances of

people whose commute happens to cross from one cell tower to the

next with a large inter-tower distance; and (2) it can grossly under-

estimate the commute distances of people whose commute does

not cross cell towers (whose home/work location would be

identical). If it were possible to assume that everyone commutes,

then on the aggregate population level, this error could be

averaged out, giving rise to an estimate that approaches the true

population mean. However, without this assumption, it became

harder to accurate estimate rural commutes, without the aid of

further datasets such as GPS traces on smartphones. Given the

limited datasets available at our disposal, we did not undertake a

detailed quantification of this effect, except noting that the people

who undertake rural commuting make up a minority (in both

countries, less than 5%) of the overall countrywide commuters. In

our study, we filtered out users who spend significant time in a cell

tower that is more than 50 km from adjacent ones, though in a

future larger study with complementary datasets (such as

smartphone GPS traces), there will be more elaborate measures

that can be taken to ensure accuracy of this minority group of

commuters.

On the other hand, while, as discussed above, GPS coordinates

are generally more spatially accurate for quantifying human

mobility compared to cell tower locations, it is still conceivable that

in some areas (such as tunnels or under buildings), the ability to

detect GPS signals may be impaired. If so, such locations may be

under-represented in our data. However, we argue that these

circumstances, in daily commuting conditions, are typically rare.

As shown in Fig. S2(a), for reported GPS coordinates aggregated

over one day in Milan, we can generally see clear delineation of

roads, which is what we expect.

Individuals Display Limited Travel Range during the
Night
In the process of computing an individual’s home/work

locations, it is first necessary for us to determine the individual’s

set of frequented locations. So before we analyze home/work

commuting, we first make an interesting observation on the effect

of day/night on people’s range of travel. Here, ‘‘range’’ is defined

specifically as the size of the set of non-overlapping locations

visited by an individual with a non-zero frequency over the

observed period. Using the analyses described in the methods

section, we quantified how much time (as reflected by the

Markovian self-transition probability) people spend in each

frequented cell tower, and rearranged the cell towers by their

rank number (corresponding to the total dwell time). Figure 1

below shows the average dwell times in locations of different ranks

in an average person’s travel portfolio in Portugal (left, red) and

Ivory Coast (right, blue), categorized by daytime activities (solid

lines with closed dots) and nighttime activities (dashed lines with

open circles), and plotted on a log-log scale. First, from the

daytime activities, we notice that the distribution of dwell times

roughly follow Zipf’s law, with comparable power law coefficients.

This is consistent with prior observations, such as in González et al.

[7]. However, remarkably, during the night time, the distribution

of dwell times show a distinct change in both countries: instead of

following Zipf’s law, the distributions assume a sigmoidal shape,

with a sharp fall-off at around a rank number of 10 (as shown in

the plots below where the two curves intersect). This suggests that

while during the day, people are active over a wide range of places

(represented by different cell towers), during the night time, people

tend to limit their travel destinations by visiting mostly the major

ones. This behavior is consistent in both Portugal and Ivory Coast.

Other datasets show similar results.

Figure 1. Range of mobility during day and night. This is quantified by the mean daily dwell-time that an average individual in Ivory Coast
(right plot) and Portugal (left plot) spends in each of his/her ranked places in the set of non-overlapping frequented places, plotted on a log-log scale,
during the day (solid red lines with crosses) and during the night (dashed blue lines with open circles). While the daytime curves follow roughly Zipf’s
law, the nighttime curves show a distinct sigmoidal behavior.
doi:10.1371/journal.pone.0096180.g001
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Different Locations Show Distinct Commuting Distance
Profiles
Next, we focused on the individual home and work locations

and aggregate commute behaviors in Ivory Coast and Portugal.

We characterized the home/work locations for the different users

based on the technique outlined above. We then estimated each

individual’s commuting distance as the distance between the

home/work cell towers, and plot the probability density function

below in Figure 2, with the inset showing the tail-end behaviors at

long distances plotted on a log-log scale for the different datasets in

different colors.

To better make sense of Figure 2, we first focus our attention on

Ivory Coast, Portugal, and Boston, and will come back to the

special case of Milan. As can be seen in Figure 2, the distribution

of commute distances are significantly different for commute

distances of less than 10 km: there are significantly many more

people in Ivory Coast who live very close to their work place

compared to Portugal or Boston. And yet, for longer commute

distances (more than 10 km), all datasets exhibit similar Zipf’s law

behaviors, with the exception of the Boston dataset. However,

when we performed a two-sided Kolmogorov-Smirmov K-test on

the null hypothesis that the commute distances between any pair

of dataset are drawn from the same distribution, the null

hypothesis was rejected at a very significant level (P,10211),

demonstrating that the distributions, overall, are quite different in

nature. This is also qualitatively observed in Figure S4, which

shows significantly different cumulative distribution functions

across the different datasets. As a crude quantification, we

calculated the mean commute distances of the two countries,

and found Ivory Coast to be 20.2 km, while Portugal to be

25.4 km.

