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2009). There are two basic components to CNARI: First is the use 
of relational database technology to represent the diverse data types 
of the study in a uniform representational framework that facili-
tates distributed data access, and permits powerful queries and data 
reductions to be performed signifi cantly faster by parallelized sta-
tistical analysis procedures. Second is the use of “virtual data” grid 
computing, in which data and data processing are widely  distributed 
on storage devices and computers, and where data transformation 
and analysis is specifi ed in terms of abstract (“virtual”) procedure 
descriptions. Together, these techniques enable a community of 
researchers to access and share data and perform data preparation 
and analysis without detailed knowledge of the internal workings 
of distributed computing and storage systems or of the network 
infrastructure that connects them.

Longitudinal functional brain imaging requires comparison of 
brain activation images within a single individual over time, and 
possibly also between single individuals and a group that repre-
sents some standard. For example, in a study of recovery from 
brain injury, the individual data might be compared to a normative 
(healthy) group. Although such comparisons can be performed 
using various scalar indices, we have recently begun to do this with 
entire activation networks. One way of modeling such networks of 
activation is with structural equation modeling (SEM), a method 
that uses known anatomy to augment the functional information 
with structural connectivity information, to create a model of both 
static and dynamic relationships (McIntosh and Gonzalez-Lima, 
1994; Buchel and Friston, 1997; Horwitz et al., 1999). We have 
developed several such models (Solodkin et al., 2004; Skipper et al., 
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NEUROSCIENCE USAGE MODEL
In the past decade, there has been tremendous growth in the number 
and scope of functional brain imaging studies performed in the 
basic and applied neurosciences. These studies have been more 
complex than those of the past, often incorporating large  numbers 
of participants, multiple physical sites, longitudinal follow-up, 
combinations of healthy groups and those with disease or injury, 
and/or additional types of behavioral or biological measurements. 
Although their numbers are increasing, the inherent complexity 
of data management and processing in such studies, particularly 
regarding anatomical and physiological data, represents a major 
stumbling block to their ultimate success. In studies of recovery 
from stroke, for example, medical data are stored in paper charts or 
in hospital medical information systems, behavioral and linguistic 
data are saved in spreadsheets on personal workstations, structural 
and metabolic magnetic resonance imaging (MRI) data are stored 
in manufacturer formats on scanners and/or with the functional 
MRI data in the fi le systems of data processing workstations. With 
these diverse representations of information, not even counting 
the possible addition of electrophysiological and other structurally 
unique data types, it is hard enough to perform single case studies 
that attempt to relate these data to each other, let alone studies that 
include statistically meaningful numbers of participants.

We have started building the Computational Neuroscience 
Applications Research Infrastructure (CNARI) to address these 
concerns (Stef-Praun et al., 2007; Hasson et al., 2008; Small et al., 
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2007, 2009; Walsh et al., 2008), based on a combination of primate 
and human data (Ban et al., 1984, 1991; Petrides and Pandya, 1984, 
1988, 1999; Rosa et al., 1993; Seltzer and Pandya, 1994; Rizzolatti 
et al., 1997, 1998; Hackett et al., 1999; Barbas, 2000). In one of 
these studies, we constructed a group network model for healthy 
right handed individuals performing bimanual movements, and 
compared this normative group model to two individuals with 
different biological states, two healthy left handed people and one 
individual with stroke. The fi t between a strong left hander (i.e., 
one who used his left hand for everything) and the model was very 
tight if the hemispheres were fl ipped in the model. The fi ts between 
either the weak left hander (i.e., someone more ambidextrous) or 
the person with stroke and the group model were poor. These three 
examples were highly informative for understanding the neurobiol-
ogy of bimanual movements (Walsh et al., 2008).

Building such models can be very complex and time consuming, 
requiring advanced anatomical knowledge and skill. Furthermore, 
while these previous methods have been useful for generating a 
set of possible models in the absence of exhaustive techniques, 
they are inherently fl awed since they are based on anatomical con-
nectivity data from non-human primates. In addition, the models 
created depend on the hypotheses being tested, and thus there is 
a large number of possible models for any particular set of fMRI 
activation data. To address these issues, we have embarked on an 
extension to CNARI that aims to facilitate a more objective type of 
data-driven SEM via highly parallelized workfl ows for generating 
and processing large numbers of models in a manner that is easily 
reconfi gurable and replicable. The goal for this modeling approach 
is to explore as much as possible of the entire space of plausible 
models that account for the data. In this paper, we discuss the 
nature of this grid-enabled SEM, and describe how it can be used 
and applied to various research problems in brain imaging. One 
of the original purposes of CNARI was to facilitate the study of 
stroke recovery, with particular emphasis on natural recovery and 
treatment for language problems (aphasia). In our presentation, 
we will use specifi c examples from language processing, though the 
workfl ows presented are generalizable to a wide variety of other 
SEM problems.

