
Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 1

NEUROINFORMATICS
METHODS ARTICLE
published: 20 October 2009

doi: 10.3389/neuro.11.034.2009

2009). There are two basic components to CNARI: First is the use
of relational database technology to represent the diverse data types
of the study in a uniform representational framework that facili-
tates distributed data access, and permits powerful queries and data
reductions to be performed signifi cantly faster by parallelized sta-
tistical analysis procedures. Second is the use of “virtual data” grid
computing, in which data and data processing are widely distributed
on storage devices and computers, and where data transformation
and analysis is specifi ed in terms of abstract (“virtual”) procedure
descriptions. Together, these techniques enable a community of
researchers to access and share data and perform data preparation
and analysis without detailed knowledge of the internal workings
of distributed computing and storage systems or of the network
infrastructure that connects them.

Longitudinal functional brain imaging requires comparison of
brain activation images within a single individual over time, and
possibly also between single individuals and a group that repre-
sents some standard. For example, in a study of recovery from
brain injury, the individual data might be compared to a normative
(healthy) group. Although such comparisons can be performed
using various scalar indices, we have recently begun to do this with
entire activation networks. One way of modeling such networks of
activation is with structural equation modeling (SEM), a method
that uses known anatomy to augment the functional information
with structural connectivity information, to create a model of both
static and dynamic relationships (McIntosh and Gonzalez-Lima,
1994; Buchel and Friston, 1997; Horwitz et al., 1999). We have
developed several such models (Solodkin et al., 2004; Skipper et al.,

INTRODUCTION
CONCEPTS AND BACKGROUND ON CNARI AND DRIVING
NEUROSCIENCE USAGE MODEL
In the past decade, there has been tremendous growth in the number
and scope of functional brain imaging studies performed in the
basic and applied neurosciences. These studies have been more
complex than those of the past, often incorporating large numbers
of participants, multiple physical sites, longitudinal follow-up,
combinations of healthy groups and those with disease or injury,
and/or additional types of behavioral or biological measurements.
Although their numbers are increasing, the inherent complexity
of data management and processing in such studies, particularly
regarding anatomical and physiological data, represents a major
stumbling block to their ultimate success. In studies of recovery
from stroke, for example, medical data are stored in paper charts or
in hospital medical information systems, behavioral and linguistic
data are saved in spreadsheets on personal workstations, structural
and metabolic magnetic resonance imaging (MRI) data are stored
in manufacturer formats on scanners and/or with the functional
MRI data in the fi le systems of data processing workstations. With
these diverse representations of information, not even counting
the possible addition of electrophysiological and other structurally
unique data types, it is hard enough to perform single case studies
that attempt to relate these data to each other, let alone studies that
include statistically meaningful numbers of participants.

We have started building the Computational Neuroscience
Applications Research Infrastructure (CNARI) to address these
concerns (Stef-Praun et al., 2007; Hasson et al., 2008; Small et al.,

Parallel workfl ows for data-driven structural equation
modeling in functional neuroimaging

Sarah Kenny1*, Michael Andric2, Steven M. Boker3, Michael C. Neale4, Michael Wilde1,6 and Steven L. Small1,2,5

1 Computation Institute, The University of Chicago, Chicago, IL, USA
2 Department of Psychology, The University of Chicago, Chicago, IL, USA
3 Department of Psychology, University of Virginia, Charlottesville, VA, USA
4 Department of Psychiatry, Virginia Commonwealth University, Richmond, VA USA
5 Department of Neurology, The University of Chicago, Chicago, IL, USA
6 Mathematics and Computer Science Division, Argonne National Laboratories, Argonne, IL, USA

We present a computational framework suitable for a data-driven approach to structural equation
modeling (SEM) and describe several workfl ows for modeling functional magnetic resonance
imaging (fMRI) data within this framework. The Computational Neuroscience Applications
Research Infrastructure (CNARI) employs a high-level scripting language called Swift, which is
capable of spawning hundreds of thousands of simultaneous R processes (R Development
Core Team, 2008), consisting of self-contained SEMs, on a high performance computing
system (HPC). These self-contained R processing jobs are data objects generated by OpenMx,
a plug-in for R, which can generate a single model object containing the matrices and algebraic
information necessary to estimate parameters of the model. With such an infrastructure in place
a structural modeler may begin to investigate exhaustive searches of the model space. Specifi c
applications of the infrastructure, statistics related to model fi t, and limitations are discussed in
relation to exhaustive SEM. In particular, we discuss how workfl ow management techniques
can help to solve large computational problems in neuroimaging.

Keywords: exhaustive search, OpenMx, SEM, swift, workfl ows

Edited by:

John Van Horn, University of California
at Los Angeles, USA

Reviewed by:

Shantanu Joshi, University of California
at Los Angeles, USA
John Van Horn, University of California
at Los Angeles, USA

*Correspondence:

Sarah Kenny, Computation Institute,
University of Chicago, 5640 S Ellis
Avenue, Chicago, IL 60637, USA.
e-mail: skenny@uchicago.edu

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 2

Kenny et al. Parallel workfl ows for SEM

2007, 2009; Walsh et al., 2008), based on a combination of primate
and human data (Ban et al., 1984, 1991; Petrides and Pandya, 1984,
1988, 1999; Rosa et al., 1993; Seltzer and Pandya, 1994; Rizzolatti
et al., 1997, 1998; Hackett et al., 1999; Barbas, 2000). In one of
these studies, we constructed a group network model for healthy
right handed individuals performing bimanual movements, and
compared this normative group model to two individuals with
different biological states, two healthy left handed people and one
individual with stroke. The fi t between a strong left hander (i.e.,
one who used his left hand for everything) and the model was very
tight if the hemispheres were fl ipped in the model. The fi ts between
either the weak left hander (i.e., someone more ambidextrous) or
the person with stroke and the group model were poor. These three
examples were highly informative for understanding the neurobiol-
ogy of bimanual movements (Walsh et al., 2008).