This slight difference, coupled with the earlier observation that

a much larger fraction of Ivorian’s live close to their work places, is

suggestive of the existence of two distinct commuting populations.

The first group, which we will call ‘‘long commuters’’, consists of

people who can afford to live far away from their work places (.

10 km). In Ivory Coast, due to the limited public transportation

infrastructure, members of such group likely possess their own

means of transport (e.g. a car). The long commuters’ behavior is

very similar between Ivory Coast and Portugal. On the other

hand, the second group, which we will call ‘‘short commuters’’,

consists of people who live closer to their work places (,10 km).

Because of the complications of owning their own cars in an urban

environment (e.g. parking, traffic jams), we surmise that this group

is more likely than the ‘‘long commuters’’ to rely on the public

transport or just commute on foot. While in the Portugal and

Boston the public transport is rather well developed and wide-

Figure 2. Distributions of home-work commuting distances, aggregated by countries/cities. The distributions are plotted for Ivory Coast
(blue solid line with closed dots), Portugal (red dashed line with x’s), Saudi Arabia (green solid line with open circles), Boston (black solid line with
open diamonds), and Milan (cyan dashed line with open triangles). The inset plot is the same plot, reproduced on a log-log scale to show long-tail
behaviors of the distributions. The same plots, as cumulative density functions, are shown in Figure S4 for comparative purposes.
doi:10.1371/journal.pone.0096180.g002
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reaching in these regions, which enables people to live further

away from the city and still be able to commute in a timely fashion.

While this explanation is speculative without further supporting

data, it is nonetheless consistent with the observations above in

Figure 2.

In the case of Saudi Arabia, we see that the distribution of

commute distances again diverges significantly from Portugal and

Boston under about 4 km. Similarly to Ivory Coast, many more

individuals live closer to their places of work.

Finally, Milan represents a different case in which the dataset is

GPS traces from cars instead of phone signaling data and therefor

represents only a subsample of all the commuters - drivers. Here,

while the initial distribution is qualitatively similar, the long tail

falls off at a different slope, as shown in the inset. This is likely the

effect of sub-selecting the mobility pattern in which individuals

commute by cars. We see that in the long distance regime of above

30 km in commute distance, such commute distances are less

frequent than the other aggregate mobility datasets. This may

simply reflect the fact that it becomes less economical (from the

perspective of time, fuel, and labor) to operate a car over long-

distance commutes, in preference for other modes of transport

(such as commuter trains) that may be available in the local

context.

Portugal and Ivory Coast Show Distinct Commute Timing
Characteristics
Beyond the bulk commute distances, we are also interested in

further examining any distance-dependent behaviors such as the

timing and time interval of commuting in both countries. Using

the method described in the Materials and Methods section above,

we first computed the timing of the morning/evening commute for

the two ‘‘standard’’ countries in our datasets, namely Portugal and

Ivory Coast. Because CDR data cannot accurately tell us when

exactly a person is making a trip, we used the last call from the

home cell tower in the morning as a proxy for the timing of the

morning commute. Similarly, we used the first call from the home

cell tower in the evening as a proxy for the timing of the evening

commute. We then binned the individuals by their commute

distances (,2.5 km, 2.5–5 km, 5–10 km, 10–20 km, and 20–

50 km), and plot the distribution of the timing of morning/evening

commutes in Figure 3 below.

As seen in both plots, we are able to capture the commute peaks

in the morning (around 8–10 a.m.) and in the evening (around 8

p.m.) in both countries. The peak patterns above are in agreement

with the characteristics observed in the traffic congestion model

proposed by Vickrey [34]. We noted that these distributions can

be reasonably fitted to Gaussian distributions, if we make the

assumption that for a population at a given distance from his/her

work place, the time that each individual makes his/her commute

can be approximated by a random variable with a normal

distribution. Fig. S3(a) outlines this Gaussian fitting approach in

greater detail, and in Fig. S3(b), the goodness of the Gaussian fit is

quantified as a Q-Q plot. As we can see, for the typical commute

domain (for example, around 5 a.m. to 10 a.m. in the morning),

the Gaussian distribution is a reasonable fit. Outside of this

domain, there are generally minor deviations: the CDR-derived

distributions show a ‘‘shorter tail’’ compared to a theoretical

Gaussian distribution (which extends to infinity). This makes

intuitive sense, because in general, people commute in a limited

time window (for example, it would be extremely rare to find

people commuting from home to work at 10 p.m. at night).