CONCEPTS AND BACKGROUND ON SEM: THE MOTIVATION AND DESIGN 
OF OPENMX
Structural equation modeling (SEM) has a long history dating 
back to the development of path analysis by Wright (1921). SEM 
is a statistical tool for estimating a set of predicted covariances 
between variables that may be connected with either regression 
(asymmetric, directional) parameters or covariance (symmetric, 
non-directional) parameters (see Boker and McArdle, 2005, for 
a review). The advent of high speed computers and high level 
programming languages in the 1960s, together with advances in 
statistical methodology led to the development of software for 
fi tting models to observed covariance matrices by maximum likeli-
hood (Joreskog, 1967). This procedure is now commonly known 
as SEM (see e.g., Bollen, 1989; Loehlin, 1992, for introductions; see 
McIntosh and Gonzalez-Lima, 1994 for its use in neuroimaging). 
SEM is widely used for fi tting statistical models to epidemiologi-
cal, psychological, sociological and econometric data where there 
are multivariate outcomes and theoretical reasons to expect that 

linear or non-linear systems of equations may provide explanatory 
power in summarizing these large data sets. For instance, in an epi-
demiological study of heart disease, one may wish to control for a 
wide variety of possible behavioral covariates while simultaneously 
accounting for variance due to group membership or genetic vari-
ation. For such problems, SEM models represent state-of-the-art 
in statistical techniques. Neuroimaging data, is a prime candidate 
for modeling with SEM, given overlapping sources of variance 
both across space and time within individual as well as sources 
of variance across individuals due to group membership and 
other covariates.

SEM models can be described as a function of two model matri-
ces, A, S, a fi lter matrix, F and a residual matrix U, such that the 
expected covariance between observed variables is:

R = F(I − A)–1 S((I − A)–1)′F′ + U

where the model matrix A contains the asymmetric paths (regres-
sion coeffi cients), S contains the symmetric paths (covariance 
coeffi cients), and the fi lter matrix, F, strips the latent variables 
from the model matrices so that the result only contains expec-
tations for the observed covariances (McArdle and McDonald, 
1984; McArdle and Boker, 1990). One implementation of SEM is 
the software package Mx (Neale et al., 2003). The set of built-in 
functions that Mx can optimize includes maximum likelihood, 
generalized least squares, and full information maximum likeli-
hood analysis of covariance matrices and/or observed means. In 
2007, the OpenMx development project was started in order to 
rewrite Mx into open source, provide a scripting interface to the 
R statistical language (Ihaka and Gentleman, 1996) and provide a 
number of extensions to the software. Among these improvements 
was integrating the Mx SEM optimization engine into parallel 
workfl ow management software in order to be able to estimate 
parameters for large numbers of SEM models simultaneously. 
In this way, statistical resampling techniques such as bootstrap-
ping, simulations to verify the performance of new models, and 
exhaustive search routines could make use of large-scale paral-
lel computing resources. The current article describes the fi rst 
application of the OpenMx software to a real-world exhaustive 
search problem.

WORKFLOW MANAGEMENT
BACKGROUND AND GOALS
The ability to submit a large number of processes simultaneously to 
multiple grid sites is a major computational challenge and cannot 
be accomplished without an evolved workfl ow management system. 
In a related research project, we have been developing a workfl ow 
system called Swift (Zhao, 2007), which has been our system of 
choice for submission and management of large-scale workfl ows 
for neuroimaging. Using Swift, individual researchers are able to 
map large amounts of input and output explicitly and make calls 
to the cataloged executables that sit on remote grid sites. We have 
been investigating ways to execute and manipulate exhaustive or 
partially pruned, data-driven SEM workfl ows using Swift to oper-
ate on covariance data derived from a relational fMRI experiment 
database. From the standpoint of parallel computing and workfl ow 
management this poses some interesting issues and also demon-
strates, quite strikingly, the convenience (to the research scientist) 



Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 3

Kenny et al. Parallel workfl ows for SEM

of having an elegant, high-level means of expressing, reconfi guring 
and rerunning such workfl ows. Here we present several examples 
of such workfl ows and explain how they can be expressed and 
run using Swift, OpenMx and the computational resources of the 
TeraGrid (Catlett et al., 2007).

The availability of high performance computing systems (HPCs), 
ranging from multi-core workstations to clusters, grids, clouds, and 
now petascale supercomputers, creates opportunities to explore 
experimental datasets with SEM in ways never before possible. The 
availability of this computing power, however, can be diffi cult to 
harness, particularly for a neuroscientist not versed in high per-
formance computing. For these researchers, it is undesirable to 
divert mental and manual effort from scientifi c exploration to the 
mechanics of large-scale parallel computing. At the same time, both 
the complexity and the scale of high performance environments 
makes it ever more challenging to assure the validity of scientifi c 
results obtained via such systems.

What scientists in general - and neuroscientists in particular - 
need, are ways to express the processing they want to perform in a 
compact, abstract, high-level notation that specifi es only the logical 
nature of their computations, but which abstracts and automates all 
of the potential, varying details of implementing those computing 
abstractions across a wide range of computing platforms.