Building such models can be very complex and time consuming,
requiring advanced anatomical knowledge and skill. Furthermore,
while these previous methods have been useful for generating a
set of possible models in the absence of exhaustive techniques,
they are inherently fl awed since they are based on anatomical con-
nectivity data from non-human primates. In addition, the models
created depend on the hypotheses being tested, and thus there is
a large number of possible models for any particular set of fMRI
activation data. To address these issues, we have embarked on an
extension to CNARI that aims to facilitate a more objective type of
data-driven SEM via highly parallelized workfl ows for generating
and processing large numbers of models in a manner that is easily
reconfi gurable and replicable. The goal for this modeling approach
is to explore as much as possible of the entire space of plausible
models that account for the data. In this paper, we discuss the
nature of this grid-enabled SEM, and describe how it can be used
and applied to various research problems in brain imaging. One
of the original purposes of CNARI was to facilitate the study of
stroke recovery, with particular emphasis on natural recovery and
treatment for language problems (aphasia). In our presentation,
we will use specifi c examples from language processing, though the
workfl ows presented are generalizable to a wide variety of other
SEM problems.

CONCEPTS AND BACKGROUND ON SEM: THE MOTIVATION AND DESIGN
OF OPENMX
Structural equation modeling (SEM) has a long history dating
back to the development of path analysis by Wright (1921). SEM
is a statistical tool for estimating a set of predicted covariances
between variables that may be connected with either regression
(asymmetric, directional) parameters or covariance (symmetric,
non-directional) parameters (see Boker and McArdle, 2005, for
a review). The advent of high speed computers and high level
programming languages in the 1960s, together with advances in
statistical methodology led to the development of software for
fi tting models to observed covariance matrices by maximum likeli-
hood (Joreskog, 1967). This procedure is now commonly known
as SEM (see e.g., Bollen, 1989; Loehlin, 1992, for introductions; see
McIntosh and Gonzalez-Lima, 1994 for its use in neuroimaging).
SEM is widely used for fi tting statistical models to epidemiologi-
cal, psychological, sociological and econometric data where there
are multivariate outcomes and theoretical reasons to expect that

linear or non-linear systems of equations may provide explanatory
power in summarizing these large data sets. For instance, in an epi-
demiological study of heart disease, one may wish to control for a
wide variety of possible behavioral covariates while simultaneously
accounting for variance due to group membership or genetic vari-
ation. For such problems, SEM models represent state-of-the-art
in statistical techniques. Neuroimaging data, is a prime candidate
for modeling with SEM, given overlapping sources of variance
both across space and time within individual as well as sources
of variance across individuals due to group membership and
other covariates.

SEM models can be described as a function of two model matri-
ces, A, S, a fi lter matrix, F and a residual matrix U, such that the
expected covariance between observed variables is:

R = F(I − A)–1 S((I − A)–1)′F′ + U

where the model matrix A contains the asymmetric paths (regres-
sion coeffi cients), S contains the symmetric paths (covariance
coeffi cients), and the fi lter matrix, F, strips the latent variables
from the model matrices so that the result only contains expec-
tations for the observed covariances (McArdle and McDonald,
1984; McArdle and Boker, 1990). One implementation of SEM is
the software package Mx (Neale et al., 2003). The set of built-in
functions that Mx can optimize includes maximum likelihood,
generalized least squares, and full information maximum likeli-
hood analysis of covariance matrices and/or observed means. In
2007, the OpenMx development project was started in order to
rewrite Mx into open source, provide a scripting interface to the
R statistical language (Ihaka and Gentleman, 1996) and provide a
number of extensions to the software. Among these improvements
was integrating the Mx SEM optimization engine into parallel
workfl ow management software in order to be able to estimate
parameters for large numbers of SEM models simultaneously.
In this way, statistical resampling techniques such as bootstrap-
ping, simulations to verify the performance of new models, and
exhaustive search routines could make use of large-scale paral-
lel computing resources. The current article describes the fi rst
application of the OpenMx software to a real-world exhaustive
search problem.

WORKFLOW MANAGEMENT
BACKGROUND AND GOALS
The ability to submit a large number of processes simultaneously to
multiple grid sites is a major computational challenge and cannot
be accomplished without an evolved workfl ow management system.
In a related research project, we have been developing a workfl ow
system called Swift (Zhao, 2007), which has been our system of
choice for submission and management of large-scale workfl ows
for neuroimaging. Using Swift, individual researchers are able to
map large amounts of input and output explicitly and make calls
to the cataloged executables that sit on remote grid sites. We have
been investigating ways to execute and manipulate exhaustive or
partially pruned, data-driven SEM workfl ows using Swift to oper-
ate on covariance data derived from a relational fMRI experiment
database. From the standpoint of parallel computing and workfl ow
management this poses some interesting issues and also demon-
strates, quite strikingly, the convenience (to the research scientist)

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 3

Kenny et al. Parallel workfl ows for SEM

of having an elegant, high-level means of expressing, reconfi guring
and rerunning such workfl ows. Here we present several examples
of such workfl ows and explain how they can be expressed and
run using Swift, OpenMx and the computational resources of the
TeraGrid (Catlett et al., 2007).

The availability of high performance computing systems (HPCs),
ranging from multi-core workstations to clusters, grids, clouds, and
now petascale supercomputers, creates opportunities to explore
experimental datasets with SEM in ways never before possible. The
availability of this computing power, however, can be diffi cult to
harness, particularly for a neuroscientist not versed in high per-
formance computing. For these researchers, it is undesirable to
divert mental and manual effort from scientifi c exploration to the
mechanics of large-scale parallel computing. At the same time, both
the complexity and the scale of high performance environments
makes it ever more challenging to assure the validity of scientifi c
results obtained via such systems.

What scientists in general - and neuroscientists in particular -
need, are ways to express the processing they want to perform in a
compact, abstract, high-level notation that specifi es only the logical
nature of their computations, but which abstracts and automates all
of the potential, varying details of implementing those computing
abstractions across a wide range of computing platforms.

SWIFT AND CNARI
For the past two years our group at the University of Chicago Human
Neuroscience Laboratory, in collaboration with the Computation
Institute, has been developing and evaluating Swift, a parallel
scripting language, for this purpose. Together with members of
the OpenMx project described above, we have recently focused
signifi cant effort to create a library of Swift procedures for the
fl exible processing and analysis of data from fMRI and other neu-
roscience experiments.

We employ a programming model that “loosely couples”
 application programs. In this model, complete programs
become our functions, and the arguments to, and results from
these functions can be fi les, fi le-structured datasets, as well as
database entries.

