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Abstract 16 

To make sense of visual scenes, the brain must segment foreground from background. This is 17 
thought to be facilitated by neurons in the primate visual system that encode border ownership 18 
(BOS), i.e. whether a local border is part of an object on one or the other side of the border. It is 19 
unclear how these signals emerge in neural networks without a teaching signal of what is 20 
foreground and background. In this study, we investigated whether BOS signals exist in PredNet, 21 
a self-supervised artificial neural network trained to predict the next image frame of natural 22 
video sequences. We found that a significant number of units in PredNet are selective for BOS. 23 
Moreover these units share several other properties with the BOS neurons in the brain, including 24 
robustness to scene variations that constitute common object transformations in natural videos, 25 
and hysteresis of BOS signals. Finally, we performed ablation experiments and found that BOS 26 
units contribute more to prediction than non-BOS units for videos with moving objects. Our 27 
findings indicate that BOS units are especially useful to predict future input in natural videos, 28 
even when networks are not required to segment foreground from background. This suggests that 29 
BOS neurons in the brain might be the result of evolutionary or developmental pressure to 30 
predict future input in natural, complex dynamic visual environments. 31 
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 33 
MAIN TEXT 34 
 35 
Introduction 36 
To understand the world around us, we parse incoming visual information into an organized collection 37 
of objects. In primate animals, this capability is thought to be facilitated by neurons in the early areas in 38 
visual cortex that encode border ownership (BOS)1–4. These neurons fire more to an identical border in 39 
their classical receptive field (cRF) depending on which side owns the border, even though the 40 
contextual information that defines the side of foreground occurs far outside of the cRF (Figure 1A). 41 
This selectivity extends to natural images5,6 and the preferred side of ownership corresponds to the side 42 
that is near when varying depth7. Psychophysics and imaging studies support that BOS neurons also 43 
exist in the human brain8–11. It is unknown under which conditions BOS signals emerge in neural 44 
networks. Artificial neural networks (ANNs) are a great tool to study such ‘why’ questions of how the 45 
brain works, because they enable to test whether a particular neural phenomenon results from 46 
optimization for a specific task12. 47 

It seems intuitive to hypothesize that BOS signals emerge in ANNs when they are explicitly trained on 48 
scene segmentation, given that this is assumed to be the primary role of such signals in the brain13. A 49 
recent study indeed found that units selective for BOS occur in a supervised ANN trained to segment 50 
handwritten digits (a processed MNIST dataset14) from background15. However, such supervised 51 
learning has been criticized as biologically highly implausible because it requires a large number of 52 
explicitly segmented labels which is unrealistic in brain development16,17. Another study found that BOS 53 
signals can arise in an unsupervised ANN trained to develop translation invariance for an object 54 
presented in isolation, but this mechanism failed for scenes with more than one object18, as opposed to 55 
BOS signals in the brain19. Furthermore, these ANNs can only process simple artificial datasets, unlike 56 
neural networks in modern deep-learning frameworks or the human brain, which are high performing on 57 
realistic natural visual inputs20–22. It thus remains poorly understood when BOS signals emerge in neural 58 
networks. 59 

Certain properties of BOS neurons in the brain suggest that BOS signals may be important under 60 
dynamic conditions. BOS signals are known to persist for hundreds of milliseconds when the contextual 61 
information that defines the side of ownership disappears, as long as the border in the cRF, which has 62 
then become ambiguous for BOS, remains23,24. Furthermore, these persistent BOS signals can be 63 
transferred to other neurons if the ambiguous border lands in their cRF after an eye movement25. This 64 
hysteresis may make it easier to make sense of dynamic visual input by providing spatiotemporal 65 
contiguity. 66 

These observations motivated us to study whether BOS signals emerge in an artificial neural network 67 
trained to predict future visual input for natural videos. We studied PredNet, a deep neural network with 68 
an architecture inspired by predictive coding17,26,27. PredNet was trained on a dataset of natural videos 69 
captured by car-mounted cameras (KITTI28) to predict the next video frame. Our in-silico experiments 70 
demonstrate that a significant fraction of units in PredNet exhibit BOS signals. Moreover, these BOS 71 
units share several properties with BOS neurons in the brain. Finally, ablating PredNet’s BOS units 72 
increased prediction error more than ablating the same number of non-BOS units. BOS units thus 73 
contribute to prediction of natural visual input even if there is no need to segment foreground from 74 
background. This suggests that the need to predict future input in natural videos may drive the 75 
development of BOS neurons. These scene segmentation signals, typically considered an example of a 76 
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ventral ‘what’ stream operation, may thus be more involved in processing dynamic aspects of visual 77 
input than is typically assumed. 78 

  79 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2024. ; https://doi.org/10.1101/2024.08.11.607040doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.11.607040
http://creativecommons.org/licenses/by-nc-nd/4.0/


     Page 4 of 37 
 

Results   80 

BOS signals emerge in an artificial network trained to predict the next frame of natural videos 81 

To study the role of BOS signals in the processing of complex dynamic input we employed PredNet, a 82 
hierarchical ANN introduced by Lotter et al.26 (Figure 1B). PredNet comprises four layers, with four 83 
modules per layer: the representation (𝑅𝑅𝑙𝑙), the predicted output (�̂�𝐴𝑙𝑙), the prediction target (𝐴𝐴𝑙𝑙), and the 84 
prediction error (𝐸𝐸𝑙𝑙) modules. At each time step (see Methods), signals propagate from the top layer to 85 
the zeroth layer, resulting in a prediction for the next video frame in �̂�𝐴0. This prediction is then 86 
compared to the actual next frame provided in 𝐴𝐴0. The prediction error signal subsequently propagates 87 
from the zeroth layer to the top layer. The network was trained to minimize the prediction error of 88 
videos in the KITTI dataset28, which were captured by car-mounted cameras in various urban and rural 89 
settings in Germany. 90 

 91 
 92 

 93 
Figure 1. Border ownership (BOS) signals emerge in PredNet (A) An example unit in the primate visual 94 
cortex that is selective for BOS. The unit has different responses depending on the BOS, even though the image 95 
pixels in its classical receptive field (cRF) are identical for panel 1 and 2, and for panel 3 and 4. The preferred side 96 
of ownership is the same for borders in the cRF with a different contrast polarity (the unit fires more to scene 1 97 
than to scene 2, and more to scene 3 than to scene 4). Arrow on the bottom left indicates the side of BOS that this 98 
unit prefers. Figure adapted from Franken and Reynolds3. (B) PredNet is an artificial neural network designed for 99 
video prediction. At each time step, the model operates by updating unit activities sequentially from the top layer 100 
(layer 3) to the bottom layer (layer 0), generating a prediction of the current video frame. The prediction error is 101 
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then fed forward to layer 3. Each layer contains four modules (�̂�𝐴𝑙𝑙 ,𝐴𝐴𝑙𝑙 ,𝐸𝐸𝑙𝑙, and 𝑅𝑅𝑙𝑙 where 𝑙𝑙 =  0, 1, 2, 3 indicates 102 
layer index, see Methods) (C) Candidate units in PredNet are defined as units whose cRF overlaps with the 103 
central border but not with any of the square's corners (see Methods). Bottom: the number of candidate units in E 104 
modules across different layers. See SI Figure 2 for R module data. (D) Responses of two example units (module 105 
E2), with white contours indicating the cRF. 𝐵𝐵𝑎𝑎𝑎𝑎 measures, for each unit, the selectivity for BOS across different 106 
square orientations (see Methods). Colored lines indicate the response to the different stimulus conditions (colors 107 
indicate for each response function to which of the stimulus panels on the left it corresponds) for one orientation. 108 
𝑝𝑝 value (two-tailed) was computed by comparing 𝐵𝐵𝑎𝑎𝑎𝑎 to that obtained by shuffling the BOS labels (permutation 109 
test, see Methods). BOS units are defined as those units for which this value is smaller than 0.05. (E) Number and 110 
percentage of BOS units in E-module in different layers. Error bars indicate 95% confidence interval. Horizontal 111 
dashed line indicates the chance level for the percentage of BOS units (5%). 112 
 113 
We tested whether the BOS units exist in the PredNet by doing an in-silico experiment that is analogous 114 
to the neurophysiological studies on BOS1,3,29 (Figure 1A). We measured the cRF of each unit using 115 
sparse noise stimuli (SI Figure 1). First we identified candidate units for BOS tuning. For a unit to be a 116 
candidate unit, the cRF needed to include the center of the square’s central border (i.e. the border 117 
positioned at the scene center) but must exclude any other border of the square (Fig. 1C; Methods). This 118 
criterion is similar to that used in neurophysiological studies on BOS1,3. We found tens to hundreds of 119 
candidate units in different PredNet modules (Fig. 1C and SI Figure 2). We then analyzed the response 120 
from candidate units to the standard full square stimuli. Figure 1D shows responses from two example 121 
candidate units. The top unit exhibited a larger response when the square was positioned on the left side 122 
of the central vertical border compared to the right side, irrespective of the contrast polarity across the 123 
border (i.e. blue vs. green, and orange vs. red). This unit thus prefers that the border in its cRF is owned 124 
by a square on one side, similar to BOS neurons in the primate visual cortex1,30. In contrast, the bottom 125 
unit did not exhibit a clear difference: its response was very similar for stimuli with opposite border 126 
ownership but identical contrast polarity of the central border. To quantify BOS tuning for each unit, we 127 
first computed the unit's difference in response between stimuli of opposite border ownership across 128 
different contrast polarities, and divided it by the sum of the responses, resulting in the BOS index 129 
(BOI). The BOS index was then averaged across all square orientations, resulting in 𝐵𝐵𝑎𝑎𝑎𝑎 (see Methods). 130 
The statistical significance of 𝐵𝐵𝑎𝑎𝑎𝑎 was determined by comparing it to a null distribution obtained by 131 
shuffling the stimulus labels. A candidate unit with a p-value smaller than 0.05 was defined as a BOS 132 
unit; otherwise, it was defined as a non-BOS unit. The top unit in Figure 1D has a statistically significant 133 
𝐵𝐵𝑎𝑎𝑎𝑎 and is therefore a BOS unit, while the bottom unit is a non-BOS unit.  134 