SWIFT AND CNARI
For the past two years our group at the University of Chicago Human 
Neuroscience Laboratory, in collaboration with the Computation 
Institute, has been developing and evaluating Swift, a parallel 
scripting language, for this purpose. Together with members of 
the OpenMx project described above, we have recently focused 
signifi cant effort to create a library of Swift procedures for the 
fl exible processing and analysis of data from fMRI and other neu-
roscience experiments.

We employ a programming model that “loosely couples” 
 application programs. In this model, complete programs 
become our functions, and the arguments to, and results from 
these  functions can be fi les, fi le-structured datasets, as well as 
database entries.

The goals of expressing data processing steps in an abstract 
notation are multifold: 1) to distill the computation down to 
the salient details and eliminate the mechanical details of fi le 
manipulation from the expression of the basic workfl ow steps; 
2) to abstract data at a high level to relieve the programmer of 
concerns for the layout of the data on storage systems; 3) to enable 
the automatic parallelization of scripts in which independent 
streams of data are processed; and, 4) to enable the recording of 
all of the steps of a computation in an automatic, transparent 
manner. An overview of the scripting modules for SEM analysis, 
coded by the research scientist within the CNARI framework can 
be seen in Figure 1. The Swift programming language enables 
this model by providing the ability to represent application pro-
grams as procedures, and to defi ne compound procedures that 
permit the user to create libraries of higher level processes that 
capture the essential protocols of an application’s data prepara-
tion and analysis. The language’s data model provides the ability 
to describe the datasets that are consumed and produced by 
the procedural abstractions by combining basic primitive data 
type defi nitions with a mapping mechanism of on-disk directory 
structures to form structures and arrays. These data objects are 
then automatically and transparently sent across distributed exe-
cution environments to remote and parallel Swift procedures.

The Swift language has a C-like syntax, but enforces many of 
the semantic aspects of a “functional” programming language. 
Procedures are expressed as functions, permitted to return 
 multiple values; statements are executed in data-dependency order; 
 variables (including array elements and structure members) are 

Swift:
scripting language, task coordination, 
throttling, data management, restart

OpenMx:
R-based SEM package with built-in 
optimizer

R:
general purpose, portable, open source 
data analysis scripting language

R
Libraries 

(remote site)

-in 

Swift
scripts

SEM 
models

(generated
by R script)

R script for
generating

models

R
Libraries

(remote site)

FIGURE 1 | User Interface: Overview of the CNARI scripting modules for SEM workfl ows.
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single-assignment, making it signifi cantly simpler to determine 
 independent operations and threads of control, and to execute 
these threads in parallel; a construct called “mapping” is provided 
to translate between the simple, clean regular abstract data model 
of Swift and the potentially messy, complex model of real-world 
directory structures and the fi le naming and structuring conven-
tions expected by real-world applications.

The notation provides a simple set of fl ow-of-control 
 statements, such as if and switch (case) statements. The primary 
way to express a set - potentially large - of parallel operations in 
swift is to utilize the foreach() statement. This statement iterates 
over a collection, assigning each member of the collection to a 
control variable, and then evaluating the body of the foreach() 
loop once for each value of the target collection. All iterations 
of a foreach() are potentially (and conceptually) performed in 
parallel; the runtime system provides appropriate “throttling” 
and scheduling of the potentially enormous number of par-
allel operations that this construct can generate and submit 
for processing.

Atomic procedures in Swift consist of wrappers around speci-
fi cations that detail the invocation of application programs. In 
our SEM project, this mechanism is used by Swift to invoke the 
individual parallel model optimizations of the many thousands 
of models generated in an OpenMx SEM analysis workfl ow. “R” 
is the application program of execution. The invoking (master) 
program that calls the individual R programs creates a (potentially 
very long) list of evaluations, each of which is an R expression that 
embodies the OpenMx engine. The master program generates a 
large set of model calls and marshals the model’s matrix into a 
text character stream.

The Swift model of data abstraction was to some degree 
inspired and motivated by the fi eld of fMRI data analysis. In 
our earliest efforts to execute fMRI preprocessing workfl ows on 
computing grids we observed that the data model of the fMRI 
domain had a natural tree structure in which the vast number 

of fi les stored in traditional fi le system directories had some-
what similar patterns. These fi les included data from myriad 
experiments, test conditions and scans, and also included vari-
ous types of lower level data such as anatomical and time series 
data represented in the image/header fi le pairs of the functional 
data format (e.g., Analyze or AFNI formats). This suggested to 
us that data defi nition constructs could be of signifi cant ben-
efi t for scientifi c workfl ow scripting, such that data could be 
described in a “typed” fashion, much like the hierarchical model 
of “structs” in C or “classes” in Java. To enable an organization 
(or even a discipline, through community curation efforts such 
as those managed by collaborations like BIRN)1 to defi ne and 
standardize a uniform format for describing their common data 
elements, Swift provides the notion of data type and “mapping” 
of each type to a physical representation. The logical type is sim-
ple and abstract, and refl ects only the logical level of the data; the 
“mapping” describes how each element of a structure is mapped 
onto the structure’s physical representation on a fi le system. To 
some extent, Swift emulates the mapped fi lesystem structure on 
the remote resources where it instantiates processing. Generic 
mappers with a modest degree of representational fl exibility are 
pre-defi ned in the swift system; but additional mappers can be 
created by users for their own communities and used throughout. 
Figure 2 shows the Swift modules used for execution manage-
ment once a user has mapped his fi les, and defi ned processing 
jobs within a Swift script.