The goals of expressing data processing steps in an abstract
notation are multifold: 1) to distill the computation down to
the salient details and eliminate the mechanical details of fi le
manipulation from the expression of the basic workfl ow steps;
2) to abstract data at a high level to relieve the programmer of
concerns for the layout of the data on storage systems; 3) to enable
the automatic parallelization of scripts in which independent
streams of data are processed; and, 4) to enable the recording of
all of the steps of a computation in an automatic, transparent
manner. An overview of the scripting modules for SEM analysis,
coded by the research scientist within the CNARI framework can
be seen in Figure 1. The Swift programming language enables
this model by providing the ability to represent application pro-
grams as procedures, and to defi ne compound procedures that
permit the user to create libraries of higher level processes that
capture the essential protocols of an application’s data prepara-
tion and analysis. The language’s data model provides the ability
to describe the datasets that are consumed and produced by
the procedural abstractions by combining basic primitive data
type defi nitions with a mapping mechanism of on-disk directory
structures to form structures and arrays. These data objects are
then automatically and transparently sent across distributed exe-
cution environments to remote and parallel Swift procedures.

The Swift language has a C-like syntax, but enforces many of
the semantic aspects of a “functional” programming language.
Procedures are expressed as functions, permitted to return
 multiple values; statements are executed in data-dependency order;
 variables (including array elements and structure members) are

Swift:
scripting language, task coordination,
throttling, data management, restart

OpenMx:
R-based SEM package with built-in
optimizer

R:
general purpose, portable, open source
data analysis scripting language

R
Libraries

(remote site)

-in

Swift
scripts

SEM
models

(generated
by R script)

R script for
generating

models

R
Libraries

(remote site)

FIGURE 1 | User Interface: Overview of the CNARI scripting modules for SEM workfl ows.

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 4

Kenny et al. Parallel workfl ows for SEM

single-assignment, making it signifi cantly simpler to determine
 independent operations and threads of control, and to execute
these threads in parallel; a construct called “mapping” is provided
to translate between the simple, clean regular abstract data model
of Swift and the potentially messy, complex model of real-world
directory structures and the fi le naming and structuring conven-
tions expected by real-world applications.

The notation provides a simple set of fl ow-of-control
 statements, such as if and switch (case) statements. The primary
way to express a set - potentially large - of parallel operations in
swift is to utilize the foreach() statement. This statement iterates
over a collection, assigning each member of the collection to a
control variable, and then evaluating the body of the foreach()
loop once for each value of the target collection. All iterations
of a foreach() are potentially (and conceptually) performed in
parallel; the runtime system provides appropriate “throttling”
and scheduling of the potentially enormous number of par-
allel operations that this construct can generate and submit
for processing.

Atomic procedures in Swift consist of wrappers around speci-
fi cations that detail the invocation of application programs. In
our SEM project, this mechanism is used by Swift to invoke the
individual parallel model optimizations of the many thousands
of models generated in an OpenMx SEM analysis workfl ow. “R”
is the application program of execution. The invoking (master)
program that calls the individual R programs creates a (potentially
very long) list of evaluations, each of which is an R expression that
embodies the OpenMx engine. The master program generates a
large set of model calls and marshals the model’s matrix into a
text character stream.

The Swift model of data abstraction was to some degree
inspired and motivated by the fi eld of fMRI data analysis. In
our earliest efforts to execute fMRI preprocessing workfl ows on
computing grids we observed that the data model of the fMRI
domain had a natural tree structure in which the vast number

of fi les stored in traditional fi le system directories had some-
what similar patterns. These fi les included data from myriad
experiments, test conditions and scans, and also included vari-
ous types of lower level data such as anatomical and time series
data represented in the image/header fi le pairs of the functional
data format (e.g., Analyze or AFNI formats). This suggested to
us that data defi nition constructs could be of signifi cant ben-
efi t for scientifi c workfl ow scripting, such that data could be
described in a “typed” fashion, much like the hierarchical model
of “structs” in C or “classes” in Java. To enable an organization
(or even a discipline, through community curation efforts such
as those managed by collaborations like BIRN)1 to defi ne and
standardize a uniform format for describing their common data
elements, Swift provides the notion of data type and “mapping”
of each type to a physical representation. The logical type is sim-
ple and abstract, and refl ects only the logical level of the data; the
“mapping” describes how each element of a structure is mapped
onto the structure’s physical representation on a fi le system. To
some extent, Swift emulates the mapped fi lesystem structure on
the remote resources where it instantiates processing. Generic
mappers with a modest degree of representational fl exibility are
pre-defi ned in the swift system; but additional mappers can be
created by users for their own communities and used throughout.
Figure 2 shows the Swift modules used for execution manage-
ment once a user has mapped his fi les, and defi ned processing
jobs within a Swift script.

Swift is easy for users to install, and its runtime system pro-
vides the client capabilities needed to use workstation, grid and
cluster computing resources. From a single client computer, e.g.,
a modest workstation or personal laptop, the user can launch and
control scripts that send parallel work for simultaneous execution
on clusters, grids and supercomputers. The user can test the correct
execution of the logical script workfl ow, just by executing directly

Swift
Script

Abstract
computation

Execution Engine

C
C C C

Swift runtime
callouts

Status reporting

Worker Nodes

file1

launcher

launcher

Provenance
data

Provenance
data

App
F1

App
F2

file2

file3

SwiftScript
Compiler

Specification Scheduling Execution Provisioning

Resource
Provisioners

Open Science Grid

Multicore systems

TeraGrid

PetaScale Clusters

FIGURE 2 | Swift architecture: Managing workfl ow execution within CNARI. Specifi cation and scheduling are implemented on the client side while execution is
implemented on the remote computing resources.

1http://www.loni.ucla.edu/BIRN/

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 5

Kenny et al. Parallel workfl ows for SEM

on a local workstation. If the user’s workstation has multiple cores,
Swift can take advantage of those for modest but invaluable paral-
lelism. And as the user’s needs grow or the user is ready to scale
up to increasingly large systems, Swift can readily expand to those
systems with a single representation and a single client as we will
show in our example workfl ows.