We conducted a population analysis of 𝐵𝐵𝑎𝑎𝑎𝑎 across all candidate units. We find that 20-40% of candidate 135 
units in E1, E2 and E3 have significant 𝐵𝐵𝑎𝑎𝑎𝑎 values (Fig. 1E). This is larger than in module 𝐸𝐸0 (8.7 %, 136 
95% confidence interval [6.2%, 12%]). BOS units were also found in modules R1 and R2, but much less 137 
in R0 (R3 had only a small number of candidate units; SI Fig. 2). The distribution of BOS units in 138 
PredNet’s hierarchy is reminiscent of the distribution of BOS neurons in the primate visual cortex, 139 
which are less prevalent in areas closer to the sensory input (V1) than in downstream areas (V2 and 140 
V4)1,3,4.  141 

PredNet’s BOS signals are robust to scene variations common in natural object 142 

transformations, like BOS neurons in the brain 143 

We explored the robustness of BOS signals to the same scene variations that have been used in 144 
neurophysiology studies on BOS neurons: square orientation, position, and size1,3. Figure 2A (left) 145 
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shows the BOI for different square orientations for an example BOS unit. Vector length indicates the 146 
absolute value of the BOI, and the angle of each vector indicates the preferred side of BOS for each 147 
orientation (cf. the symbols around the plot). The square orientations with a large BOI form a contiguous 148 
region in visual space, which is similar to BOS neurons in the primate visual cortex (e.g. Fig. 2A, 149 
right)3. Filled symbols in Fig. 2A indicate orientations for which BOI is significant (permutation test, see 150 
Methods). The angular span between object locations at the preferred side of BOS for different border 151 
orientations (only orientations for which BOIs is significant are considered) is referred to as the BOS 152 
span. For example, the span for the neuron shown in Figure 2A (left panel) is 144°. A substantial 153 
number of BOS units in PredNet have a large span, extending to ~150°, similar to BOS neurons in the 154 
brain (Fig. 2B; SI Fig. 4A). 155 

Next, we examined BOS tuning for different square positions and sizes. We set the orientation at that for 156 
which |BOI| was maximal, and then varied position (the position of the center of the central border 157 
varied along a line orthogonal to the border’s orientation; Fig. 2C). We also varied square size for the 158 
central position (Fig. 2D). We find that the response difference between scenes with opposite BOS was 159 
consistent for different positions or sizes in the population of BOS units in PredNet (Fig. 2C,D, left 160 
panels), just like for BOS neurons in the brain (Fig. 2C,D, right panels)1. We quantified this consistency 161 
by averaging BOI across different conditions (i.e., size or position, see Methods). For all modules with a 162 
substantial number of BOS units (over 15 units), these averaged BOI values are statistically significantly 163 
positive (i.e. consistent with the tuning in the baseline condition; SI Figure 4B, C, bootstrapping test, see 164 
Methods). Taken together, we find that border ownership signals in PredNet are robust to differences in 165 
square orientation, size and position, i.e. remarkably similar to BOS neurons in the primate visual 166 
cortex1,3. 167 
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Figure 2. BOS units in PredNet share several properties with BOS neurons in the brain. (A) Border 169 
ownership index (BOI) at different orientations. Vector magnitude represents the absolute value of BOI, i.e. the 170 
difference in unit response to scenes with squares that share a border with a given orientation, but for which the 171 
square is positioned on opposite sides of that border (thus a pair of stimulus cartoons on opposite sides of the 172 
polar plot), divided by their sum (see Methods). Vector angle is such that the vector points towards the stimulus 173 
cartoon with the preferred side of BOS for that border orientation. Left: example of a BOS unit in PredNet. Right: 174 
BOS neuron recorded in macaque area V4 (reproduced from Franken and Reynolds 20213). Filled symbols in 175 
both panels indicate for which orientations the BOI was significantly different from 0. Blue text indicates the span 176 
of a unit, which is the angle between the preferred object locations for orientations with statistically significant 177 
BOI (Methods). (B) The y-axis illustrates the number/percentage of BOS units whose spans equal or exceed the 178 
span indicated by the x values. Error bars indicate 95% confidence intervals. Left: BOS units in module 𝐸𝐸2 in 179 
PredNet (see SI Fig. 4A for other modules). Right: population data from BOS neurons in macaque area V4 180 
(reproduced from Franken and Reynolds 20213). (C) Left: for each BOS unit, squares were generated with 181 
different positions as indicated in the cartoon. The blue and green traces represent normalized population 182 
responses (see Methods) to opposite BOS (blue corresponds to the preferred BOS derived from responses to the 183 
standard square set). Dots and error bars show the median, first, and third quantiles across the population of BOS 184 
units. Right: responses from a BOS neuron in macaque V2 for different square positions. The two traces indicate 185 
opposite BOS. Dots and error bars represent mean firing rates and SEMs across trials (reproduced with 186 
permission from Zhou et al. 20001. Copyright 2000 Society for Neuroscience). (D) Identical to (C) but square size 187 
was varied instead of square position. Right panel reproduced with permission from Zhou et al. 20001. Copyright 188 
2000 Society for Neuroscience. (E) Response of an example BOS unit in PredNet (module 𝐸𝐸2) to square 189 
fragments. Top half shows responses to a square fragment in the surround paired with the border in the cRF. 190 
Bottom half shows responses to square fragments in the surround without the border in the cRF. Gray panels 191 
show example scenes (white outline: cRF). Colors of the central panels indicate the surround influence. The 192 
surround influence is the unit’s response to a scene with a square fragment in the surround at the position 193 
indicated by the letter codes (also symbolized by the panel’s position), subtracted by that to a scene without the 194 
square fragment. Letter codes: NC: near corner; NE: near edge; FC: far corner; FE: far edge; numbers indicate 195 
different positions of the fragment, e.g. NC1 and NC2 refer to each of the near corners on opposite ends of the 196 
central border. (F) Means and 95% confidence intervals (i.e. 1.96 times SEM) of surround influence across all 197 
BOS units in module 𝐸𝐸2 (n=71; ; see SI Fig. 5 for other modules). NC is the average of NC1 and NC2, and the 198 
same was done for NE and FC. ‘All’ represents the surround influence when all square segments were shown 199 
(top), or all square segments except the center edge were show (bottom). Red text indicates whether the surround 200 
influence for a particular condition is significantly larger on the preferred side than on the non-preferred side. 201 
Blue text indicates whether the absolute value of surround influence of with-CE scenes is significantly larger than 202 
without-CE scenes. Wilcoxon signed-rank test. ***: p < 0.001; **: p < 0.01; *: p < 0.05; NS: no significance. 203 
Outlier units (see Methods) were removed to compute mean and SEM but included in the statistical tests. (G) 204 
Same as (E) for a BOS neuron in the macaque visual cortex (reproduced with permission from Zhang et al. 205 
201031). Two different square sizes were evaluated, for which surround influence is plotted separately as the 206 
smaller and larger panels. (H) Similar panel as (F), for BOS neurons in the macaque visual cortex, with 207 
permission from Zhang et al. 201031. 208 

Surround influence for PredNet’s BOS units is similar to BOS neurons in the brain 209 

Neurophysiological experiments found that isolated object fragments in the surround modulate the 210 
activity of BOS neurons in a way that is consistent with BOS tuning: fragments on the non-preferred 211 
side of BOS suppress the response significantly more than fragments on the preferred side, which often 212 
have an enhancing effect31. These modulatory effects were only significant in the presence of a border in 213 
the cRF. We analyzed how fragments in the surround modulated the activity of BOS units in PredNet.  214 
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Similar to Zhang et al. 201031, we divided a square object into 8 fragments: one Center Edge (CE) 215 
located at the image center, and 7 contextual fragments (two Near Corners [NC1 and NC2], two Near 216 
Edges [NE], two Far Corners [FC] and one Far Edge [FE]). This allows us to create two types of 217 
fragment scenes. The first type pairs one of the fragments in the surround with the CE (‘with-CE’). Two 218 
additional scenes contain respectively only the CE, or all the fragments. The second type are identical 219 
scenes but without the CE (‘without-CE’). For ‘with-CE’ scenes we defined the surround influence of a 220 
fragment as the unit's response to the combination of that fragment and the CE, subtracted by the 221 
response to the CE-only scene (see Methods). For ‘without-CE’ scenes, the surround influence of a 222 
fragment was defined as the response to a scene with that fragment, subtracted by the response to a full-223 
gray scene. Figure 2E displays the data for one example BOS unit in PredNet. First, we noticed that the 224 
absolute value of surround influence in ‘with-CE’ scenes is larger than in ‘without-CE’ scenes. This was 225 
the case for each PredNet module with at least 10 BOS units (Fig. 2F for 𝐸𝐸2 and other modules in SI Fig. 226 
5). This is similar to BOS neurons in the visual cortex (Figs. 2G,H)31. Second, we compared the 227 
modulation effect between fragments on the preferred side and the non-preferred side. The preferred and 228 
non-preferred sides were determined solely from the responses to standard square scenes (Fig. 1A). 229 
Despite this, we found that for all modules with more than 10 BOS units, the surround influence for 230 
most fragments is significantly more negative when they are presented on the non-preferred side 231 
compared to the preferred side (Fig. 2F; SI Fig. 5). This is similar to BOS neurons in the visual cortex 232 
(Figs. 2G, H). These data indicate that BOS tuning in PredNet does not result from a single hotspot in 233 
the surround, but that multiple fragments collectively contribute, as is the case for BOS neurons in the 234 
brain31. 235 