Swift is easy for users to install, and its runtime system pro-
vides the client capabilities needed to use workstation, grid and 
cluster computing resources. From a single client computer, e.g., 
a modest workstation or personal laptop, the user can launch and 
control scripts that send parallel work for simultaneous execution 
on clusters, grids and supercomputers. The user can test the correct 
execution of the logical script workfl ow, just by executing directly 

Swift
Script

Abstract
computation

Execution Engine

C
C C C

Swift runtime
callouts

Status reporting

Worker Nodes

file1

launcher

launcher

Provenance
data

Provenance
data

App
F1

App
F2

file2

file3

SwiftScript
Compiler

Specification Scheduling Execution Provisioning

Resource
Provisioners

Open Science Grid

Multicore systems

TeraGrid

PetaScale Clusters

FIGURE 2 | Swift architecture: Managing workfl ow execution within CNARI. Specifi cation and scheduling are implemented on the client side while execution is 
implemented on the remote computing resources.

1http://www.loni.ucla.edu/BIRN/
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on a local workstation. If the user’s workstation has multiple cores, 
Swift can take advantage of those for modest but invaluable paral-
lelism. And as the user’s needs grow or the user is ready to scale 
up to increasingly large systems, Swift can readily expand to those 
systems with a single representation and a single client as we will 
show in our example workfl ows.

Swift scripts afford a highly productive way to produce and 
manage the software of neuroscience research units, whether they 
be local campus departments or international collaborations. In 
today’s practice, organizations that need to process data from fMRI 
experiments typically develop and rely on locally produced sets of 
ad hoc scripts, usually written in a Linux “shell” language such as 
“c shell” (csh) or bash, or perhaps Perl, to organize the processing 
protocols and processes of the collaborations. In Swift, however, 
as all procedures are “typed” with a specifi c “signature” of data 
types for the input and output arguments, a more rigorous and 
less error-prone paradigm is imposed on the overall structure of 
the scripts. Thus Swift procedures serve as an interface-defi nition 
language for ordinary shell procedures. The overall higher-level 
process is then defi ned in a multilevel fashion, from top (highest) 
to bottom (lowest level) being:

• overall application (such as multiNetworkSEM)
• high-level scripts (such as getCovariance())
• low level Swift interfaces (atomic procedures) such as 

mxModelProcessor()
• an external R wrapper script to do further argument manipu-

lation (RInvoke.sh)
• the R tool itself (R CMD BATCH)

Special power and structure is afforded when the tool being run is 
not a “canned” compiled application, but rather itself a powerful data 
manipulation environment such as Perl or Python, or more specifi c 
to the model we describe in detail here, the R data analysis language 
with its vast package library of statistical and analytical procedures, 
including the OpenMx package used here. In this case, the actual 
script to be performed can be dynamically generated or selected from 
a template library, and sent to any computing site, which already has 
a suitable version of R and the OpenMx package installed.

DESCRIPTION OF THE fMRI EXPERIMENT DATA: THE EMBLEM 
DATABASE
We now give some concrete examples of how Swift can manipu-
late large datasets and enable novel analysis techniques by means 
of effective workfl ow management. The example framework we 
have employed our grid-enabled analysis techniques on is an fMRI 
investigation of the neural processing associated with emblematic 
gesture observation. Emblematic gestures (“emblems”) are goal-
directed, symbolic manual actions that, while expressed as cultur-
ally recognizable manual gestures, communicate a linguistically 
associable propositional meaning. Four experimental conditions 
were presented to participants in the MRI scanner: 1) Emblem, 
the symbolic manual gestures; 2) Speech, the spoken form of the 
linguistic propositions associated with the emblems; 3) Emblem 
with Speech, simultaneous presentations of the emblems with their 
verbalized linguistic associations; and 4) Grasping, observation of 
another type of goal-directed manual action, for which the neural 
regions associated with its processing have been well- characterized. 

Data were processed with AFNI (Cox, 1996) and mean normalized 
values of each of the hemodynamic response functions for every 
condition at every voxel in the brain were projected to 2-D  cortical 
surface representations and spatially smoothed on the surfaces 
using SUMA (Saad et al., 2004). These surface values were then 
imported into MySQL database tables for relational indexing and 
further analyses.