Swift scripts afford a highly productive way to produce and
manage the software of neuroscience research units, whether they
be local campus departments or international collaborations. In
today’s practice, organizations that need to process data from fMRI
experiments typically develop and rely on locally produced sets of
ad hoc scripts, usually written in a Linux “shell” language such as
“c shell” (csh) or bash, or perhaps Perl, to organize the processing
protocols and processes of the collaborations. In Swift, however,
as all procedures are “typed” with a specifi c “signature” of data
types for the input and output arguments, a more rigorous and
less error-prone paradigm is imposed on the overall structure of
the scripts. Thus Swift procedures serve as an interface-defi nition
language for ordinary shell procedures. The overall higher-level
process is then defi ned in a multilevel fashion, from top (highest)
to bottom (lowest level) being:

• overall application (such as multiNetworkSEM)
• high-level scripts (such as getCovariance())
• low level Swift interfaces (atomic procedures) such as

mxModelProcessor()
• an external R wrapper script to do further argument manipu-

lation (RInvoke.sh)
• the R tool itself (R CMD BATCH)

Special power and structure is afforded when the tool being run is
not a “canned” compiled application, but rather itself a powerful data
manipulation environment such as Perl or Python, or more specifi c
to the model we describe in detail here, the R data analysis language
with its vast package library of statistical and analytical procedures,
including the OpenMx package used here. In this case, the actual
script to be performed can be dynamically generated or selected from
a template library, and sent to any computing site, which already has
a suitable version of R and the OpenMx package installed.

DESCRIPTION OF THE fMRI EXPERIMENT DATA: THE EMBLEM
DATABASE
We now give some concrete examples of how Swift can manipu-
late large datasets and enable novel analysis techniques by means
of effective workfl ow management. The example framework we
have employed our grid-enabled analysis techniques on is an fMRI
investigation of the neural processing associated with emblematic
gesture observation. Emblematic gestures (“emblems”) are goal-
directed, symbolic manual actions that, while expressed as cultur-
ally recognizable manual gestures, communicate a linguistically
associable propositional meaning. Four experimental conditions
were presented to participants in the MRI scanner: 1) Emblem,
the symbolic manual gestures; 2) Speech, the spoken form of the
linguistic propositions associated with the emblems; 3) Emblem
with Speech, simultaneous presentations of the emblems with their
verbalized linguistic associations; and 4) Grasping, observation of
another type of goal-directed manual action, for which the neural
regions associated with its processing have been well- characterized.

Data were processed with AFNI (Cox, 1996) and mean normalized
values of each of the hemodynamic response functions for every
condition at every voxel in the brain were projected to 2-D cortical
surface representations and spatially smoothed on the surfaces
using SUMA (Saad et al., 2004). These surface values were then
imported into MySQL database tables for relational indexing and
further analyses.

SEM WORKFLOWS IN SWIFT
We have begun exploring extremely large, exhaustive SEM
workfl ows as a means of investigating how effi cient workfl ow
tools can address computational problems that were previously
considered unmanageable. Particularly, in using SEM for look-
ing at functional connectivity many researchers are confi ned to
hypothesis-driven approaches because they lack the tools to reli-
ably implement data-driven methods; this situation can greatly
impact mining and interpretation of datasets. In an attempt to
address these issues, we are building an infrastructure that can
be used by researchers to iterate over various parameters within
these large sets in a reasonable amount of time and in a man-
ner that is both dynamic and reliable. The following workfl ows
were run on a TeraGrid HPC system known as Ranger. Ranger
comprises 3,936 16-way SMP compute nodes providing 15,744
AMD Opteron™ processors for a total of 62,976 compute cores.
The workfl ows were developed on and submitted (to Ranger)
from a single-core Linux workstation running an Intel® Xeon™
3.20 GHz CPU.

A model generator was developed for the OpenMx package and
is designed explicitly to enable parallel execution of exhaustive or
partially pruned sets of model objects. Given an n x n covariance
matrix, it can generate the entire set of possible models with any-
where from 0 to n2 connections; however, it can also take as input
a single index from that set and it will generate and run a single
model. What this means in the context of workfl ow design is that
the generator can be controlled (and parallelized) easily by a Swift
script. For example, using Swift as the interface to OpenMx we have
these few lines of code:

WORKFLOW 1: 4-REGION EXHAUSTIVE SEM FOR A SINGLE
EXPERIMENTAL CONDITION

 1. app (mxModel min) mxModelProcessor(file
 covMatrix, Rscript mxModProc, int modnum,
 float initweight, string cond){
 2. {
 3. RInvoke @filename(mxModProc) @
 filename(covMatrix) modnum initweight cond;
 4. }
 5. file covMatrix<single_file_
 mapper;file="speech.cov">;
 6. Rscript mxScript<single_file_mapper;file="sin-
 glemodels.R">;
 7. int totalperms[] = [1:65536];
 8. float initweight =.5;
 9. foreach perm in totalperms{

10. mxModel modmin<single_file_mapper; file=@
 strcat(perm,".rdata")>;

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 6

Kenny et al. Parallel workfl ows for SEM

11. modmin = mxModelProcessor(covMatrix,
 mxScript, perm, initweight, "speech");
12. }

First, a covariance matrix containing activation data for 4 brain
regions, over 8 time points, averaged over a group of subjects in
the Speech condition was drawn from the experiment database and
its location (in this example, on the local fi le system, though the
fi le could be located anywhere) is mapped in line 5. Line 6 maps
the R processing script and lines 1 through 4 defi ne the atomic
procedure for invoking R. Each iteration of the foreach loop maps
its optimized model output fi le and calls mxModelProcessor()
with the necessary parameters to generate and run a model. Each
of these invocations of mxModelProcessor() is independent
and is submitted for processing in parallel. Swift passes 5 variables
for each invocation: (1) the covariance matrix; (2) the R script
containing the call to OpenMx; (3) the permutation number, i.e.,
the index of the model; (4) the initialization weight for the free
parameters of the given model; and (5) the experimental condition.
Clearly, in this workfl ow all free parameters of the given model
will have the same initialization weight as Swift is passing only one
weight variable. When the job reaches a worker node on Ranger
an R process is initialized, the generator creates the desired model
by calculating where in the array that permutation of the model
matrix falls. OpenMx then estimates the model parameters using a
non-linear optimization algorithm called NPSOL (Gill et al., 1986),
and the optimized model is returned and written out by Swift to
the location specifi ed in its mapping on line 10.

The above script completed in approximately 40 minutes. The
script can then be altered to run over multiple experimental condi-
tions by adding another outer loop:

WORKFLOW 2: 4-REGION EXHAUSTIVE SEM FOR 2 EXPERIMENTAL
CONDITIONS

1. string conditions[] = ["emblem", "speech"];
2. int totalperms[] = [1:65536];
3. float initweight =.5;
4. foreach cond in conditions{

5. foreach perm in totalperms{
6. file covMatrix<single_file_mapper;file=@
 strcat(cond,".cov")>;
7. mxModel modmin<single_file_mapper;file=@
 strcat(cond,perm,".rdata")>;
8. modmin= mxModelProcessor(covMatrix,
 mxScript,perm, initweight, cond);
9. }

When the outer loop is added, the new workfl ow consists
of 131,072 jobs since we are now running the entire set for two
conditions. This workfl ow completed in approximately 2 hours
(Figure 3).