PredNet’s BOS units exhibit hysteresis, similar to BOS neurons in the brain 236 

A remarkable characteristic of BOS neurons in the brain is that the BOS signal persists for hundreds of 237 
milliseconds, even when the contextual information that defines the side of ownership disappears24,25. 238 
We tested if BOS units in PredNet also exhibit this phenomenon. We used a Square-Ambiguous 239 
sequence similar to what was used in physiology experiments24. The sequence consists of a full square 240 
scene (Figure 1A) in the first four time steps, which transitions into a scene with a border that is 241 
ambiguous for border ownership (Figure 3A, left). We presented these sequences to PredNet and 242 
computed the time course of the relative response difference (RRD), defined as the difference in 243 
response between the preferred and non-preferred square sides, normalized by the average response (see 244 
Methods). The RRD for BOS units remains positive for multiple time steps (Fig. 3B left, red function; 245 
SI Figure 6). The units thus respond differently to the ambiguous scene (which is identical in the two 246 
sequences), depending on stimulus history, a phenomenon called hysteresis. BOS neurons in macaque 247 
visual cortex show a similar hysteresis (compare with Fig. 2A in O’Herron and von der Heydt, 200924). 248 

To determine whether this persistent BOS signal is longer than the typical signal decay, we analyzed the 249 
response for two control sequences. The first is Square-Opposite Square, which starts with a full square 250 
and then switches to another full square image with opposite border ownership (and opposite luminance, 251 
so that the contrast polarity of the central border remains the same; Fig. 3A, middle). The RRD for this 252 
sequence decays much faster and stabilizes at a negative value, reflecting the switch in BOS (Fig. 3B, 253 
left, blue function; SI Figure 6). Again the same pattern occurs in BOS neurons in the brain (compare 254 
with Fig. 2A in O’Herron and von der Heydt, 200924). The second control sequence is Figure-Off, in 255 
which a simple scene (three subtypes: ambiguous, grating or pixel) is followed by a full gray scene (Fig. 256 
3A, right). Again the RRD of PredNet’s BOS units decays faster to these sequences than to the Square-257 
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Ambiguous sequence (Figs. 3C,D, SI Figure 6B). Across all modules with at least 10 BOS units the 258 
RRD half-life is significantly longer for Square-Ambiguous sequences than for Figure-Off sequences 259 
(Fig. 3D). Together, we find that BOS signals in PredNet have similar dynamic characteristics as BOS 260 
neurons in the brain: the BOS signal persists when contextual information disappears such that the side 261 
of BOS becomes ambiguous, but quickly updates when the context indicates a switch in BOS. 262 

 263 

 264 
Figure 3: BOS signals in PredNet exhibit hysteresis, similar to BOS neurons in the brain. (A) Three 265 
sequences with scene changes were used: squares transitioning to ambiguous borders (Square-Ambiguous), 266 
squares transitioning to squares with opposite border ownership (Square-Opposite Square), simple scenes 267 
(Ambiguous, Grating, or Pixel) transitioning to a full gray scene (Figure-Off). Stimuli were presented at the 268 
orientation for which |BOI| was maximal. (B) The relative response difference (RRD, see Methods) represents the 269 
difference in response between scene sequences that start with a square on the preferred and the non-preferred 270 
side (for Square-Ambiguous or Square-Opposite Square), or between version 1 and version 2 (for Figure-Off). 271 
Panel shows RRD of BOS units from PredNet (𝐸𝐸2 module, n = 132 units). Functions plotted in the same format as 272 
Fig. 2A in O’Herron and von der Heydt, 200924. Line and error bands represent the mean and SEM. (C) Mean and 273 
SEM of the absolute value of the normalized RRD (normalized to maximal value) across BOS units in the 𝐸𝐸2 274 
module for different sequences. (D) Half-life is defined as the number of time steps after which RRD is reduced 275 
to half of its maximum. Each dot corresponds to one BOS unit. Figure-Off data shows the average across the three 276 
subtypes shown in A. Only units for which half-life was defined for all conditions were included in this panel (see 277 
Methods). Numbers at the bottom indicate the number of included units per module. Asterisks indicate the 278 
statistical significance of the difference in half-life between Square-Ambiguous and Figure-Off: NA: not 279 
applicable; *p<0.05, **p<0.01, ***p<0.001 (Wilcoxon signed-rank test).  280 
 281 

BOS units contribute more to prediction than non-BOS units for videos with moving objects 282 

Our data presented thus far demonstrate that units with brain-like tuning for BOS exist in PredNet, a 283 
network trained to predict future visual input in video sequences. This suggests that BOS units 284 
specifically aid in predicting future video frames. To test that, we conducted ablation experiments in 285 
PredNet. We presented Translating-Square videos (40 unique videos in which a square moves at a 286 
constant velocity, SI Fig. 7, top) to PredNet. We measured the prediction performance of PredNet to 287 
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these videos, both before and after ablating either BOS units or non-BOS units (i.e. candidate units that 288 
did not pass the criterion for BOS-selectivity, see Methods).       289 

The impact of unit ablation on video prediction is shown in SI Figure 9 (top row). Here, we introduce 290 
the metric “relative prediction mean squared error (RPE),” defined as the normalized difference (post- 291 
vs. pre-ablation) of the mean squared prediction error (see Methods). A positive RPE represents an 292 
increase in prediction error after ablation. To quantify the overall effect of ablation in each module, we 293 
measured the slope of the relation between RPE and number of ablated units using linear regression, and 294 
a bootstrapping test to assess the statistical significance of this slope between ablating BOS units or non-295 
BOS units (indicated with red symbols in SI Fig. 9, top row). We find that the RPE is significantly 296 
higher when BOS units were ablated than when non-BOS units were ablated for most modules.  We 297 
wondered if this could be explained by a difference in responsiveness: BOS units may respond more to 298 
these video frames than non-BOS units. To explore that possibility, we subsampled the populations to 299 
ensure there were no statistically significant differences in response magnitude to the videos (Wilcoxon 300 
rank-sum test, p > 0.5, see SI Figure 8 and Methods). The ablation experiment in these subsampled 301 
populations shows the same pattern, ruling out that the RPE difference is due to a difference in average 302 
response (Fig. 4, top row). The data thus indicate that BOS units contribute more than non-BOS units in 303 
predicting future frames for these videos. 304 

We wondered if BOS units also contribute to prediction of videos with multiple objects. We generated 305 
videos with several squares that were randomly positioned, and moved in random directions (SI Fig. 7, 306 
middle). When we performed the same ablation experiment for these videos, we find the same pattern: 307 
BOS units typically contribute more to prediction than non-BOS units, even though, again, PredNet was 308 
not exposed to such videos during training (Fig. 4 bottom, SI Fig. 9 middle).  309 

Finally, we wondered if BOS units aid in prediction with any video. We performed the same experiment 310 
in a set of 41 natural videos from the KITTI database28 (SI Fig. 7, bottom). This is the same database 311 
that was used to train PredNet, but we only included videos that were not used during training. BOS 312 
units in the 𝐸𝐸2 contribute more to prediction than non-BOS units (SI Fig. 9). Note that these videos are 313 
much higher-dimensional than the translating square and random square videos, and there is a high 314 
degree of heterogeneity within the small set of 41 videos. This results in smaller overall RPEs when 315 
averaged across videos than for the square videos, and not enough statistical power to precisely estimate 316 
RPE in the subsets of units with similar responsiveness (SI Fig. 10). 317 

Together these experiments suggest that BOS units emerge in PredNet because they contribute more to 318 
prediction than non-BOS units for videos with moving objects. 319 

 320 

 321 
 322 
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  323 
      324 
Figure 4. Ablating BOS units in PredNet increases prediction error more than ablating non-BOS units for 325 
videos with moving objects. The left shows an example frame of each video type (arrows indicate motion and 326 
are not part of the frame). Translating Square videos show a square moving at constant speed; Random Square 327 
videos show a random number of squares of different sizes, initialized at random positions and moving at random, 328 
constant velocities (see also SI Figure 7). Right panel shows the relative prediction mean squared error (RPE) for 329 
different numbers of ablated units. RPE measures the relative change of prediction error due to ablation. Non-330 
BOS units are candidate units that do not pass the criterion of BOS selectivity. Dots and error bars denote 331 
respectively the mean and SEM of the RPE across 10 randomly chosen video samples. The RPE of one video 332 
sample is the average RPE of 10 samples of unit ablation (Methods). The solid line indicates the best linear fit, 333 
with bands indicating the 95% confidence interval. The red text above the panels indicates whether the slopes of 334 
the lines differed significantly between BOS- and non-BOS-unit ablation. n.s.: not significant; **: p < 0.01; ***: p 335 
< 0.001 (bootstrapping test). Modules 𝑅𝑅1 , 𝑅𝑅2 and 𝑅𝑅3 contain a small number of candidate units and are therefore 336 
not included in this analysis. 337 
 338 
 339 
 340 
  341 
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Discussion  342 
 343 
The assignment of borders to foreground surfaces is thought to be a key step in visual scene 344 
segmentation13,32, and a substantial fraction of neurons in visual areas V2 and V4 of the primate brain 345 
signal this ownership of local borders1–3. It is poorly understood why the brain resorts uses this 346 
particular representation. Here we discovered that units selective for BOS also emerge in an artificial 347 
neural network, PredNet26, that was trained to predict future input in natural videos. Importantly, the 348 
network was not explicitly trained to distinguish foreground from background or to identify objects in 349 
visual scenes. Interestingly, BOS units in PredNet share several properties with BOS neurons in the 350 
brain (robustness for different positions, orientations, and sizes1,3; asymmetric functional effects of 351 
object fragments on opposite sides of the border31; BOS hysteresis24), suggesting that these signals are 352 
functionally similar to those in the brain. Finally, we found that ablation of BOS units affects prediction 353 
accuracy more than ablation of non-BOS units. Overall, our results suggest that BOS units might emerge 354 
in neural networks trained on natural, complex dynamic input primarily because they are particularly 355 
helpful to efficiently process such input, even if segmentation is not required.  356 