SEM WORKFLOWS IN SWIFT
We have begun exploring extremely large, exhaustive SEM 
workfl ows as a means of investigating how effi cient workfl ow 
tools can address computational problems that were previously 
considered unmanageable. Particularly, in using SEM for look-
ing at functional connectivity many researchers are confi ned to 
hypothesis-driven approaches because they lack the tools to reli-
ably implement data-driven methods; this situation can greatly 
impact mining and interpretation of datasets. In an attempt to 
address these issues, we are building an infrastructure that can 
be used by researchers to iterate over various parameters within 
these large sets in a reasonable amount of time and in a man-
ner that is both dynamic and reliable. The following workfl ows 
were run on a TeraGrid HPC system known as Ranger. Ranger 
comprises 3,936 16-way SMP compute nodes providing 15,744 
AMD Opteron™ processors for a total of 62,976 compute cores. 
The workfl ows were developed on and submitted (to Ranger) 
from a single-core Linux workstation running an Intel® Xeon™ 
3.20 GHz CPU.

A model generator was developed for the OpenMx package and 
is designed explicitly to enable parallel execution of exhaustive or 
partially pruned sets of model objects. Given an n x n covariance 
matrix, it can generate the entire set of possible models with any-
where from 0 to n2 connections; however, it can also take as input 
a single index from that set and it will generate and run a single 
model. What this means in the context of workfl ow design is that 
the generator can be controlled (and parallelized) easily by a Swift 
script. For example, using Swift as the interface to OpenMx we have 
these few lines of code:

WORKFLOW 1: 4-REGION EXHAUSTIVE SEM FOR A SINGLE 
EXPERIMENTAL CONDITION

 1. app (mxModel min) mxModelProcessor(file
    covMatrix, Rscript mxModProc, int modnum,
    float initweight, string cond){
 2. {
 3.      RInvoke @filename(mxModProc) @
    filename(covMatrix) modnum initweight cond;
 4. }
 5. file covMatrix<single_file_
    mapper;file="speech.cov">;
 6. Rscript mxScript<single_file_mapper;file="sin-
    glemodels.R">;
 7. int totalperms[] = [1:65536];
 8. float initweight =.5;
 9. foreach perm in totalperms{

10.    mxModel modmin<single_file_mapper; file=@
    strcat(perm,".rdata")>;
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11.    modmin = mxModelProcessor(covMatrix, 
       mxScript, perm, initweight, "speech");
12. }

First, a covariance matrix containing activation data for 4 brain 
regions, over 8 time points, averaged over a group of subjects in 
the Speech condition was drawn from the experiment database and 
its location (in this example, on the local fi le system, though the 
fi le could be located anywhere) is mapped in line 5. Line 6 maps 
the R processing script and lines 1 through 4 defi ne the atomic 
procedure for invoking R. Each iteration of the foreach loop maps 
its optimized model output fi le and calls mxModelProcessor() 
with the necessary parameters to generate and run a model. Each 
of these invocations of mxModelProcessor() is independent 
and is submitted for processing in parallel. Swift passes 5 variables 
for each invocation: (1) the covariance matrix; (2) the R script 
containing the call to OpenMx; (3) the permutation number, i.e., 
the index of the model; (4) the initialization weight for the free 
parameters of the given model; and (5) the experimental condition. 
Clearly, in this workfl ow all free parameters of the given model 
will have the same initialization weight as Swift is passing only one 
weight variable. When the job reaches a worker node on Ranger 
an R process is initialized, the generator creates the desired model 
by calculating where in the array that permutation of the model 
matrix falls. OpenMx then estimates the model parameters using a 
non-linear optimization algorithm called NPSOL (Gill et al., 1986), 
and the optimized model is returned and written out by Swift to 
the location specifi ed in its mapping on line 10.

The above script completed in approximately 40 minutes. The 
script can then be altered to run over multiple experimental condi-
tions by adding another outer loop:

WORKFLOW 2: 4-REGION EXHAUSTIVE SEM FOR 2 EXPERIMENTAL 
CONDITIONS

1. string conditions[] = ["emblem", "speech"];
2. int totalperms[] = [1:65536];
3. float initweight =.5;
4. foreach cond in conditions{

5.    foreach perm in totalperms{
6.     file covMatrix<single_file_mapper;file=@
       strcat(cond,".cov")>;
7.     mxModel modmin<single_file_mapper;file=@
       strcat(cond,perm,".rdata")>;
8.     modmin= mxModelProcessor(covMatrix,
       mxScript,perm, initweight, cond);
9. }

When the outer loop is added, the new workfl ow consists 
of 131,072 jobs since we are now running the entire set for two 
conditions. This workfl ow completed in approximately 2 hours 
(Figure 3).