Furthermore, our definition of home/work location by the most

frequented night-like/day-like locations also excludes the possibil-

ity of commuting at arbitrary times of the day beyond a certain

reasonable morning/evening window.

In order to better quantify the inherent differences in the timing

of commute in different regions, we measured the peak commute

times in each of the distributions above as a function of the

commute distances. In order to calculate the peak commute times,

we undertook two different methods. In the first method, we

equated the peak commute time for each distribution to the

median time from the entire distribution. This method would

minimize the influence from extreme outliers (such as the low-level

of activities as early in the morning). In the second method, we first

fitted each distribution to a Gaussian distribution, and then

equated the peak commute time with the mean of the fitted

Gaussian. For each method, we plot results below in Figure 4 for

morning commute (left column) and evening commute (right

column), calculating the peak times using the median time method

(first row) and the fitted Gaussian method (second row).

As observed in Figure 4 above, first we note that regardless of

the method of calculation, the existing trends are quite reproduc-

ible. In particular, there is quite a significant dependence of when

people leave home in the morning as a function of the commute

distance in both countries. As expected, the further people live

from their work places, the earlier they opt to leave home in the

morning. If the constant travel time hypothesis were true, then,

this would also imply that people who live further from their work

places would also arrive at work earlier. We then attempted to

quantify the significance of correlation through the Spearman’s

rank correlation test, which is chosen because the x-axis is

qualitative (showing a range of commute distances) while the y-axis

is quantitative. As summarized in the test statistics in Table 2, the

correlation tests for the morning commute timing (based on either

calculation method) as a function of commute distances show

significant negative correlations for both Ivory Coast (r=20.92)

and Portugal (r=20.93) at the 2% significance level.

One caveat for performing the statistical correlation tests here is

that given the limited sample points (5–6 data points per plot), the

results from such tests are generally not useful. We therefore do

not seek to draw strong conclusions from any potential correlations

(or the lack thereof) above regarding the commute times, but

rather only describe these relationships phenomenologically, given

the limited datasets. In the future, if the availability of larger

datasets over longer periods can yield more finely resolved

commute timing as a function of commute distance, then the

same approach described here can be applied with greater efficacy

and statistical significance to evaluate any observed statistical

correlations.

On the other hand, in the evening, the situation is much less

clear-cut. In Portugal, there is a weak position relationship

between how late a person arrives home as a function of how far

he/she lives from work. In contrast, in Ivory Coast, the statistical

tests are unable to show a significant relationship at the 5%

significance level. While, as explained above, due to the small

sample size we cannot draw definitive conclusions, if we assume

that this lack of significant relationship is indeed true for Ivory

Coast, then it may suggest that regardless of the commute

distances, Ivoirians tend to arrive home uniformly between 8–8:30

p.m. in the evening. If this is true, then one potential explanation

for this difference in commute behaviors between the two

countries is the differences in commute conditions. It can be

argued that in Ivory Coast, the commute options are much more

limited, because (1) the limited availability of public transport, and

(2) the hazardous night driving conditions. Therefore, after

nightfall, people are compelled to reach home by a given time,

regardless of how far they live from work. In contrast, in Portugal,
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the availability of public transport and adequate road lighting and

safety conditions mean that people may feel more comfortable

staying later. This may account for the absence of clear

dependence on the time of arrival at home as a function of the

commute distance in Ivory Coast: regardless of how far/close a

person lives, there is a pressure to get home by a certain time.

Without the support of further transportation data specifically

from Ivory Coast (in comparison with Portugal), we acknowledge

that the explanations above remain mostly speculative. However,

in future studies, it will be interesting to couple CDR datasets with

other data on public transport and road conditions in order to

better understand and quantify the underlying mechanism that

drives observed differences in commute behaviors.

Commute Time Appears Invariant with Commute
Distance
Having examined the timing characteristics of commuting in

Ivory Coast and Portugal, we then proceeded to parse out the

commute time interval: the time it takes for an individual to get

from home to work in the morning, and vice versa in the evening.

Once again, due to the challenges in inferring the exact

departure/arrival times from home/work from CDRs, we utilized

the proxy as described in above in the Materials and Methods

section. We then binned the users once again by commute

distance in each dataset/region. We also added the Saudi Arabia

dataset as a countrywide comparison, Boston as a city-level

comparison, and Milan as a comparison using a different type of

dataset (GPS traces).