WORKFLOW 3: 4-REGION EXHAUSTIVE SEM FOR MULTIPLE NETWORKS
In this workfl ow multiple 4-region networks are run for the Emblem
with Speech experimental condition. The regions of interest (ROIs)
designated are from FreeSurfer’s2 automatic parcellation of ana-
tomical regions, based on the Duvernoy atlas (1991), and further
manual subdivisions to delineate anterior and posterior extents of
the superior temporal gyrus and sulcus, as well as superior and
inferior segments of the precentral gyrus. Because Emblem with
Speech involved subjects’ perceiving simultaneously both spoken
(audiovisual) and manual information, here we chose candidate
regions expected to be involved in audiovisual recognition of
speech and manual action: occipital pole (OP), middle occipital
gyrus (MOG), anterior occipital sulcus (AOS), posterior superior
temporal sulcus (STSp), posterior superior temporal gyrus (STGp),
transverse temporal gyrus (TTG), and supramarginal gyrus (SMG).
Covariance matrices of activation data for Emblem with Speech for
several networks comprised of these ROIs were then queried from
the database:

network 1: {OP, STGp, TTG, AOS}
network 2: {OP, MOG, AOS, STSp}
network 3: {TTG, STGp, SMG, STSp}

 1. string conditions[] = ["emblemwithspeech"];

2000

1500

1000

ev
en

ts
 in

 p
ro

gr
es

s

500

0
0 2000 4000 6000 8000 10000 12000

3000

2500

2000

1500

1000

ev
en

ts
 in

 p
ro

gr
es

s

500

0
0 2000 4000 6000 8000 10000 1200014000 16000 18000

FIGURE 3 | Number of active processes during workfl ow execution: (left)

Processing of the 4-region workfl ow over 2 experimental conditions. (Right)
Processing of the 4-region workfl ow over multiple networks. The red line

represents the execution of jobs on Ranger, while the blue and green represent
the staging in and out of fi les respectively. Plots were generated by
swift-plot-log, part of the Swift suite of tools.

2http://surfer.nmr.mgh.harvard.edu/

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 7

Kenny et al. Parallel workfl ows for SEM

 2. int networks[] = [1:3];
 3. int totalperms[] = [1:65536];
 4. float initweight =.5;
 5. foreach cond in conditions {
 6. foreach perm in totalperms {
 7. foreach n in networks {
 8. file covMatrix<single_file_mapper; file=@
 strcat("matrices/net",n,"_",cond,".
 cov")>;
 9. mxModel modmin<single_file_mapper; file=@
 strcat(n,"_",cond,"_",perm,".rdata")>;
 10. modmin = mxModelProcessor(covMatrix,mxScr-
 ipt,perm,initweight,
 11. condition,@
 strcat("net",n));
 12. }
 13. }
 14. }

This results in a workfl ow containing 196,608 processing jobs
(1 condition x 3 networks x 65536 models) and completed in
approximately 5 hours on Ranger. For an example of how this
might be used as part of a larger processing workfl ow see Section
“Language Study Workfl ow in Swift” in the Appendix.

DISCUSSION AND FUTURE WORK
The workfl ows presented here do not result in a single “best” model
representing connectivity amongst the four brain regions for the
given conditions. Rather, their value lies in that they produce an
exhaustive set of optimized models from which to begin searching
for good-fi tting models. Thus, a natural extension to this set of
workfl ows might be a model-selection component based on a fi t
statistic (e.g., Bayesian information criterion, Akaike information
criterion, RMSEA), an exploratory visualization component (see
“Language Study Workfl ow in Swift” in the Appendix) or perhaps
a combination of these methods. A “model-selection workfl ow”
based on one or more fi t statistics extending, for example, work-
fl ow 1 would extract the desired fi t statistic from each of the 65,536
optimized models and potentially keep or discard a given model
based on whether or not it is above or below a selected thresh-
old. It is worth noting that there is a good deal of controversy
around which measures provide the most accurate model-selec-
tion (Bullmore et al., 2000) as well as some variation in how SEM
software packages actually calculate those fi t statistics (Clayton
and Pett, 2008).

While the present workfl ows suggest new possibilities for exhaus-
tive search and large-scale, parallel analysis techniques, their utility
lies heavily in the ability to be easily replicated and reconfi gured
for use on varying datasets. Exhaustive search through a space of
structural equation models is, ab initio, an exploratory technique.
Thus, one cannot make statements concerning the probability that
there are signifi cant differences between models or that a selected
parameter is signifi cantly different from zero. The number of
tested models is so great that any statistical argument concerning
the likelihood of the data given a null hypothesis is overwhelmed
by the number of comparisons made. In addition, one must be
concerned about generalizability of results if a single data set was

used—the exhaustive search may have overfi t idiosyncrasies of the
target data. Thus, it is imperative to cross-validate results from
exhaustive search using other data sets.

On the other hand, an exhaustive search of the space of structural
equation models for a particular data set does result in an empirical
distribution of the fi t statistics of the models. By plotting the log likeli-
hood resulting from each fi t against the number of degrees of freedom
in its associated model, it is likely that clusters in the fi t statistics will
be observed. In this way, we may observe patterns of candidate models
that are roughly equivalent given the data. Some of these models may
be algebraically equivalent (vonOertzen, in press), and others may be
empirically equivalent given the data. We intend the CNARI develop-
ment effort to enable this type of data exploration.

Beginning with some basic pruning techniques, we can start to
narrow down the space of models in the exhaustive set while leverag-
ing Swift’s ability to submit large numbers of processes, resulting in
some powerful workfl ows. The fi rst reduction in the exhaustive set
of models is elimination of any models that are unidentifi ed, that is,
models containing negative degrees of freedom due to the presence
of more unconstrained than constrained variables. The degrees of
freedom can be easily calculated using the following formula:

(n(n+1)/2)-k

where n is the number of brain regions in the model and k is
the number of free parameters and if the result is negative, the
model is underidentifi ed (Bollen, 1989). Additionally, a model
with two-way symmetric connections is likely to fail attempts
at optimization. Such a connection represents a type of cycle. In
fact, most models containing cycles will be diffi cult to optimize as
they are not usually identifi ed in the absence of, e.g., longitudinal
data (Neale and Cardon, 1992; Heath, 1993; Neale et al., 1994).
The size if the acyclic set is given by

4((n*(n-1)/2).