WORKFLOW 3: 4-REGION EXHAUSTIVE SEM FOR MULTIPLE NETWORKS
In this workfl ow multiple 4-region networks are run for the Emblem 
with Speech experimental condition. The regions of interest (ROIs) 
designated are from FreeSurfer’s2 automatic parcellation of ana-
tomical regions, based on the Duvernoy atlas (1991), and further 
manual subdivisions to delineate anterior and posterior extents of 
the superior temporal gyrus and sulcus, as well as superior and 
inferior segments of the precentral gyrus. Because Emblem with 
Speech involved subjects’ perceiving simultaneously both spoken 
(audiovisual) and manual information, here we chose candidate 
regions expected to be involved in audiovisual recognition of 
speech and manual action: occipital pole (OP), middle occipital 
gyrus (MOG), anterior occipital sulcus (AOS), posterior superior 
temporal sulcus (STSp), posterior superior temporal gyrus (STGp), 
transverse temporal gyrus (TTG), and supramarginal gyrus (SMG). 
Covariance matrices of activation data for Emblem with Speech for 
several networks comprised of these ROIs were then queried from 
the database:

network 1: {OP, STGp, TTG, AOS}
network 2: {OP, MOG, AOS, STSp}
network 3: {TTG, STGp, SMG, STSp}

 1. string conditions[] = ["emblemwithspeech"];

2000

1500

1000

ev
en

ts
 in

 p
ro

gr
es

s

500

0
0 2000 4000 6000 8000 10000 12000

3000

2500

2000

1500

1000

ev
en

ts
 in

 p
ro

gr
es

s

500

0
0 2000 4000 6000 8000 10000 1200014000 16000 18000

FIGURE 3 | Number of active processes during workfl ow execution: (left) 

Processing of the 4-region workfl ow over 2 experimental conditions. (Right) 
Processing of the 4-region workfl ow over multiple networks. The red line 

represents the execution of jobs on Ranger, while the blue and green represent 
the staging in and out of fi les respectively. Plots were generated by 
swift-plot-log, part of the Swift suite of tools.

2http://surfer.nmr.mgh.harvard.edu/
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 2. int networks[] = [1:3];
 3. int totalperms[] = [1:65536];
 4. float initweight =.5;
 5. foreach cond in conditions {
 6.   foreach perm in totalperms {
 7.    foreach n in networks {
 8.     file covMatrix<single_file_mapper; file=@
        strcat("matrices/net",n,"_",cond,".
        cov")>;
 9.     mxModel modmin<single_file_mapper; file=@
        strcat(n,"_",cond,"_",perm,".rdata")>;
 10.    modmin = mxModelProcessor(covMatrix,mxScr-
        ipt,perm,initweight,
 11.                             condition,@
                                strcat("net",n));
 12.    }
 13.  }
 14. }

This results in a workfl ow containing 196,608 processing jobs 
(1 condition x 3 networks x 65536 models) and completed in 
approximately 5 hours on Ranger. For an example of how this 
might be used as part of a larger processing workfl ow see Section 
“Language Study Workfl ow in Swift” in the Appendix.

DISCUSSION AND FUTURE WORK
The workfl ows presented here do not result in a single “best” model 
representing connectivity amongst the four brain regions for the 
given conditions. Rather, their value lies in that they produce an 
exhaustive set of optimized models from which to begin searching 
for good-fi tting models. Thus, a natural extension to this set of 
workfl ows might be a model-selection component based on a fi t 
statistic (e.g., Bayesian information criterion, Akaike information 
criterion, RMSEA), an exploratory visualization component (see 
“Language Study Workfl ow in Swift” in the Appendix) or  perhaps 
a combination of these methods. A “model-selection workfl ow” 
based on one or more fi t statistics extending, for example, work-
fl ow 1 would extract the desired fi t statistic from each of the 65,536 
optimized models and potentially keep or discard a given model 
based on whether or not it is above or below a selected thresh-
old. It is worth noting that there is a good deal of controversy 
around which measures provide the most accurate model-selec-
tion (Bullmore et al., 2000) as well as some variation in how SEM 
software packages actually calculate those fi t statistics (Clayton 
and Pett, 2008).

While the present workfl ows suggest new possibilities for exhaus-
tive search and large-scale, parallel analysis techniques, their utility 
lies heavily in the ability to be easily replicated and reconfi gured 
for use on varying datasets. Exhaustive search through a space of 
structural equation models is, ab initio, an exploratory technique. 
Thus, one cannot make statements concerning the probability that 
there are signifi cant differences between models or that a selected 
parameter is signifi cantly different from zero. The number of 
tested models is so great that any statistical argument concerning 
the likelihood of the data given a null hypothesis is overwhelmed 
by the number of comparisons made. In addition, one must be 
concerned about generalizability of results if a single data set was 

used—the exhaustive search may have overfi t idiosyncrasies of the 
target data. Thus, it is imperative to cross-validate results from 
exhaustive search using other data sets.