Figure 5 illustrates the mean commute times of the users binned

by increasing commute distances. We first focus on the mobile

phone datasets (Ivory Coast, Portugal, Saudi Arabia, and Boston),

Figure 3. Distributions of commute timing. The timing of morning (a, c) and evening commutes (b, d) for Ivory Coast (a, b) and Portugal (c, d),
for individuals binned by their commute distances:,2.5 km (blue solid line), 2.5–5 km (red dashed line), 5–10 km (green dash-dotted line), 10–20 km
(black solid line), and .20 km (cyan dashed line). The individual’s commute times in the morning and evening are estimated, respectively, by the
time of the last call from home in the morning, and by the time of the first call from home in the evening. Fig. S3 shows the sample fit of such
distribution to a Gaussian distribution.
doi:10.1371/journal.pone.0096180.g003
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and will discuss about Milan later. We first observe that the

characteristic commute time can vary from place to place and

from morning to evening, for the call-record-based datasets in

Ivory Coast, Portugal, Saudi Arabia, and Boston, which seems to

support the view that a universal ‘‘Marchetti’s constant’’ does not

really exist. Nonetheless–with the exception of possibly long

commuters in Saudi Arabia–we see that the mean commute time,

remarkably, does not change significantly as a function of

commute distance, as most fluctuations lie within the error bars

(with important caveats about short commutes to be described

later). This seems to point to a location-dependent invariance in

commute time, even though at a more universal scale (across

different countries), an invariant commute time may not exist. The

main anomaly in Figure 5 appears to be the GPS-based Milan

dataset (on cars only), which shows a monotonic increase of mean

commute time as a function of commute distance. This seems to

make intuitive sense as and appears consistent with Mokhtarian

and Chen’s observations earlier [25]. In essence, if we only

examine cars (as is the case of Milan’s car GPS traces), the

naturally we expect that the further people have to commute, the

longer the driving time will be. In contrast, the CDR datasets are

agnostic about the method of commuting: and in that sense the

different types of commute behaviors are aggregated. Namely, if a

person lives close to the workplace, he/she may choose to walk or

bike rather than to drive. If a person lives close to a commuter

train station, he/she may afford to live further away from the

workplace without suffering the consequences of long daily drives

by car. This is in fact one formulation of the constant travel time

Figure 4. Peak commute times as a function of commute distance. The peak times of morning (a, c) and evening (b, d) commutes for Ivory
Coast (blue solid line with open circles) and Portugal (red dashed line with closed dots), as a function of commute distance. There are two methods of
calculating this peak time: the median time (a, b), and the fitted Gaussian mean time (c, d). Note the stronger distance-dependent behaviors in the
morning. The individual’s commute times in the morning and evening are estimated, respectively, by the time of the last call from home in the
morning, and by the time of the first call from home in the evening. Fig. S3 shows the procedure whereby Gaussian distributions are fitted to the
distributions plotted in Fig. 3 in order to produce the peak commute time values. The statistics from the Spearman’s rank correlation tests on these
relationships are summarized in Table 2.
doi:10.1371/journal.pone.0096180.g004

Table 2. Statistics from Spearman’s correlation tests on the timing of commute, with data drawn from Figure 4.

Morning commute Evening commute

Correlation coefficient
(r)

Significance level (p-
value)

Correlation coefficient
(r)

Significance level (p-
value)

Portugal (median time) 20.9166 0.0101 0.9822 0.0005

Ivory Coast (median time) 20.9260 0.0008 20.7773 0.0689

Portugal (Gaussian mean time) 20.9644 0.0080 20.9378 0.0185

Ivory Coast (Gaussian mean
time)

20.9399 0.0175 0.7996 0.1044

doi:10.1371/journal.pone.0096180.t002
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hypothesis: depending on the means of travel available, people

tend to adopt lifestyles where the time they spend on travel (i.e.

commute) is approximately constant. While this explanation still

remains a hypothesis, it is further supported by data from Saudi

Arabia. It is important to note that Saudi Arabia, a country known

for poor public transportation infrastructure, encourages personal

vehicle use through highly subsidized petrol prices [47]. In

Riyadh, the country’s largest and arguably most developed city,

only 2% of daily trips rely on public transportation [48], a figure

that stands in sharp relief to Lisbon’s 28% ridership [49]. One

could argue that–due to the country’s comparatively high reliance

on car transport–the dataset exhibits a slightly Milan-like (car only)

behavior where the mean commute time appears to have some

positive dependency on the commute distance, even though in this

case, the CDR records and not the GPS traces are being analyzed.

Desiring to characterize these observations better, we proceeded to

plot the distribution of commute times associated with each

distance bin in Figure 6.

Figure 6 shows the plotted outcomes in the three call-record-

based datasets, for the morning commute times, for the

subpopulations in each country with different commute distances.