An algorithm exists for fi nding cycles (Boker et al., 2002) that
could potentially be used to further prune the model set. In addition
to pruning cyclic and underidentifi ed models, the set may also be
pruned for models containing variables that lack residual error. The
fi t function cannot be evaluated under these circumstances, because
the predicted covariance matrix is singular; therefore its determinant
is zero, which results in the division of a negative quantity by zero in
the calculation of the multivariate normal distribution probability
density function, so optimization cannot be performed.

As Table 1 shows, with a moderate degree of pruning, the set
for four regions becomes trivial to run in the present infrastruc-
ture. Furthermore, the fi ve-region set, while still a large number of
processing jobs, becomes much more manageable.

Table 1 | Number of models produced for exhaustive and partially

pruned workfl ows.

Regions Exhaustive set Identifi ed Acyclic

4 65,536 50,642 4,096

5 33,554,431 26,434,915 1,048,576

6 68,719,476,736 54,802,674,727 1,073,741,824

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 8

Kenny et al. Parallel workfl ows for SEM

CNARI has been developed with the aim of managing a broad
range of diverse neuroscience datasets and performing effi cient,
reliable parallel analysis workfl ows on them. Here we have dem-
onstrated workfl ows that fully exercise this capability by applying
this framework to large computational problems; namely, exhaus-
tive search SEM. The need for data-driven techniques in modeling
connectivity has emerged not only in our own work in studying
language and aphasia but in SEM in general (Bullmore et al.,
2000; Marrelec et al., 2007), though there has been little discus-
sion of workfl ow management and parallel computing as means
of addressing this need. Researchers, faced with seemingly insur-
mountable computational problems when selecting appropriate
models to test, are often forced to rely on less-than-satisfactory
approximations not only due to the sheer amount of processing
power required but because of the daunting task of distributing
those processing tasks in a cohesive manner such that the results
are useful and replicable. As CNARI continues to evolve, we hope
to expand these large-scale, data-driven workfl ows as we use them
to address the complex research questions facing us.

ACKNOWLEDGMENTS
This research is supported in part by NSF grant OCI-721939, NIH
grants DC08638, DA024304-02, DA-18673, 1R21DA024304—01,
R21/R33 DC008638 and R01 DC07488, the U.S. Dept. of Energy
under Contract DE-AC02-06CH11357, the James S. McDonnell
Foundation and the TeraGrid HPC resources of the Texas Advanced
Computing Center. The authors thank Ben Clifford and Mihael
Hategan for creating and supporting the Swift parallel scripting
system, and Michael Spiegal, Jeffrey Spies, and Tim Brick for devel-
oping and supporting the OpenMx system.

APPENDIX
LANGUAGE STUDY WORKFLOW IN SWIFT
The following is a prototype using Swift and demonstrating how the
above modules can be assembled into a larger exploratory workfl ow.
Exhaustive search is run for the Emblem with Speech condition on
several four-region networks, and the results of the optimized mod-
els are stored in a connectivity database for visualization, further
analysis, and pattern detection.

For each of the selected networks multiNetworkSEM is called with
confi guration fi les for the user to access the databases, information
on the network to be processed, and the total number of models in
the exhaustive set. First, the covariance data is pulled from the experi-
ment database. This is seen in the runQuery function, which is Swift’s
call to a python database interface (see Small et al., 2009 for a more
detailed description of this mediator component). Then for each
iteration of the loop in line 34, Swift invokes mxModelProcessor,
assigning each process a model to generate and optimize in OpenMx.
The instantiation of the OpenMx model object and the call to the
optimizer are encapsulated in the R script mapped on line 33, which
is also passed to mxModelProcessor. Each of these processes writes
out a fi le containing the result of the optimization, and these results
can be read and inserted into the connectivity database, which is done
with insertOptMod. It should be noted that both insertOptMod
and getCovariance operate on the same principle: the user assem-
bles a query that the python DBI will submit to the database. If the
user also passes an R script (as in line 62), it will process the query

result with that R script. Each result fi le is read, and its contents are
inserted into the connectivity database where they can be further
analyzed. A call to plotLogLik can be used to plot of the minimum
values obtained by OpenMx for each model allowing for identifi ca-
tion of patterns or clusters within the set (Figure 4).

 #### MultiNetworkSEM.swift

1. type file;
2. type mxMin;
3. type Rscript;
4. type dbConnect;
5. type mxModel{
6. int modnum;
7. int dof;
8. string best;
9. }
10.# ----------- atomic procedures ----------- #
11.
12.app (file matrix) runQuery (dbConnect dbconn,
 string query, Rscript calcCov){
13. }
14. mysqlPythonDBI query @calcCov @dbconn;
15. }
16.
17.app (external inserted) insertMxResult
 (dbConnect dbconn, string query, file
 datafile)
18. {
19. mysqlPythonDBI query @dbconn stdout=@
 filename(inserted) @datafile;
20. }
21. app (file min) mxModelProcessor (file
 cov, Rscript mxModProc, int modnum, float
 weight, string cond, int net)
22. {
23. RInvoke @mxModProc @filename(cov) modnum
 weight cond net;
24. }
25.
26. # ------ user-defined SEM procedures ------ #
27.
28. multiNetworkSEM(string condition,dbConnect
 emblemdb, dbConnect semdb, int n, string net,
 int totalperms[])
29. {
30. float initweight =.75;
31. file covariance<single_file_mapper;file=@
 strcat("net",n,"/",condition,".cov")>;
32. covariance = getCovariance(condition, n,
 net, emblemdb);
33. Rscript mxModProc<single_file_
 mapper;file="scripts/singlemodels.R">;
34. foreach perm in totalperms{
35. file modmin<single_file_mapper;file=@
 strcat("net",n,"/",condition,"_",perm,".
 stat")>;