On the other hand, an exhaustive search of the space of structural 
equation models for a particular data set does result in an empirical 
distribution of the fi t statistics of the models. By plotting the log likeli-
hood resulting from each fi t against the number of degrees of freedom 
in its associated model, it is likely that clusters in the fi t statistics will 
be observed. In this way, we may observe patterns of candidate models 
that are roughly equivalent given the data. Some of these models may 
be algebraically equivalent (vonOertzen, in press), and others may be 
empirically equivalent given the data. We intend the CNARI develop-
ment effort to enable this type of data exploration.

Beginning with some basic pruning techniques, we can start to 
narrow down the space of models in the exhaustive set while leverag-
ing Swift’s ability to submit large numbers of processes, resulting in 
some powerful workfl ows. The fi rst reduction in the exhaustive set 
of models is elimination of any models that are unidentifi ed, that is, 
models containing negative degrees of freedom due to the presence 
of more unconstrained than constrained variables. The degrees of 
freedom can be easily calculated using the following formula:

(n(n+1)/2)-k

where n is the number of brain regions in the model and k is 
the number of free parameters and if the result is negative, the 
model is underidentifi ed (Bollen, 1989). Additionally, a model 
with two-way symmetric connections is likely to fail attempts 
at optimization. Such a connection represents a type of cycle. In 
fact, most models containing cycles will be diffi cult to optimize as 
they are not usually identifi ed in the absence of, e.g., longitudinal 
data (Neale and Cardon, 1992; Heath, 1993; Neale et al., 1994). 
The size if the acyclic set is given by

4((n*(n-1)/2).

An algorithm exists for fi nding cycles (Boker et al., 2002) that 
could potentially be used to further prune the model set. In addition 
to pruning cyclic and underidentifi ed models, the set may also be 
pruned for models containing variables that lack residual error. The 
fi t function cannot be evaluated under these circumstances, because 
the predicted covariance matrix is singular; therefore its determinant 
is zero, which results in the division of a negative quantity by zero in 
the calculation of the multivariate normal distribution probability 
density function, so optimization cannot be performed.

As Table 1 shows, with a moderate degree of pruning, the set 
for four regions becomes trivial to run in the present infrastruc-
ture. Furthermore, the fi ve-region set, while still a large number of 
processing jobs, becomes much more manageable.

Table 1 | Number of models produced for exhaustive and partially 

pruned workfl ows.

Regions Exhaustive set Identifi ed Acyclic

4 65,536  50,642  4,096

5 33,554,431  26,434,915  1,048,576

6 68,719,476,736  54,802,674,727 1,073,741,824
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CNARI has been developed with the aim of managing a broad 
range of diverse neuroscience datasets and performing effi cient, 
reliable parallel analysis workfl ows on them. Here we have dem-
onstrated workfl ows that fully exercise this capability by  applying 
this framework to large computational problems; namely, exhaus-
tive search SEM. The need for data-driven techniques in modeling 
connectivity has emerged not only in our own work in studying 
language and aphasia but in SEM in general (Bullmore et al., 
2000; Marrelec et al., 2007), though there has been little discus-
sion of workfl ow  management and parallel computing as means 
of addressing this need. Researchers, faced with seemingly insur-
mountable computational problems when selecting appropriate 
models to test, are often forced to rely on less-than-satisfactory 
approximations not only due to the sheer amount of processing 
power required but because of the daunting task of distributing 
those processing tasks in a cohesive manner such that the results 
are useful and replicable. As CNARI continues to evolve, we hope 
to expand these large-scale, data-driven workfl ows as we use them 
to address the complex research questions facing us.
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APPENDIX
LANGUAGE STUDY WORKFLOW IN SWIFT
The following is a prototype using Swift and demonstrating how the 
above modules can be assembled into a larger exploratory workfl ow. 
Exhaustive search is run for the Emblem with Speech condition on 
several four-region networks, and the results of the optimized mod-
els are stored in a connectivity database for visualization, further 
analysis, and pattern detection.

For each of the selected networks multiNetworkSEM is called with 
confi guration fi les for the user to access the databases, information 
on the network to be processed, and the total number of models in 
the exhaustive set. First, the covariance data is pulled from the experi-
ment database. This is seen in the runQuery  function, which is Swift’s 
call to a python database interface (see Small et al., 2009 for a more 
detailed description of this mediator  component). Then for each 
iteration of the loop in line 34, Swift invokes  mxModelProcessor, 
assigning each process a model to generate and optimize in OpenMx. 
The instantiation of the OpenMx model object and the call to the 
optimizer are encapsulated in the R script mapped on line 33, which 
is also passed to mxModelProcessor. Each of these processes writes 
out a fi le containing the result of the optimization, and these results 
can be read and inserted into the connectivity database, which is done 
with insertOptMod. It should be noted that both insertOptMod 
and getCovariance operate on the same principle: the user assem-
bles a query that the python DBI will submit to the database. If the 
user also passes an R script (as in line 62), it will process the query 

result with that R script. Each result fi le is read, and its contents are 
inserted into the connectivity database where they can be further 
analyzed. A call to plotLogLik can be used to plot of the minimum 
values obtained by OpenMx for each model allowing for identifi ca-
tion of patterns or clusters within the set (Figure 4).