The first key feature to note is that different countries/regions

exhibit different shapes of distributions. Ivory Coast (a) and

Portugal (b), for example, have a particular commute time

distribution that has a peak around 30 minutes. On the other

hand, Boston (c) has another characteristic shape that falls off

sharply. Such differences in distribution shapes imply that the

main characteristics of commute time may differ from place to

place. This is supportive of our earlier observation in Figure 5 that

different places have different mean (characteristic) commute

times.

The second key feature to note is that, beyond minor

differences, the distributions otherwise show remarkable similarity

that is independent of the commute distances, especially for

Portugal, Ivory Coast, and Boston. This implies that there exists

some overall distance-independent law that governs the distribu-

tion of commuting behaviors in different local contexts (countries/

cities), despite that such a law seems to vary from locality to

locality (as observed in the different characteristic shapes of

distribution in different regions). In layman’s terms, an individual

in Boston and an individual in Ivory Coast may have different

concepts of ‘‘acceptable commute time’’. However, within a given

region, different individuals–despite differences in income levels,

available methods of transportation, etc. will adapt their lifestyles

such that everyday the time they spend traveling is within the

‘‘acceptable commute time’’ range in their specific region/context.

In other words, even though a universal Marchetti’s constant does

not seem to exist across different locations, at each local country/

city level, such a constant may well exist within a limited

jurisdiction.

Finally, we also made an attempt to compare call-record-based

data (which should encompass mobility in general) with car-GPS-

based data (which should only sub-select mobility specific to car

transport) by plotting the same morning/evening commute time

distributions for the Milan dataset (d, i). In this case, interestingly,

the earlier commute distance independence no longer holds true,

as the subpopulations having different commute distances also

have different distribution shapes of commute times. As is

consistent with observations made in Figure 5, this does make

sense, because if we choose to focus only on car drivers, then it is

clear we expect that people who live further away may have to

spend more time driving. In contrast, if we focus on the aggregate

data (represented by call-record-based data), then this difference is

mitigated by the fact that people living in different distances from

work have the option of selecting different modes of transport

(such as cars, trains, bicycles, etc.), so that their commute time is

minimized. If we examine Saudi Arabia’s commute time

distributions, we once again see that it falls somewhere between

the distance-independent case of Portugal, Ivory Coast, and

Boston, and the distance-dependent case of car-only Milan. This

in part also vindicates Mokhtarian and Chen’s earlier position25,

that the constant travel time budget hypothesis applies only at an

aggregate level, when we can give people enough choice in the

mode of mobility, and given so, people figure out ways to minimize

their commute time/effort, and overall, this minimized time seems

to be consistent in different contexts. However, what is new insight

Figure 5. Mean commute times as a function of commute distance. The means are for the morning (a) and evening (b) for Ivory Coast (blue
solid line with closed dots), Portugal (red dashed line with x’s), Saudi Arabia (green solid line with open circles), Boston (black solid line with open
diamonds), and Milan (cyan dashed line with open triangles). While Ivory Coast, Portugal, and Boston consist of mobile phone datasets that cover
aggregate commute patterns, the Milan data are GPS traces, which provide a comparative insight into car-only commute patterns.
doi:10.1371/journal.pone.0096180.g005
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Figure 6. Probability density functions of commute times. The first column of figures shows the probability density functions of morning
commute times based on mobile phone signaling data, in Ivory Coast (a–b), Portugal (c–d), Saudi Arabia (e–f), Boston (g–h), and Milan (i–j), for
individuals binned by their commute distances: ,5 km (blue solid line), 5–10 km (red dashed line), 10–20 km (green dash-dotted line), 20–40 km
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in our study is that beyond a certain level of aggregation at a city/

country locality, a search for an even more universal commute

behavior (across different countries/continents) seems to suggest

that it does not to exist, at least on the basis of CDR datasets and

our specific methodology.

To analyze this pattern further, we note that the evening

commute time distributions (plotted in the second column of

Figure 6) show a slightly more uniform shape compared to the

morning distributions, suggesting that in the evening, people take

longer to get from work to home. This makes sense, as in the

morning, people often head directly to work from home, whereas

in the evening, there are more intervening opportunities in terms

of dining out, running errands, shopping, etc. However, even in

the evening commute scenario, the distributions seem independent

of commute distance across the same ‘‘category’’ of datasets (full-

fledged countries versus cities), which is consistent with the

observations above, except for the special case of Milan (where

GPS car-tracking data, rather than bulk mobile-phone-based

commute-based data, are used), and possibly Saudi Arabia (heavy

reliance on cars).

It is also acknowledged here that Figures 5 and 6 contain some

observations which may appear, at a first glance, to be unphysical

and to raise doubts about what exactly CDR data can actually

measure about commute time intervals. For example, people with

a commute distance of less than 5 km still has an average

commute time more than one hour in some cases, which seems

unrealistic. We acknowledge this issue and will address it fully in

the Discussion section below.