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 9

Kenny et al. Parallel workfl ows for SEM

36. modmin = mxModelProcessor(covariance,mxMod
 Proc,perm,initweight,condition,n);
37. external doneflag = insertOptMod(n, semdb,
 condition, modmin);
38. }
39.
40. (external ins) insertOptMod(int net,
 dbConnect dbconn, string cond, file modfile)
41. {
42. string mysqlstr = @strcat("INSERT
 INTO optimized_models (network, deg_of_
 freedom, mx_minimum, modnum, cond) VALUES
 (",net,",DOF,BEST,MODNUM,",cond,");");
43. string argList = @strcat(
44. " --query ", mysqlstr,
45. " --data ", @filename(modfile),

46. " --conf ", @filename(dbconn));
47. ins = insertMxResult(dbconn, argList,
 modfile);
48. }
49.
50. (file covariance) getCovariance (string cond,
 int net, string rois, dbConnect dbconn)
51. {
52. string mysqlstr = @strcat("SELECT
 avg(",cond,"0B), avg(",cond,"1B),
 avg(",cond,"2B),",
53. "avg(",cond,"3B), avg(",cond,"4B),
 avg(",cond,"5B),",
54. "avg(",cond,"6B), avg(",cond,"7B),
 avg(",cond,"8B) ",
55. "FROM emblemfemlh where roi in (",rois,")

worksta�on

covariance

models

Network1 Network2

Connec�vityDB

Network3

Ac�va�onDB

Visualiza�on

FIGURE 4 | Multinetwork Swift workfl ow for the Emblem with Speech condition.

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 10

Kenny et al. Parallel workfl ows for SEM

71. " --conf ", @filename(dbconn),
72. " --query ", mysqlstr,
73. " --r_script ", "scripts/plotloglik.R",
74. " --r_swift_args ", @filename(plotfile));
75. plotfile = runQuery(dbconn, argList, rplot);
76.
77. # ---------------- Main ----------------- #
78.

79. string condition = "emblemwithspeech";

80. string networks[] = ["42, 34, 33, 60", "42,
 15, 60, 80", "33, 34, 23, 80"];

81. dbConnect emblemdb <single_file_mapper;
 file="./user.config">;

82. dbConnect semdb <single_file_mapper; file="./user2.
 config">;

83. int totalperms[] = [1:65536];
84. foreach net,n in networks{
85. multiNetworkSEM(condition,emblemdb,semdb,n,net,
 totalperms);

86. }

 group by roi ");
56. string argList = @strcat
57. " --conf ", "user.config",
58. " --query ", mysqlstr,
59. " --r_script ", "scripts/cov.R",
60. " --r_swift_args ", "matrices/net",net, "/",
 cond);
61. Rscript calcCov<single_file_
 mapper;file="scripts/cov.R">;
62. (covariance = runQuery(dbconn, argList,
 calcCov);
63. }
64. {
65. (file plotfile) plotLogLik(int net, string
 cond, dbConnect dbconn)
66.
67. Rscript rplot<single_file_
 mapper;file="scripts/plotloglik.R">;
68. string mysqlstr = @strcat("SELECT deg_of_
 freedom,mx_minimum FROM optimized_models",
69. " where network = ",net,";");
70. string argList = @strcat(

REFERENCES
Ban, T., Naito, J., and Kawamura, K.

(1984). Commissural afferents to the
cortex surrounding the posterior part
of the superior temporal sulcus in the
monkey. Neurosci. Lett., 49, 57–61.

Ban, T., Shiwa T., and Kawamura, K.
(1991). Cortico-cortical projections
from the prefrontal cortex to the
superior temporal sulcal area (STs)
in the monkey studied by means of
HRP method. Arch. Ital. Biol., 129,
259–272.

Barbas, H. (2000). Connections under-
lying the synthesis of cognition,
memory, and emotion in primate
prefrontal cortices. Brain Res. Bull.
52, 319–330.

Boker, S. M., and McArdle, J. J. (2005).
Path analysis and path diagrams. In
Encyclopedia of Statistics in Behavioral
Science Vol. 3, B. Everitt and D. Howell,
eds (New York, John Wiley & Sons),
pp. 1529–1531.

Boker, S. M., McArdle, J. J., and Neale, M.
(2002). An algorithm for the hierarchi-
cal organization of path diagrams and
calculation of components of expected
covariance. Struct. Equ. Modeling, 9,
174–194.

Bollen, K. A. (1989). Structural Equations
with Latent Variables. New York, John
Wiley & Sons.

Buchel, C., and Friston, K. J. (1997).
Modulation of connectivity in visual
pathways by attention: cortical inter-
actions evaluated with structural
equation modelling and fMRI. Cereb.
Cortex 7, 768–778.

Bullmore, E., Horwitz, B., Honey, G.,
Brammer, M., Williams, S., and
Sharma, T. (2000). How good is good
enough in path analysis of fMRI data?
NeuroImage, 11, 289–301.

Catlett, C. et al. (2007). TeraGrid: Analysis
of Organization, System Architecture,
and Middleware Enabling New
Types of Applications, HPC and
Grids in Action, L. Grandinetti, ed
(Amsterdam, IOS Press, Advances in
Parallel Computing Series).

Clayton, M. F., and Pett, M. A. (2008).
AMOS versus LISREL: One data
set, two analyses. Nursing Res., 57,
283–292.

Cox, R. W. (1996). AFNI: software for
analysis, and visualization of func-
tional magnetic resonance neu-
roimages. Comput. Biomed. Res. 29,
162–173.

Duvernoy, H. M. (1991). The Human
Brain: Surface, Three-dimensional
Sectional Anatomy, and MRI. New
York, Springer-Verlag.

Gill, P. E., Murray, W., Saunders, M. A.,
and Wright, M. H. (1986). User’s
Guide for NPSOL (Version 4.0):
A FORTRAN package for nonlin-
ear programming. Department
of Operations Research, Stanford
University, Stanford.

Hackett T. A., Stepniewska I., and
Kaas J. H. (1999) Callosal connec-
tions of the parabelt auditory cortex
in macaque monkeys. Eur. J. Neurosci.,
11, 856–866.

Hasson, U., Skipper, J. I., Wilde, M. J.,
Nusbaum, H. C., and Small, S. L.

(2008). Improving the analysis, stor-
age and sharing of neuroimaging
data using relational databases and
distributed computing. Neuroimage,
32, 693–706.

Horwitz, B., Tagamets, M. A., and
McIntosh, A. R. (1999). Neural mod-
eling, functional brain imaging, and
cognition. Trends Cogn. Sci. (Regul.
Ed.) 3, 91–98.