PredNet's architecture was inspired by the predictive coding framework. This theory proposed that a 357 
major function of the sensory cortex is to predict incoming sensory stimuli33–37. The hierarchical 358 
organization of visual cortical areas is proposed to compute an internal model of the external world, and 359 
feedback from areas higher in the hierarchy (e.g. V4, IT) is thought to reflect predictions from this 360 
internal model, which is then compared with incoming sensory stimuli in lower areas (e.g. V1, V2)33. 361 
There are hints suggesting that how brain circuits compute border ownership may be understood in this 362 
framework13,38–40. For example, area V4 has been proposed to contain grouping cells which compute 363 
proto-object representations with short latency, i.e. an early prediction of the shape and location of 364 
objects in the scene. Feedback from such cells could explain border ownership signals in lower 365 
areas6,13,31,41, and a recent study indeed found evidence that supports the existence of grouping cells in 366 
V423. Response dynamics and laminar organization of BOS neurons align better with feedback models 367 
than with alternatives that solely rely on intra-areal horizontal connections or feedforward 368 
connections3,4,31,42–46. Moreover, the phenomenon of BOS hysteresis indicates that BOS neurons 369 
persistently signal the most likely scene organization even if contextual information disappears, but 370 
quickly update when sensory information inconsistent with the current internal model appears24,47. The 371 
present data provide complementary evidence that there may indeed be a tight link between predictive 372 
coding and how neural networks compute BOS. We showed that a predictive coding inspired 373 
architecture can lead to BOS signals, with properties very similar to those in the brain, even without 374 
explicitly training the network to localize or identify objects in visual scenes. 375 

A prior study showed that PredNet units signal illusory contours and end-stopping17. The emergence of 376 
BOS signals as well as these other extra-cRF phenomena under the predictive coding framework raises a 377 
question: do these phenomena result from a single hierarchical neural computation? Several lines of 378 
prior research are consistent with that possibility17,30,33,34,36,48. A complete answer to this question is hard 379 
to obtain by solely doing physiology experiments: detailed maps of neural connections are often 380 
unavailable, and it is challenging to precisely manipulate these connections. ANNs have the unique 381 
advantage of possessing complete connection profiles22,49,50, and allow one to perform ablation studies. 382 
Our work thus establishes PredNet as a useful complementary tool towards achieving an understanding 383 
these computations.  384 
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PredNet’s E modules have been interpreted as being akin to superficial layers (L1/2/3), and the R 385 
modules as akin to deeper layers (L5/6) of the visual cortex, following the proposed functional 386 
specialization of cortical layers in predictive coding17,27,33. The presence of BOS signals in both E and R 387 
modules aligns with physiology, where BOS neurons exist in both superficial and deeper layers3. 388 
However, one should be cautious to equate E and R modules to different cortical layers. For example, 389 
the R modules have lateral connections, which the E modules lack these, unlike in physiology where 390 
lateral connections exist in both superficial and deep compartments36,51,52. Further studies are needed to 391 
understand the functional role of different areas and layers in this hierarchical computation and the 392 
communication between them. Because of the flexibility to manipulate network architecture and 393 
connections, ANNs are a useful complementary tool in such studies17,27.  394 

Our discovery of BOS units in PredNet and the ablation experiments indicate that BOS neurons may be 395 
useful for video prediction. To predict future visual input, it is useful to predict object motion53. Objects 396 
typically move as a whole, i.e. pixels within object boundaries most likely move together54. Because 397 
BOS units indicate which pixels belong to an object surface, they may help to predict by allowing the 398 
system to easily apply a uniform optical flow to objects. Indeed, in computer science, incorporating 399 
optical flow55,56, disentangling object motion from content57–60, and separating foreground objects from 400 
background54,61 have been shown to improve video prediction performance. Beyond video prediction, in 401 
object recognition, deep neural networks have been criticized for relying mostly on textural information 402 
to recognize object categories rather than on object shapes62–64, in contrast to human visual 403 
perception65,66 (but perhaps more akin to mouse visual perception67). Explicitly embedding a BOS unit 404 
module may guide neural networks to rely more on shapes, and potentially achieve more robust 405 
recognition as well as prediction. 406 

Overall, our work demonstrates that brain-like BOS signals emerge in a self-supervised network trained 407 
to predict future input. This implies a shift from the traditional view of BOS as a static ‘what stream’ 408 
operation towards a computation that is highly beneficial to predict future input in natural dynamic 409 
environments.  410 
 411 
 412 
 413 
Methods 414 

PredNet architecture 415 

In this study, we utilized the artificial neural network PredNet, which was developed and trained by 416 
Lotter et al. (2017)26 (code is available at: https://github.com/coxlab/prednet). Here we briefly 417 
summarize PredNet’s architecture and how it was trained. PredNet is an artificial neural network (ANN) 418 
that has four layers (labeled as '𝑙𝑙'). Each layer consists of four types of modules: the Representation 419 
module (𝑅𝑅𝑙𝑙), the Prediction module (�̂�𝐴𝑙𝑙), the Prediction target module (𝐴𝐴𝑙𝑙), and the Prediction Error 420 
module (𝐸𝐸𝑙𝑙). Updating unit activities in PredNet involves two main stages at each time step: 421 

Top-to-Bottom Update: The network updates the R modules from top to bottom at each time step. Each 422 
𝑅𝑅𝑙𝑙 module gets inputs from the 𝑅𝑅𝑙𝑙+1 module and the 𝐸𝐸𝑙𝑙 module. This updating process goes from the 𝑅𝑅3 423 
module to the 𝑅𝑅0 module in sequence. The 𝑅𝑅0 module then generates a predicted current video frame 424 
(�̂�𝐴0). 425 
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Bottom-to-Top Update and Error Calculation: The update process then reverses, proceeding from 426 
bottom to top. The network calculates the prediction error by comparing �̂�𝐴0 with the actual next video 427 
frame, 𝐴𝐴0. This error is bifurcated into positive and negative parts (akin to biological ON-center and 428 
OFF-center neurons). Positive and negative errors are grouped in the 𝐸𝐸0 module. 𝐸𝐸0 then outputs a target 429 
prediction 𝐴𝐴1, which gets compared with �̂�𝐴1 produced from 𝑅𝑅1. The error from this comparison is the 𝐸𝐸1 430 
module. The network continues this process up to the final layer (layer 3). 431 

Mathematically, the PredNet dynamics are defined by 432 

 
𝐴𝐴𝑙𝑙𝑡𝑡 = {

𝑥𝑥𝑡𝑡 , if 𝑙𝑙 = 0
MAXPOOL(RELU(CONV(𝐸𝐸𝑙𝑙−1𝑡𝑡 ))), 𝑙𝑙 > 0  

�̂�𝐴 𝑙𝑙𝑡𝑡 = RELU�CONV(𝑅𝑅𝑡𝑡)� 
𝐸𝐸𝑙𝑙𝑡𝑡 = [RELU(𝐴𝐴𝑙𝑙𝑡𝑡 − �̂�𝐴 𝑙𝑙𝑡𝑡); RELU(�̂�𝐴 𝑙𝑙𝑡𝑡 − 𝐴𝐴𝑙𝑙𝑡𝑡)] 

𝑅𝑅𝑙𝑙𝑡𝑡 = CONVLSTM(𝐸𝐸𝑙𝑙𝑡𝑡−1,𝑅𝑅𝑙𝑙𝑡𝑡−1,UPSAMPLE(𝑅𝑅𝑙𝑙+1𝑡𝑡 )) 

 

 
 (1) 

where 𝑡𝑡 is the time step, 𝑥𝑥𝑡𝑡 is the actual video frame. ConvLSTM uses a tanh activation function, which 433 
means that the R module activation can be negative (possible values range from -1 to 1). Because 434 
biological neurons do not have negative spike rate, PredNet unit’s response was defined in this study as 435 
the unit activation plus one, i.e. the response baseline was shifted by +1 in all modules (after PredNet’s 436 
computation was completed, thus this did not affect PredNet’s algorithm). The PredNet architecture 437 
contains 3, 48, 96, and 192 convolution channels in layers 0 to 3, respectively. The input image size is 438 
128 by 160 pixels. The number of units in R modules are respectively 61,440 in 𝑅𝑅0, 245,760 in 𝑅𝑅1, 439 
122,880 in 𝑅𝑅2, and 61,440 in 𝑅𝑅3. The 𝐴𝐴𝑙𝑙 and �̂�𝐴𝑙𝑙 modules have the same number of units as the 𝑅𝑅𝑙𝑙 440 
module. Due to the bifurcation of positive and negative error, E modules have twice the number of units 441 
compared to the R modules. 442 