Discussion

In this study, we started with the premise that the difficulties

with verifying/disproving the constant travel time budget hypoth-

esis (as outlined in the introduction) often lie in the comparability

between the different datasets, where confounding factors such as

data collection/analysis may exist. We proposed to minimize this

effect by finding a common approach of quantifying commuting

through mobile phone datasets–from which reasonably compara-

ble commute characteristics can be inferred from different

countries/cities of interest. We examined four call-record-based

datasets (Ivory Coast, Portugal, Boston, and Saudi Arabia), and

also compared these with one GPS-tracking-based dataset (Milan).

We described a methodology for inferring the home and work

locations for different users, as well as for computing the distance

and the timing of commute. While certain assumptions remain in

our methodology (for example, by arbitrarily assigning the day/

night boundary at 8 a.m./p.m. for defining home/work locations),

we argue that because these assumptions were applied uniformly

across all datasets, any systematic bias should not affect the

comparison of the outcome.

As a proof of concept, we computed the commuting distance as

well as the commuting timing from these datasets, which are in

agreement with known characteristics/models from existing

commute studies. Despite the differences in these variables across

different datasets/locations, when we plotted the distribution of

commute times, we found remarkable distance-independence

across the call-record-based datasets of Ivory Coast, Portugal,

and Boston.

This stands in contrast with the car-only GPS-tracking-based

dataset of Milan and the car-heavy CDR dataset from Saudi

Arabia. The Milan dataset shows strong dependence of commute

time as a function of commute distance (as those who have to drive

further typically commute for a longer time). The Saudi Arabia

dataset is seen as a mixture of the two extremes, as while the CDR

nature of the dataset may help aggregate the different modes of

commute (e.g. walking, bicycling, public transportation, private

cars, etc.), we also know that the country is heavily car-dependent

as discussed previously. This implies that the constant travel time

budget hypothesis (as it pertains specifically to morning/evening

commuting) holds true only at the aggregate country/city-wide

level of mobility (where there are choices of different methods of

commute available to the individual depending on the distance,

location, etc.), which validates Mokhtarian and Chen’s hypothesis

[25]. However, it is also true that our analysis did not conclusively

identify a universal ‘‘Marchetti’s constant’’: despite their localized

independence on distance traveled, characteristic commute times

seem to vary due to location (Portugal, Ivory Coast, Boston, and

Saudi Arabia), as well as due to time of the day (morning and

evening). Therefore, in light of our findings across the five datasets,

we can propose here as a testable hypothesis what we call the

‘‘localized form’’ of Marchetti’s constant: even though in different

regions, people may have different commute time characteristics

(dependent, for example, on the cultural perception of time, the

overall infrastructural development of the country, etc.), if we focus

on a single region, then we find that most people display commute

time characteristics (e.g. average time, distribution of times) which

tend to be independent of the commute distance. As an

illustration, individuals who can afford to drive may live in places

not within reach of those who walk, bicycle, or take the public

transport. Individuals who live close to commuter rail stations may

live in places that may have too many traffic jams to be acceptable

for car commuters. In other words, individuals may distribute

themselves geographically and adopt their lifestyles (e.g. commute

behaviors) in a way so that they spend reasonable amount of time

of their lives commuting.

Ultimately, CDR datasets, like other datasets, are not perfect.

As demonstrated above, our methodology is able to reveal existing

and salient patterns in commuting behaviors in different regions/

contexts. However, at the same time, we should discuss the caveats

and limitations of the CDR datasets. As we raised earlier in the

Results section, the reader may have questions about the accuracy

of CDR data in estimating commuting times, as Figures 5–6

produced, on the basis of our CDR analysis, some unphysically

long commute times even for short commute distances of 5 km.

To properly address this question, there are three inter-linked

questions that need to be discussed in sequence below. The first

question is: What does an actual home/work commute constitute?

While it is true that some people will travel directly from home to

work, and vice versa, the likelihood is that many people will also

make intermediate stops. Yang et al. [40], by studying the

commute data from Shangyu, China, demonstrated that these

intermediate stops–which occur frequently at commercial estab-

lishments (for example, restaurants for breakfast/dinner), can be a

significant part of the commute. Likewise, Schneider et al. [41] by

quantifying the motifs in daily trips using CDR data, also

discovered various means by which individuals incorporated these

stops/detours. If it is true that such stops are common, then

irrespective of the toolsets/datasets used to interrogate commut-

ing, they will confound the accounting of commute times because

(a) of the extra time spent at intermediate stops, and (b) of the extra

(black solid line), and 40–80 km (magenta dashed line). The inset plots show the cumulative distribution function of the same quantities. The second
column of figures shows the probability density functions of evening commute times the respective regions.
doi:10.1371/journal.pone.0096180.g006
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detour taken from the most direct home-work path in order to