Ihaka, R., and Gentleman, R. (1996). R: A
language for data analysis and graphics.
J. Comput. Graph. Stat., 5, 299–314.

Joreskog, K. G. (1967). Some contribu-
tions to maximum likelihood factor
analysis. Psychometrika, 32, 443–482.

Loehlin, J. (1992). Latent Variable Models:
An Introduction to Factor, Path, and
Structural Analysis. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Marrelec, G., Horwitz, B., Kim, J., Pelegrini-
Issac, M., Benali, H., and Doyon, J.
(2007). Using partial correlation to
enhance structural equation modeling
of functional MRI data. Magn. Reson.
Imaging, 25, 1181–1189.

McArdle, J. J., and Boker, S. M. (1990).
Rampath. Hillsdale, NJ: Lawrence
Erlbaum.

McArdle, J. J., and McDonald, R. P. (1984).
Some algebraic properties of the
reticular action model for moment
structures. Br. J. Math. Stat. Psychol.,
87, 234–251.

McIntosh A. R., and Gonzalez-Lima, F.
(1994) Structural equation model-
ling, and its application to network
analysis in functional brain imaging.
Hum. Brain Mapp., 2, 2–22.

Neale, M. C., Boker, S. M., Xie, G., and
Maes, H. H. (2003). Mx: Statistical
modeling, 6th edn. Richmond, VA:
Department of Psychiatry.

Neale, M. C., Eaves, L. J., and Kendler, K. S.
(1994). The Power of the Classical
Twin Study to Resolve Variation in
Threshold Traits. Vol. 24, Netherlands:
Springer.

Neale, M. C., and Cardon, L. R. (1992).
Methodology for Genetic Studies of
Twins and Families. NATO ASI Series.
Vol. 67. Dordrecht, Kluwer Academic
Publishers.

Petrides, M., and Pandya D. N. (1984).
Projections to the frontal cortex from
the posterior parietal region in the
rhesus monkey. J. Comp. Neurol., 228,
105–116.

Petrides, M., and Pandya D. N. (1988).
Association fi ber pathways to the fron-
tal cortex from the superior temporal
region in the rhesus monkey. J. Comp.
Neurol. 273, 52–66.

Petrides, M., and Pandya, D. N. (1999).
Dorsolateral prefrontal cortex: com-
parative cytoarchitectonic analysis in
the human, and the macaque brain,
and corticocortical connection pat-
terns. Eur. J. Neurosci. 11, 1011–1036.

R Development Core Team (2008). R: A
language and environment for statis-
tical computing. R Foundation for
Statistical Computing. Vienna, Austria.
ISBN: 3-900051-07-0, Available at:
http://www.R-project.org.

Rizzolatti, G., Luppino, G., and Matelli, M.
(1998). The organization of the cor-
tical motor system: new concepts.

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 11

Kenny et al. Parallel workfl ows for SEM

Electroencephalogr. Clin. Neurophysiol.,
106, 283–296.

Rizzolatti, G., Fogassi, L., and Gallese, V.
(1997). Parietal cortex: from sight
to action. Curr. Opin. Neurobiol., 7,
562–567.

Rosa, M. G., Soares, J. G., Fiorani, M.
Jr., and Gattass, R. (1993). Cortical
 afferents of visual area MT in the
Cebus monkey: possible homologies
between New and Old World mon-
keys. Vis. Neurosci., 10, 827–855.

Saad, Z. S., Reynolds, R. C., Argall, B. D.,
Japee, S., and Cox, R. W. (2004). SUMA:
An interface for surface-based intra-
and inter-subject analysis with AFNI.
Arlington, VA, IEEE International
Symposium on Biomedical Imaging.
pp. 1510–1513.

Seltzer, B., and Pandya, D. N. (1994).
Parietal, temporal, and occipital
projections to cortex of the superior
temporal sulcus in the rhesus mon-

key: a retrograde tracer study. J. Comp.
Neurol., 343, 445–463.

Skipper, J. I., Godin-Meadow, S.,
Nusbaum, H. C., and Small, S. L.
(2007). Speech-associated gestures,
Broca’s area, and the human mirror
system. Brain Lang., 101, 260–277.

Skipper, J. I., Goldin-Meadow, S.,
Nusbaum, H. C., and Small, S. L.
(2009). Gestures orchestrate brain
networks for language understand-
ing. Curr. Biol. 19, 661–667.

Small, S. L., Wilde, M., Kenny, S.,
Andric, M., and Hasson, U. (2009).
Database-managed Grid-enabled anal-
ysis of neuroimaging data: The CNARI
framework. Int. J. Psychophysiol. 73,
62–72.

Solodkin, A., Hlustik, P., Chen, E. E., and
Small, S. L. (2004). Fine modulation
in network activation during motor
execution and motor imagery. Cereb.
Cortex, 14, 1246–1255.

Stef-Praun, I., Foster, U., Hasson, M.,
Hategan, S.L., and Wilde, S. M. (2007).
Accelerating medical research using the
Swift Workfl ow System. Paper Presented
at the HealthGrid 2007, Geneva.

vonOertzen, T. (in press). Power equiva-
lence in structural equation modeling.
Br. J. Math Stat. Psychol.

Walsh, R. R., Small, S. L., Chen, E. E., and
Solodkin, A. (2008). Network activation
during bimanual movements in
humans. Neuroimage, 43, 540–553.

Wright, S. (1921). Correlation and
 causation. J. Agric. Res., 20,
557–585.

Zhao, H., Clifford, F., von, L., Nefedova, R.,
and Stef-Praun, W. (2007). Swift: Fast,
Reliable, Loosely Coupled Parallel
Computation. IEEE Congress on
Services, pp. 199–206.

Conflict of Interest Statement: The
authors declare that the research was

conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 11 April 2009; paper pending
 published: 10 July 2009; accepted: 09
September 2009; published online: 20
October 2009.
Citation: Kenny S, Andric M, Boker SM,
Neale MC, Wilde M and Small SL (2009)
Parallel workfl ows for data-driven struc-
tural equation modeling in functional
neuroimaging. Front. Neuroinform. 3:34.
doi: 10.3389/neuro.11.034.2009
Copyright © 2009 Kenny S, Andric M, Boker
SM, Neale MC, Wilde M and Small SL. This
is an open-access article subject to an exclusive
license agreement between the authors and
the Frontiers Research Foundation, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original authors and source are credited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