 #### MultiNetworkSEM.swift

1. type file;
2. type mxMin;
3. type Rscript;
4. type dbConnect;
5. type mxModel{
6. int modnum;
7. int dof;
8. string best;
9. }
10.# ----------- atomic procedures ----------- #
11.
12.app (file matrix) runQuery (dbConnect dbconn,
   string query, Rscript calcCov){
13.     } 
14.     mysqlPythonDBI query @calcCov @dbconn;
15.    }
16.
17.app (external inserted) insertMxResult 
   (dbConnect dbconn, string query, file 
    datafile)
18.    {
19.     mysqlPythonDBI query @dbconn stdout=@
        filename(inserted) @datafile; 
20.    }
21. app (file min) mxModelProcessor ( file 
    cov, Rscript mxModProc, int modnum, float
    weight, string cond, int net) 
22.      {
23.     RInvoke @mxModProc @filename(cov) modnum 
        weight cond net;
24.    }
25. 
26. # ------ user-defined SEM procedures ------ #
27. 
28. multiNetworkSEM(string condition,dbConnect 
    emblemdb, dbConnect semdb, int n, string net,
    int totalperms[])
29. {
30.  float initweight =.75; 
31.  file covariance<single_file_mapper;file=@
     strcat("net",n,"/",condition,".cov")>;
32.  covariance = getCovariance(condition, n,
     net, emblemdb);
33.  Rscript mxModProc<single_file_
     mapper;file="scripts/singlemodels.R">; 
34.  foreach perm in totalperms{
35.    file modmin<single_file_mapper;file=@
       strcat("net",n,"/",condition,"_",perm,".
       stat")>;
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36.    modmin = mxModelProcessor(covariance,mxMod
       Proc,perm,initweight,condition,n);
37.    external doneflag = insertOptMod(n, semdb,
       condition, modmin); 
38. }
39. 
40. (external ins) insertOptMod(int net,
    dbConnect dbconn, string cond, file modfile)
41. {
42.  string mysqlstr = @strcat("INSERT 
     INTO optimized_models (network, deg_of_
     freedom, mx_minimum, modnum, cond) VALUES
     (",net,",DOF,BEST,MODNUM,",cond,");");
43.  string argList = @strcat(
44.  " --query ", mysqlstr,
45.  " --data ", @filename(modfile),

46.  " --conf ", @filename(dbconn));
47.  ins = insertMxResult(dbconn, argList,
     modfile);
48. }
49. 
50. (file covariance) getCovariance (string cond,
    int net, string rois, dbConnect dbconn) 
51. {
52.  string mysqlstr = @strcat("SELECT 
     avg(",cond,"0B), avg(",cond,"1B),
     avg(",cond,"2B),",
53. "avg(",cond,"3B), avg(",cond,"4B), 
     avg(",cond,"5B),",
54. "avg(",cond,"6B), avg(",cond,"7B), 
     avg(",cond,"8B) ",
55. "FROM emblemfemlh where roi in (",rois,")

worksta�on

covariance

models

Network1 Network2

Connec�vityDB

Network3

Ac�va�onDB

Visualiza�on

FIGURE 4 | Multinetwork Swift workfl ow for the Emblem with Speech condition.
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71.  " --conf ", @filename(dbconn),
72.  " --query ", mysqlstr,
73.  " --r_script ", "scripts/plotloglik.R",
74.  " --r_swift_args ", @filename(plotfile));
75.  plotfile = runQuery(dbconn, argList, rplot);
76.  
77.  # ---------------- Main ----------------- #
78. 

79. string condition = "emblemwithspeech";

80. string networks[] = ["42, 34, 33, 60", "42, 
    15, 60, 80", "33, 34, 23, 80"];

81. dbConnect emblemdb <single_file_mapper;
    file="./user.config">;

82. dbConnect semdb <single_file_mapper; file="./user2.
  config">;

83. int totalperms[] = [1:65536];
84. foreach net,n in networks{
85.   multiNetworkSEM(condition,emblemdb,semdb,n,net,
    totalperms);

86.   }

     group by roi "); 
56. string argList = @strcat
57. " --conf ", "user.config",
58. " --query ", mysqlstr,
59. " --r_script ", "scripts/cov.R",
60. " --r_swift_args ", "matrices/net",net, "/",
    cond);
61. Rscript calcCov<single_file_
    mapper;file="scripts/cov.R">;
62. (covariance = runQuery(dbconn, argList,
    calcCov);
63. }
64. {
65. (file plotfile) plotLogLik(int net, string 
    cond, dbConnect dbconn)
66.  
67.  Rscript rplot<single_file_
     mapper;file="scripts/plotloglik.R">;
68.  string mysqlstr = @strcat("SELECT deg_of_
     freedom,mx_minimum FROM optimized_models",
69.  " where network = ",net,";");
70.  string argList = @strcat(
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