The training loss function is applied on the prediction error 443 

 
𝐿𝐿𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 =

1
𝑁𝑁𝑡𝑡𝑁𝑁0

�  
 

𝑡𝑡

�  
 

𝑡𝑡0

𝐸𝐸0𝑡𝑡  
 

(2) 

where 𝑁𝑁𝑡𝑡 is the number of time steps used in training, 𝑁𝑁0 is the number of 𝐸𝐸0 units. The training utilized 444 
the KITTI dataset, which contains videos recorded from car-mounted cameras in Germany. Videos were 445 
segmented into sequences of 10 continuous frames. These frames were then center-cropped and 446 
downscaled to a resolution of 128 by 160 pixels. The parameters of PredNet were optimized using 447 
backpropagation with the Adam optimizer. 448 

Classical Receptive Field of Units 449 

We measured the classical receptive field (cRF) of units in PredNet using sparse noise stimuli (SI Figure 450 
1), similar to the approach used in physiology. We created an image (128 x 160 pixels) with one pixel 451 
set to either white or black, while all others were set to gray (gray level = 0.5, scales from 0 to 1). 40,960 452 
(128  × 160  × 2 where the factor two is for black and white pixel) unique images (128 x 160) were 453 
generated, each featuring a distinct single pixel, in either white or black. These images were repeated for 454 
four time steps, yielding a total of 40,960 sequences. For each unit, recorded activity to these sequences 455 
was summarized into two heatmaps (each size 128 × 160), each representing responses to respectively 456 
white-pixel and black-pixel scenes. For example, the white heatmap's 𝑖𝑖, 𝑗𝑗 entry is the single unit's time-457 
averaged response to a scene with a white pixel located at 𝑖𝑖, 𝑗𝑗 (gray otherwise). 458 
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The two heatmaps (for one unit) were then z-scored and converted to absolute values. These heatmaps 459 
were merged into one heatmap by taking the maximum absolute values for each entry. This merged 460 
heatmap summarizes the unit's maximum response to a pixel at each location irrespective of its color 461 
(white or black). The cRF for each unit was defined as the union of the pixel positions for which the 462 
absolute values of the maximal z-scores across both heatmaps exceed 1. 463 

Standard Square Stimuli 464 

Scenes with square objects are commonly used in neurophysiological studies to assess whether a unit is 465 
selective for BOS1–3,23 and this selectivity is known to extend to natural images5. We used similar 466 
scenes, consisting of a square with a size (width) of 50 pixels, positioned with one border centered at the 467 
center of the scene (central border). The color of the square and the background can be either light (gray 468 
level = 0.33 on a scale from 0 to 1) or dark gray (gray level = 0.66), but they are always different from 469 
each other in a given scene. These square scenes can be defined mathematically by three parameters. 470 
The first parameter, 𝛼𝛼, denotes the square's orientation, with a range from 0 to 180 degrees. The second 471 
parameter, 𝛽𝛽, is a binary variable indicating which side the square is given a fixed orientation (i.e. side 472 
of ownership). The final parameter, 𝛾𝛾, is a binary variable that indicates the contrast polarity across the 473 
central border. For each square orientation defined by 𝛼𝛼, there are four possible square scenes, 474 
determined by different combinations of 𝛽𝛽 and 𝛾𝛾. Each of these scenes is repeated over 20 time steps. 475 
We used 10 different orientations (equally spaced by 18°). 476 

Candidate Unit Selection 477 

To define selectivity for border ownership, it is important to verify that the units under examination 478 
respond to changes in border ownership rather than to low-level stimulus changes within the cRF. 479 
Therefore, similar as in neurophysiology studies, we restricted our analysis to units that passed the 480 
following two criteria (termed 'candidate units'). First, the unit's cRF must include the center of the 481 
scene. Because the central border of the square scenes was placed exactly in the scene center, this 482 
ensured that the unit’s cRF includes the center of this border. Second, the cRF must fit within a circle 483 
centered at the center of the scene and with a radius of 20 pixels. Because the square size (width) is 50 484 
pixels, this makes sure that the cRF does not overlap with any other border of the square besides the 485 
central border. 486 

Averaged Border Ownership Index across orientations (𝐵𝐵𝑎𝑎𝑎𝑎) 487 

Similar to neurophysiology studies1–3 we quantified tuning for border ownership using the Border 488 
Ownership Index (BOI). This is computed from the response of PredNet units to standard square scenes. 489 
The BOI is defined as 490 

 
𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼) = 2  ×

𝑅𝑅𝑅𝑅𝑅𝑅(𝛼𝛼, 1,0) − 𝑅𝑅𝑅𝑅𝑅𝑅(𝛼𝛼, 0,0) + 𝑅𝑅𝑅𝑅𝑅𝑅(𝛼𝛼, 1,1) − 𝑅𝑅𝑅𝑅𝑅𝑅(𝛼𝛼, 0,1)
𝑅𝑅𝑅𝑅𝑅𝑅(𝛼𝛼, 1,0) + 𝑅𝑅𝑅𝑅𝑅𝑅(𝛼𝛼, 0,0) + 𝑅𝑅𝑅𝑅𝑅𝑅(𝛼𝛼, 1,1) + 𝑅𝑅𝑅𝑅𝑅𝑅(𝛼𝛼, 0,1) 

 
(3) 

where 𝑅𝑅𝑅𝑅𝑅𝑅(𝛼𝛼,𝛽𝛽, 𝛾𝛾) is the unit’s time-averaged (between 0 and 19 time steps) responses to a square scene 491 
specified by orientation 𝛼𝛼, side-of-ownership 𝛽𝛽 and contrast polarity 𝛾𝛾.  The sign of the BOI thus 492 
indicates which side (𝛽𝛽) of BOS (for a given orientation) the unit prefers, and the magnitude indicates 493 
the strength of the BOS tuning. 494 
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To evaluate the overall BOS selectivity across orientations, we defined 𝐵𝐵𝑎𝑎𝑎𝑎 as the circular average of the 495 
BOI across 𝛼𝛼. Similar to BOI, the magnitude of 𝐵𝐵𝑎𝑎𝑎𝑎 is a measure of the strength of BOS tuning, and its 496 
angle indicates the unit’s preferred side of BO.  497 

We evaluated the statistical significance of 𝐵𝐵𝑎𝑎𝑎𝑎 using a permutation test. In this test, we shuffled the 498 
labels that signified the side of BOS (𝛽𝛽) for each orientation 𝛼𝛼. These data were then used to compute a 499 
shuffled BOI(𝛼𝛼) and 𝐵𝐵𝑎𝑎𝑎𝑎. This procedure was repeated 5,000 times to generate a set of 5,000 𝐵𝐵𝑎𝑎𝑎𝑎 values 500 
after shuffling, for each unit. Denoting the quantile of the unshuffled 𝐵𝐵𝑎𝑎𝑎𝑎 among the shuffled 𝐵𝐵𝑎𝑎𝑎𝑎 as Q, 501 
the p-value (two-tailed) was estimated as 2 × 𝑚𝑚𝑖𝑖𝑚𝑚{𝑄𝑄, 1 − 𝑄𝑄} . Units with a p-value less than 0.05 were 502 
defined as BOS units. 95% confidence intervals on proportions of units for which 𝐵𝐵𝑎𝑎𝑎𝑎 was significant 503 
were computed using Wilson score68. 504 

Note that the values of 𝐵𝐵𝑎𝑎𝑎𝑎 and BOI reported here cannot easily be compared with similar indices in 505 
neurophysiology, because these values change when the DC level of unit activity is changed. As 506 
mentioned above, to avoid negative values for unit activity in PredNet, we arbitrarily increased activity 507 
levels by +1. Furthermore, the average BOI across time depends on when the response starts relative to 508 
the duration of the analysis window. This is at ~50% of the window duration for the unit shown in Fig. 509 
1D (top), whereas in physiology studies this is typically closer to ~10%. For example, the activity 510 
functions shown in Figure 1D (top panel) show a BOI of 0.0149 at time step 10, but computing this 511 
without adjusting the unit activation (i.e. without +1) leads to BOI = 0.68. Zhou et al. use ‘response 512 
ratio’ to quantify the magnitude of BOS tuning, defined as the ratio of the mean response to non-513 
preferred BOS over the mean response to preferred BOS. For the activity functions shown in Fig. 1D 514 
(top panel) this value is 0.561(averaged across analysis window), well within the range of values found 515 
for neurons in the macaque visual cortex1. 516 

 517 

Analysis of BOS Unit Responses to Different Square Orientations, Positions, and Sizes 518 