reach these stops. While it may be possible to quantify these

detours using adequately large CDR datasets, it is still a rather

challenging endeavor, given that the mobile calls may be too

sparse to identify stops consistently. Even if a caller makes frequent

calls between home and work, given that a mobile phone call at an

intervening cell tower between an individual’s home and work

locations may indicate one of two things: (a) the individual has

made a brief intermediate stop, and (b) the individual is simply

calling en route without stopping (unless this particular interme-

diate cell tower is obviously and consistently out of the way

between home and work locations). Given our methodology and

the current scope of our study, we did not explore this topic

further, but rather lumped everything into the overall commute

time. This is one reason why some commute times may appear

unreasonably overestimated on the basis of CDR records.

The second question is: What exactly about commuting time

can CDR data measure? As mentioned earlier, the dataset does

not guarantee that an individual will always call immediately

before he/she leaves from home/work, and immediate after he/

she arrives at home/work, even though often, people may call

before leaving for a trip so others know that they are on their way,

for example. All we know for certain is that in the morning, after

the individual has left home for work, then all calls from the home

location should cease. Likewise, there should be no calls in the

morning from the work location before the individual has actually

arrived at work. Therefore, what we measure as a commute time

on the basis of CDR data is simply a proxy of the actual commute

time; it will certainly overestimate the actual commute time based

on how frequently an individual calls. The best we did to address

this in our data processing step is to only select individuals who call

frequently enough, at least during the particular period of

morning/evening commute. However, even so, there are varia-

tions in the frequency of calls from individual to individual. For

example, some people may prefer to make calls while in transport,

while others do not. Such variations in calling habits may also vary

from country to country depending on the cultural context. If we

had access to larger datasets over many regions tracing over

individual call patterns over a long period of time, then there are

tangible ways to control for these variations in our commute time

estimation. However, in reality, we only had data available for a

limited number of individuals over a limited period (for example,

in the case of Ivory Coast, 2 weeks), and this has made further

quantifications/controls challenging. In the future, as more

datasets become available over a longer period of time, it will be

worthwhile to revisit these questions in order to improve the

accuracy of commute time estimations.

Furthermore, the third question is: how accurately can our

methodology detect short commutes? One limitation on our

methodology is that the application of a spatial filter of 1 km,

which while limits the noise due to random switching of cell towers

especially at the boundaries between two towers, also causes our

study to ignore those whose commute distance is less than 1 km.

More importantly, as discussed above already in the Methodology

section, what we can measure from the CDR data is not the actual

commute distance, but rather the great-circle distance between

home and work (as the crow flies). As mentioned above, while for

medium/long commutes, the difference between these two

quantities can often be consistently and systematically corrected

with a factor, this is not the case for shorter commutes, where the

correction factor may depend on the types of transportation, for

example. Depending on the magnitude of the correction factor for

short commutes, this may have caused us to either over-estimate or

under-estimate the commuting times of short commuters with

respect to the commute times of long commuters. Supposing that

this were true, then it would raise doubt about the constant travel

time hypothesis at short distances (i.e. within walking distance).

However, there exist other equally salient explanations for these

hour-long short commutes that may nevertheless still be consistent

with the constant time budget hypothesis, as mentioned earlier:

intermediate stops on the way to work, heavy traffic conditions in

the city (if we assume that short commuters live close to their work

places, which are more likely to be located in the city than the

countryside), as well as the fact that individuals may not immediate

call before leaving home or after arriving at work. In order to get a

more accurate resolution for short commuters, it will be necessary

to couple the CDR dataset with other techniques with a greater

spatial resolution, such as GPS traces on mobile phones, so that we

obtain the precise routing of the commute (to calculate actual

commute distances) and to more accurately gauge the home-

departure and work-arrival times.

Given these limitations, does CDR fare better in relation to

other mixed datasets used earlier in interrogating human commute

behaviors? Many of these mixed datasets, as mentioned earlier, are

surveys of individuals in different cities. One generally can expect

that these self-reported commute times give quite an accurate

measure, if controlled properly and reported in an unbiased

manner. However, as already described in previous meta-analyses

[25], most of these survey-based studies are only available in

limited locales; any attempts to study commute behaviors across

different regions/countries are currently often confounded by

factors such as variations in survey design and implementation. If

we were to carry out a global-scale study of human commute, it

would also be unrealistically costly to obtain reliable data in

different countries for a comparative study. We see CDR datasets–

which come from mobile phone users throughout the world–as

having the potential to overcome such limitations. While, as

discussed above, the nascent and limited availability of CDR

datasets may have raised questions about the accuracy of our

commute characterization, especially at short distances, we believe

that in the future, with the increasing accessibility of larger

datasets, there are methods and correction measures that can be

implemented to minimize such inaccuracies.