In these experiments, varied parameters were square orientation (𝛼𝛼), side-of-ownership (𝛽𝛽), contrast 519 
polarity (𝛾𝛾), position along the orientation (𝑑𝑑), and size (𝑅𝑅). We first measured the response to a set of 520 
four standard square scenes (Figure 1A). For each unit, the orientation 𝛼𝛼 is fixed at the orientation with 521 
the maximum absolute BOI. The position is zero, indicating that the square border intersects exactly 522 
with the scene center, and the square size (width) is 50 pixels. BOS units’ responses were averaged over 523 
time and contrast polarity. The 𝛽𝛽 value with the larger averaged unit response was defined as the 524 
preferred side (𝛽𝛽𝑝𝑝), whereas the opposite was defined as the non-preferred side (𝛽𝛽𝑡𝑡𝑝𝑝). These preferences 525 

were solely determined by the standard square scenes. 526 

We then examined the effect of changing square size. All other parameters remained the same as in the 527 
standard square scenes stated above, except for square size. Eight square sizes were used, ranging from 528 
10 to 80 pixels. For each unit 𝑖𝑖 and each square size 𝑅𝑅𝑗𝑗, we computed the responses averaged across time 529 

and contrast polarity, yielding �̅�𝑟𝑡𝑡,𝑗𝑗�𝛽𝛽𝑝𝑝�, �̅�𝑟𝑡𝑡,𝑗𝑗�𝛽𝛽𝑡𝑡𝑝𝑝�.  We then normalized two response arrays of each unit 530 
𝑖𝑖: �̃�𝑟𝑡𝑡,𝑗𝑗(𝛽𝛽) = �̅�𝑟𝑡𝑡,𝑗𝑗(𝛽𝛽)/∑ �̅�𝑟𝑗𝑗 𝑡𝑡,𝑗𝑗

(𝛽𝛽), where 𝛽𝛽 can be 𝛽𝛽𝑝𝑝 or 𝛽𝛽𝑡𝑡𝑝𝑝. Figure 2D (left panel) displays the time 531 

course of �̃�𝑟𝑡𝑡,𝑗𝑗(𝛽𝛽) across units 𝑖𝑖. For each unit 𝑖𝑖 and square size 𝑅𝑅𝑗𝑗, we computed a BOI as the difference 532 

in response between the 𝛽𝛽𝑝𝑝 and 𝛽𝛽𝑡𝑡𝑝𝑝, i.e. 𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡,𝑗𝑗  = 2 × ��̃�𝑟𝑡𝑡,𝑗𝑗�𝛽𝛽𝑝𝑝� − �̃�𝑟𝑡𝑡,𝑗𝑗�𝛽𝛽𝑡𝑡𝑝𝑝�� / ��̃�𝑟𝑡𝑡,𝑗𝑗�𝛽𝛽𝑝𝑝� + �̃�𝑟𝑡𝑡,𝑗𝑗 �𝛽𝛽𝑡𝑡𝑝𝑝��. We 533 

performed a bootstrapping test to assess statistical significance of this metric. A BOI dataset consisted of 534 
𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵 = {𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡,𝑗𝑗} for all units 𝑖𝑖 and square sizes 𝑅𝑅𝑗𝑗. We obtained 10,000 bootstrap samples  𝐷𝐷𝑠𝑠 from this 535 
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dataset. For each 𝐷𝐷𝑠𝑠, we computed an averaged BOI, denoted as 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠. The p-value was estimated as 536 
𝑝𝑝 =  1 –  𝑄𝑄, where 𝑄𝑄 is defined as the quantile of 0 among all 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠. If p-value was smaller than 0.05, 537 
we concluded that the BOI averaged across size was statistically significantly positive in the population 538 
of BOS units (SI Figure 4). 539 

The same procedures apply to varying square position, simply replacing square size with square position 540 
(SI Figure 4). Fifteen square positions were used, ranging from -30 to 26 pixels. 541 

When examining the unit's response to different orientations, we created square scenes with 10 possible 542 
orientations (equally spaced between 0 and 180 degrees), keeping the position at 0 and size at 50 pixels. 543 
Units' responses were collected to compute the BOI for each orientation using equation (3). Data from 544 
one example unit is shown in Figure 2A (left panel). To evaluate the statistical significance of BOI for a 545 
given orientation, we compared the unshuffled BOI to that in a null distribution. Unlike biological 546 
neurons, which differ in response from trial to trial, PredNet does not have noise. In order to obtain 547 
sufficient data to generate a shuffled distribution, for each orientation, we varied square size (10 548 
different sizes were considered, conceptually mimicking 10 “repeated trials”). The unshuffled BOI for a 549 
given orientation was computed for this orientation across square size. The null distribution for BOI 550 
distribution was obtained by shuffling the labels indicating the side-of-ownership 𝛽𝛽 (i.e., border 551 
ownership), separately for each square size and contrast polarity (5,000 shuffles). The quantile (𝑄𝑄) of the 552 
unshuffled BOI within shuffled BOI set was computed. The p-value (two-tailed) was estimated as as 553 
2 × 𝑚𝑚𝑖𝑖𝑚𝑚{𝑄𝑄, 1 − 𝑄𝑄} . If the p-value is less than 0.05, BOI along an orientation was said to be statistically 554 
significant (indicated in Fig. 2A as filled circles). The above procedure resulted a subset of orientations 555 
with statistically significant BOIs. The span of each BOS unit was computed as the difference between 556 
the two most distant preferred object locations (circular distance between the two angles corresponding 557 
to those locations). 95% confidence intervals on proportions of units for the span was smaller than a 558 
certain value were computed using Wilson score68.  559 

Square Fragment Stimuli 560 

The squares in the square scenes can be divided into eight fragments31: the Central Edge (CE), which is 561 
the one in the middle of the scene; there are two Near Corners (NC), two Near Edges (NE), two Far 562 
Corners (FC), and one Far Edge (FE). To examine how thee fragments modulate the activity of BOS 563 
units, the four standard square scenes (Figure 1A, orientation aligns with the preferred BOS orientation 564 
for each unit) were converted into fragmented square scenes, as described below. 565 

To isolate one fragment, a 2D Gaussian filter (𝜎𝜎 =  5 pixels) was applied at the fragment’s center. This 566 
kept the fragment’s central region largely unaltered, while the parts of the scene further away gradually 567 
fade to a uniform gray (gray level = 0.5 on a scale from 0 to 1). For scenes with multiple fragments (e.g. 568 
‘All’), a Gaussian filter was applied to each fragment. Note that the smallest distance between two 569 
fragment centers is 25 pixels, thus much larger than 𝜎𝜎, resulting in negligible interference between 570 
filtered fragments at different locations. 571 

Using this Gaussian filter method, we created 9 scenes with a Central Edge (‘with-CE’) and 9 scenes 572 
without a Central Edge (‘without-CE’) for each of the four standard square stimuli (Figure 1A). Among 573 
the with-CE scenes, one scene only has the CE fragment, seven scenes have the CE and one additional 574 
fragment, and one scene has all fragments. The without-CE scenes are similar to the with-CE scenes, 575 
except that they do not contain the CE fragment. Thus the “all fragments” without-CE scene contains 7 576 
fragments. Each scene is presented during 20 time steps. 577 
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Processing of Units’ Responses to the Square Fragment Stimuli 578 

The NC fragment could potentially partially intersect with the cRF. To prevent this, we limited this 579 
analysis to the subset of BOS units whose cRFs fitted within a circle of 30 pixels diameter centered at 580 
the center of the scene. This more conservative selection yielded 30, 145, 71, 5 units from respectively 581 
E0 to E3, and 1, 3, 2, 0 units from respectively R0 to R3. For with-CE scenes, the surround influence of 582 
square fragment X is defined as the unit’s response to the X + CE scene subtracted by the response to 583 
the CE scene. Similarly, for without-CE scenes, the surround influence of square fragment X is defined 584 
as response to the X scene subtracted by a full gray scene. If X is FE, the surround influence of X is 585 
computed as above. Otherwise (X = FC, NE, NC), the surround influence of X is the average of the 586 
surround influences of two conjugate edges (e.g., CE1 and CE2). 587 

The surround influences of X for all BOS units were computed, resulting in a list where the length 588 
equals the number of BOS units. To avoid bias in mean estimation due to outliers, outliers (1.5 589 
interquartile range below the first quantile or above third quantile) were removed before computing the 590 
sample mean and SEM (Fig. 2F and SI Fig. 5). However, all units were included when performing 591 
statistical tests (indicated by figure caption). 592 

Square-Ambiguous, Square-Opposite Square, and Figure-Off Sequences 593 

Each trial in the Square-Ambiguous sequences consisted of 20 time steps, broken down into two phases. 594 
Initially, Scene 0, one of the four standard square scenes (Figure 1A), was displayed during four time 595 
steps (T0 = 4). Subsequently, Scene 1 was shown during 16 time steps (T1 = 16). Scene 1 only 596 
contained a central border that divides the whole image into a left and a right half; hence the side of 597 
ownership of this border was ambiguous. The contrast polarity and orientation of Scene 1 were 598 
consistent with Scene 0 (i.e. the information in the cRF was the same). 599 

Similarly, the Square-Opposite Square sequences started with one of the four standard square scenes as 600 
Scene 0. Scene 1 was a version of the square scene with reversed BOS, but maintaining contrast polarity 601 
for the central border. For example, if Scene 0 was panel 1 in Figure 1A, then Scene 1 was panel 2 in 602 
Figure 1A. 603 

For Figure-Off Sequences, Scene 1 was always a full gray. Scene 0 depended on the subtypes: 604 
Ambiguous-Off, Grating-Off, and Pixel-Off sequences. For Ambiguous-off, Scene 0 was an ambiguous 605 
border. It had two versions that vary in contrast polarity. In Grating-Off sequences, Scene 0 was a 606 
grating with a 10-pixel spatial period, and it had two versions with grating phases of either 0 or 180 607 
degrees. For Pixel-Off sequences, Scene 0 was gray except for a single pixel at the center, which was 608 
either white or black corresponding to two versions. 609 

All scenes were generated such that the orientation corresponds to that for which each unit’s |BOI| was 610 
maximal. 611 