Ultimately, have we provided an answer for the age-old debate

about the constant travel budget hypothesis, or the Marchetti’s

constant? From our analysis above, we can say that in each

location that we analyzed, there seems to be remarkably distance-

independent commute behaviors for medium/long commutes (.

5 km). We cannot reliably conclude for shorter commutes due to

limitations on the CDR data.

However, when the commute times are averaged across the

whole, we did not identify a characteristic commute time that is

invariant across all locations. While this may be an argument

against the existence of Marchetti’s constant, it may also be that

given the limited datasets, we did not have the wherewithal to

properly account and correct for the different mobile phone usage

behaviors across different locations, which could also have

impacted our estimation of characteristic commute times in these

different locations. Hence, while we did not conclusively answer

the question regarding Marchetti’s constant, we believe that with

increasing availability of larger CDR datasets in the future, this

question will be highly interesting and relevant to revisit, perhaps

with the implementation of better correction measures to account

for any intrinsic differences in mobile phone usage behaviors. We

also recommend that future studies couple the CDR datasets with

other supporting non-CDR sources.

Overall, in this paper, we developed a methodology that allows

us to interrogate human commute behaviors, and applied it to
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several mobile phone and GPS datasets. The fact that we were

able to observe common commute features despite the highly

diverse nature of these datasets offer a compelling demonstration

that there are some aspects of human commuting that are

universal, and we consider this to be a novel development of the

use of mobile phone datasets to better understand commute

behaviors. Comparisons between car-only (Milan) or car-heavy

(Saudi Arabia) datasets to other datasets which are more agnostic

to methods of commute (Boston, Portugal, and Ivory Coast) also

reveal differences in commuting time characteristics which are

consistent with Mokhtarian and Chen’s claims that constant travel

time hypothesis applies only at the aggregate level [25]. Given the

limitations in the datasets and in our methodology, we did not give

a final answer on the constant travel budget hypothesis, but leave

room for thought and specific testable directions for future works.

A very interesting continuation for future studies will focus on

expanding the scope of the datasets to a larger number of cities

and countries and testing this observation more generally with

more accurate measurements (for example, supplements from

other fine-grained smart phone trajectory traces). Ultimately, any

observations about human mobility that apply on the universal

level do not only help us gain insight into the fundamental

characteristics of how we move and budget our time, but also have

profound policy-level implications in urban and transportation

planning.

Supporting Information

Figure S1 The mean commute times and populations of
selected major American cities. The commute times (blue

bars) and populations (cyan line) are from the 2010 American

Community Survey16. The cities, ranked by their sizes, include,

from left to right: New York, Los Angeles, Chicago, Dallas,

Houston, Philadelphia, Washington, Miami, Atlanta, Boston, San

Francisco, Detroit, San Bernardino, Phoenix, Seattle, Minneapo-

lis, San Diego, St. Louis, Tampa, Baltimore, Denver, Pittsburgh,

Portland, Sacramento, San Antonio, Orlando, Cincinnati, Cleve-

land, and Kansas City.

(EPS)

Figure S2 Sample data visualization. (a) The accumulated

density plot of GPS positions in the Milan Metropolitan Area, with

red showing locations with the highest frequency of GPS position

reporting, and blue showing locations with the lowest frequency of

GPS position reporting, over a period of one day. (b) The mobility

pattern of an individual over 7 days in Milan, with red dots

showing the original reported GPS positions, and blue open circles

showing locations where the individual spends the most time.

Based on the day-time and night-time activities, the home and

work locations are identified and labeled. The values on the x and

y axes (longitudes and latitudes) have been removed from this plot

in order to protect the user’s anonymity. (c) Map showing the

density plot of mobile phone towers in the Saudi Arabia dataset.

(EPS)

Figure S3 (a) A Gaussian fit of the distribution of peak commute

time, for the example of morning commuters in Portugal. (b) The

corresponding Q-Q plot of the same Gaussian fit, showing that for

most of the commuting time domain (between 5 a.m. and 10 a.m.),

the Gaussian fit is a reasonable fit.

(EPS)

Figure S4 Cumulative distribution function of commut-
ing distances in Ivory Coast (blue solid line with closed
dots), Portugal (red dashed line with x’s), Saudi Arabia
(green solid line with open circles), Boston (black solid
line with open diamonds), and Milan (cyan dashed line
with open triangles).

(EPS)
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