Relative Response Difference 612 

The Relative Response Difference (RRD, used in the result section “PredNet’s BOS units exhibit 613 
hysteresis, similar to BOS neurons in the brain” and Figure 3) is (𝑎𝑎 − 𝑏𝑏)/(𝑎𝑎 + 𝑏𝑏), where 𝑎𝑎 indicates the 614 
time-averaged response to preferred stimuli, and 𝑏𝑏 indicates the time-averaged response to non-preferred 615 
stimuli. Which stimulus was preferred only depended on the averaged response to Scene 0.  616 
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RRD half-life was defined as the earliest time after the scene switch where the absolute value of RRD 617 
was less than half of its maximum. The half-life across the three types of Figure-Off sequences were 618 
averaged in Figure 3D. For this analysis, we only included units for which the half-life of all three types 619 
of Figure-Off sequences could be measured (exclude RRD that never dropped to half of its maximum 620 
within the analysis window). This yielded 10 out of 22, 8 out of 25, 9 out of 12 and 1 out of 2 BOS units 621 
in respectively R0, R1, R2 and R3; and 25 out of 32, 160 out of 199, 90 out of 131, and 15 out of 22 622 
BOS units in respectively E0, E1, E2 and E3. The Wilcoxon signed-rank test was used to compare half-623 
life between Square-Ambiguous sequences and Figure-Off sequences. 624 

Three video types for Ablation Experiment 625 

We generated three types of videos to evaluate PredNet's prediction performance (examples shown in SI 626 
Figure 7). (1) Translating Square videos include a square that moves at a constant speed and direction. 627 
Square size is 50 pixels and oriented such that the central border had a vertical orientation (square gray 628 
level = 0.33 and background gray level = 0.66 on a scale from 0 to 1). The initial position and velocity 629 
of the square were chosen such that the square was always in the scene center in the 10th frame. Forty 630 
translating square videos were created, corresponding to 40 evenly spaced moving directions (equally 631 
spaced between 0 and 360 degrees). (2) Random Square videos: each of these videos featured a random 632 
number of squares (between 1 and 5). At the beginning of each video, each square’s central position was 633 
randomly set in the scene. The size of each square was also randomly chosen (between 10 and 50 634 
pixels), and the x and y components of each square’s velocity were randomly set at a value between -2 635 
and 2 pixels/frame. Forty random videos were generated. (3) KITTI testing videos: 41 videos from car-636 
mounted cameras were used, which were not used during PredNet's training26. For all video types, each 637 
video consisted of 20 frames. 638 

Subsampling BOS and Non-BOS Units to Reduce Their Response Differences 639 

Unit activity in response to the videos were squared and averaged across all videos and time steps for 640 
each video type, resulting in Mean Squared Response (MSR). For each module and video type, we have 641 
two sets of MSR, one for the BOS units and another for the non-BOS units, denoted as 𝐷𝐷𝑏𝑏𝑏𝑏𝑠𝑠 =642 
{𝑟𝑟0𝑏𝑏𝑏𝑏𝑠𝑠, 𝑟𝑟1𝑏𝑏𝑏𝑏𝑠𝑠, … , 𝑟𝑟𝑡𝑡𝑏𝑏𝑏𝑏𝑠𝑠} and 𝐷𝐷𝑡𝑡𝑏𝑏𝑡𝑡−𝑏𝑏𝑏𝑏𝑠𝑠 = {𝑟𝑟0𝑡𝑡𝑏𝑏𝑡𝑡−𝑏𝑏𝑏𝑏𝑠𝑠, 𝑟𝑟1𝑡𝑡𝑏𝑏𝑡𝑡−𝑏𝑏𝑏𝑏𝑠𝑠, … , 𝑟𝑟𝑚𝑚𝑡𝑡𝑏𝑏𝑡𝑡−𝑏𝑏𝑏𝑏𝑠𝑠}, respectively, where 𝑚𝑚 and 𝑚𝑚 643 
representing the number of BOS and non-BOS units in one module. 644 

For each of the 𝐷𝐷𝑏𝑏𝑏𝑏𝑠𝑠 and 𝐷𝐷𝑡𝑡𝑏𝑏𝑡𝑡−𝑏𝑏𝑏𝑏𝑠𝑠, we subsampled 𝑘𝑘 = 𝑚𝑚𝑖𝑖𝑚𝑚{𝑚𝑚,𝑚𝑚} units (1,000 samples). This resulted 645 
in 1,000 pairs of sampled datasets, denoted as 𝐷𝐷𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠 and 𝐷𝐷𝑠𝑠𝑡𝑡𝑏𝑏𝑡𝑡−𝑏𝑏𝑏𝑏𝑠𝑠, with 𝑅𝑅 ranging from 1 to 1,000. For 646 
each pair, we computed a score to measure the similarity between datasets in a pair 647 

 𝜙𝜙𝑠𝑠 = [𝑚𝑚𝑅𝑅𝑎𝑎𝑚𝑚(𝐷𝐷𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠) −𝑚𝑚𝑅𝑅𝑎𝑎𝑚𝑚(𝐷𝐷𝑠𝑠𝑡𝑡𝑏𝑏𝑡𝑡−𝑏𝑏𝑏𝑏𝑠𝑠)]2 + [𝑚𝑚𝑅𝑅𝑑𝑑𝑖𝑖𝑎𝑎𝑚𝑚(𝐷𝐷𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠) −𝑚𝑚𝑅𝑅𝑑𝑑𝑖𝑖𝑎𝑎𝑚𝑚(𝐷𝐷𝑠𝑠𝑡𝑡𝑏𝑏𝑡𝑡−𝑏𝑏𝑏𝑏𝑠𝑠)]2 (4) 

where the 𝑚𝑚𝑅𝑅𝑎𝑎𝑚𝑚(⋅) and 𝑚𝑚𝑅𝑅𝑑𝑑𝑖𝑖𝑎𝑎𝑚𝑚(⋅) represent those quantities of the dataset. The dataset pair with 648 
smallest score 𝜙𝜙𝑠𝑠 was subjected for further statistical analysis, using the Wilcoxon rank-sum test and the 649 
t-test. If both p values were larger than 0.5, we considered the dataset pair as our final subsampled 650 
datasets. If not, we reduced 𝑘𝑘 by 1 and repeated the procedure above. This whole procedure makes sure 651 
that both BOS and non-BOS populations have the same number of units (equal to 𝑘𝑘), and their MSRs do 652 
not show significant difference. SI Figure 8 displays the MSR of the obtained subsampled unit 653 
populations. 654 
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Compute the Prediction Error of the Ablation Experiment 655 

For each video type, we created 𝑁𝑁𝛼𝛼 bootstrapped samples, each containing 𝑁𝑁𝑎𝑎 videos. We denoted 𝑣𝑣𝑎𝑎𝛼𝛼 as 656 
the 𝑎𝑎𝑡𝑡ℎ video in the 𝛼𝛼𝑡𝑡ℎ bootstrapped sample, with 𝛼𝛼 ranging from 0 to 𝑁𝑁𝛼𝛼 − 1, and 𝑎𝑎 from 0 to 𝑁𝑁𝑎𝑎 − 1. 657 
In this study, 𝑁𝑁𝛼𝛼 = 𝑁𝑁𝑎𝑎 = 10. 658 

For each video 𝑣𝑣𝑎𝑎𝛼𝛼, we performed the ablation experiment several times, for different samples of ablated 659 
units, in each module separately. We varied the number of ablated units 𝑚𝑚 (ranges from 1 to 660 
𝑚𝑚𝑖𝑖𝑚𝑚{𝑁𝑁𝑏𝑏𝑏𝑏,𝑁𝑁𝑡𝑡𝑏𝑏𝑡𝑡−𝑏𝑏𝑏𝑏}, where 𝑁𝑁𝑏𝑏𝑏𝑏 and 𝑁𝑁𝑡𝑡𝑏𝑏𝑡𝑡−𝑏𝑏𝑏𝑏  indicate respectively the number of BOS and non-BOS 661 
units available in the module). For each 𝑚𝑚, we generated 𝑁𝑁𝑢𝑢 = 10 bootstrapped unit samples from the 662 
unit pool (i.e. either from the BOS/non-BOS unit population in each module). A single sample is 663 
denoted as 𝑢𝑢𝑡𝑡

𝑏𝑏,𝑡𝑡 where 𝑏𝑏 is a Boolean variable indicating whether the ablated units are BOS units or non-664 

BOS units, and 𝑖𝑖 = 1, 2, … ,𝑁𝑁𝑢𝑢 represents the 𝑖𝑖𝑡𝑡ℎ unit sample. For each ablation sample 𝑢𝑢𝑡𝑡
𝑏𝑏,𝑡𝑡, the unit 665 

activity in the sample was set to zero. Mean-squared prediction error (MSE) was measured as the mean-666 
squared difference between the predicted (�̂�𝐴0) and actual frames (𝐴𝐴0), averaging over all pixels and time 667 
steps. Relative prediction error (RPE) of one video and one ablation sample was computed as  668 

 𝑅𝑅𝑅𝑅𝐸𝐸�𝑣𝑣𝑎𝑎𝛼𝛼 ,𝑢𝑢𝑡𝑡
𝑏𝑏,𝑡𝑡� ≡ 𝑅𝑅𝑅𝑅𝐸𝐸𝑎𝑎,𝑡𝑡

𝛼𝛼,𝑏𝑏,𝑡𝑡 = �𝑀𝑀𝑀𝑀𝐸𝐸�𝑣𝑣𝑎𝑎𝛼𝛼 ,𝑢𝑢𝑡𝑡
𝑏𝑏,𝑡𝑡� − 𝑀𝑀𝑀𝑀𝐸𝐸(𝑣𝑣𝑎𝑎𝛼𝛼 , 0)�/𝑀𝑀𝑀𝑀𝐸𝐸(𝑣𝑣𝑎𝑎𝛼𝛼, 0) (5) 

where 𝑀𝑀𝑀𝑀𝐸𝐸(𝑣𝑣𝑎𝑎𝛼𝛼, 0) represents the MSE to the same video without ablation. We then computed the 669 
average RPE for a single video sample 𝛼𝛼 and a given number of 𝑚𝑚 ablated units:  670 

 𝑅𝑅𝑅𝑅𝐸𝐸𝛼𝛼,𝑏𝑏,𝑡𝑡 = ⟨𝑅𝑅𝑅𝑅𝐸𝐸𝑎𝑎,𝑡𝑡
𝛼𝛼,𝑏𝑏,𝑡𝑡⟩

𝑎𝑎,𝑡𝑡
 (6) 

where ⟨⋅⟩𝑎𝑎,𝑡𝑡 represents the average across indices 𝑎𝑎 and 𝑖𝑖. Dots and error bars in Figure 4 show the mean 671 

and SEM of 𝑅𝑅𝑅𝑅𝐸𝐸𝛼𝛼,𝑏𝑏,𝑡𝑡 across different video samples 𝛼𝛼, with respect to the number of ablated units 𝑚𝑚, for 672 
the subsampled population (see previous Methods section: ‘Subsampling BOS and Non-BOS Units to 673 
Reduce Their Response Differences’). SI Figure 9 shows the result for the original population (without 674 
subsampling). 675 

 676 

Statistical Analysis of the Ablation Experiment 677 

We model the 𝑅𝑅𝑅𝑅𝐸𝐸𝛼𝛼,𝑏𝑏,𝑡𝑡 as a linear model 678 

 𝑅𝑅𝑅𝑅𝐸𝐸𝛼𝛼,𝑏𝑏,𝑡𝑡 = 𝑘𝑘𝑏𝑏𝑚𝑚 +  𝜖𝜖 (7) 

where the intercept term is zero because the RPE is zero when no units are ablated. 𝜖𝜖 is an error term 679 
with a zero mean and a constant unknown variance, and 𝑘𝑘𝑏𝑏 is the slope of a line that represents the 680 
average change in RPE if one additional unit is ablated (𝑏𝑏 = 𝑏𝑏𝑏𝑏𝑅𝑅 for ablation of BOS units, 𝑏𝑏 = 𝑚𝑚𝑏𝑏𝑚𝑚 −681 
𝑏𝑏𝑏𝑏𝑅𝑅 for ablation of non-BOS units). We are interested in determining whether the slope 𝑘𝑘𝑏𝑏𝑏𝑏𝑠𝑠 is 682 
significantly different from 𝑘𝑘𝑡𝑡𝑏𝑏𝑡𝑡−𝑏𝑏𝑏𝑏𝑠𝑠. A bootstrap method is used as follows. 683 

Observations are denoted as 𝐷𝐷𝑏𝑏 = {𝑅𝑅𝑅𝑅𝐸𝐸𝛼𝛼,𝑏𝑏,𝑡𝑡} where 𝛼𝛼 and 𝑚𝑚 indicate respectively video samples and 684 
number of ablated units. 𝑁𝑁𝑠𝑠 = 10,000 bootstrap samples are generated by resampling 𝐷𝐷𝑏𝑏 with 685 
replacement, denoted as 𝐷𝐷𝑏𝑏,𝑠𝑠 where 𝑅𝑅 = 1,2, … ,𝑁𝑁𝑠𝑠. For each bootstrapped dataset, we used ordinary 686 
least squares linear regression to compute a slope 𝑘𝑘𝑏𝑏,𝑠𝑠. 95% confidence interval of the slopes were 687 
estimated from the bootstrapped distribution (shown as error bands in Fig. 4 and SI Fig. 9). Subtracting 688 
the two slope sets, we got 𝑁𝑁𝑠𝑠 slope differences denoted as 𝛥𝛥𝑘𝑘𝑅𝑅 = 𝑘𝑘𝑏𝑏𝑏𝑏𝑅𝑅,𝑅𝑅 − 𝑘𝑘𝑚𝑚𝑏𝑏𝑚𝑚−𝑏𝑏𝑏𝑏𝑅𝑅,𝑅𝑅. The p-value (two-689 
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tailed) was then estimated as 2 × 𝑚𝑚𝑖𝑖𝑚𝑚{ 𝑄𝑄(0, {𝛥𝛥𝑘𝑘𝑠𝑠}), 1 − 𝑄𝑄(0, {𝛥𝛥𝑘𝑘𝑠𝑠}) }  where 𝑄𝑄(0, {𝛥𝛥𝑘𝑘𝑠𝑠}) is the 690 
quantile of 0 in the set of slope differences {𝛥𝛥𝑘𝑘𝑠𝑠}. 691 
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 868 
 869 

 870 
Supplementary Materials 871 

 872 
SI Figure 1. Illustration of the method to measure the cRF of PredNet units. (A) A sparse noise 873 
scene is a gray scene with only one black or white pixel, at a random position. These scenes were used 874 
as input to PredNet over four time steps. (B) cRF for an example unit. The unit's responses to the sparse 875 
noise scenes were collected and normalized (z-scored) into two heat maps, one for black pixel noise and 876 
the other for white. Each value in the black or white heatmap corresponds to the unit’s normalized 877 
response to a black or white pixel at the same entry position. The two heatmaps (for one unit) were 878 
merged into one heatmap by taking the maximum absolute values for each entry. Positions with an 879 
absolute value of the z-score greater than 1 were defined as the cRF (indicated by white contours). 880 
  881 
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  882 
SI Figure 2. BOS units emerge in PredNet’s R modules.  (A) The number of candidate units in R modules 883 
across different layers. (B) Responses of two example units (module 𝑅𝑅2), with white contours indicating the cRF 884 
(similar to Fig. 1D). 𝐵𝐵𝑎𝑎𝑎𝑎 measures the unit’s response different to different BOSs across different square 885 
orientations (see Methods). P value (two tailed) was computed by comparing 𝐵𝐵𝑎𝑎𝑎𝑎 to that after shuffling stimulus 886 
labels (permutation test, see Methods). Arrow in the middle-left panel indicates the preferred side of BOS for the 887 
example candidate unit. (C) The 𝐵𝐵𝑎𝑎𝑎𝑎 distribution of the candidate units in different R modules. Each dot is one 888 
candidate unit. (D) Among the candidate units, units with p-value smaller than 0.05 are defined as BOS units. 889 
Error bars indicate 95% confidence intervals. Horizontal dashed line indicates chance level of 5%. (E) The 𝐵𝐵𝑎𝑎𝑎𝑎 890 
distribution of BOS units in different R modules. Each dot is one BOS unit. 891 
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 893 
SI Figure 3. 𝐵𝐵𝑎𝑎𝑎𝑎 distribution of units in E modules. Similar as SI Fig. 2C-E, for E modules. 894 
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  896 
SI Figure 4. BOS signals are robust to different stimulus parameters. (A) Similar to Figure 2B, for other 897 
modules. (B, C) BOI across different square sizes and positions. The dots and error bars represent the median, 898 
first and third quartiles across all units in a module. The number after the module name in the panel titles denotes 899 
the total number of BOS units included per module. Red symbols indicate whether the averaged BOI across 900 
conditions (square sizes or positions) are statistically significantly larger than zero, ***: p < 0.001; *: p < 0.05; 901 
bootstrapping test (see Methods). Statistical significance was only evaluated in modules with more than 15 BOS 902 
units.  903 
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 905 

 906 
SI Figure 5. BOS units’ responses to square fragments on the preferred side of BOS are generally larger 907 
than on the non-preferred side of BOS. Similar to Fig. 2F, for BOS units in different PredNet modules. Red text 908 
indicates whether the surround influence for a particular condition is significantly larger on the preferred side than 909 
on the non-preferred side. Blue text indicates whether the absolute value of surround influence of with-CE is 910 
significantly larger than without-CE case. Wilcoxon signed-rank test. ***: p < 0.001; **: p < 0.01; *: p < 0.05; 911 
NS: no significance.  912 
  913 
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  914 
SI Figure 6. Persistent BOS signals in different modules. (A) Similar as Fig. 3B, for other modules. The number 915 
of BOS units in each module is indicated in the title. (B) Similar as Fig. 3C, for other modules.  916 
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 918 
SI Figure 7. Three video types used for the ablation experiment. Figure shows example videos from 919 
each video type. Each row shows a different unique video for each of the three types. Video length is 20 920 
frames, shown during 20 time steps.  921 
  922 
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 923 
 924 

 925 
SI Figure 8. Activity in subsampled BOS and non-BOS unit populations and original populations. 926 
For each unit, mean squared response is the square of the averaged response, averaging cross time and 927 
videos. Each dot is one unit’s mean squared response. Boxes indicate the interquartile range between the 928 
first and third quartiles with central mark inside each box indicating the median. Whiskers extend to the 929 
lowest and highest values within 1.5 times the interquartile range. Outlier units not shown for better 930 
visualization (but included in the metrics indicated by the boxplots).  931 
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  933 
SI Figure 9. The effect of ablating the original BOS/non-BOS units, without subsampling. Similar 934 
as Figure 4 but using original unit population (no subsampling).  935 
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  937 
SI Figure 10. The effect of ablating the subsampled 𝑬𝑬𝟐𝟐 BOS/non-BOS units on KITTI video 938 
prediction. Similar as Figure 4, for KITTI videos.  939 
 940 
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