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Identifying the physiological traits 
associated with DNA marker using 
genome wide association in wheat 
under heat stress
Adeel Khan 1,2,3*, Munir Ahmad 3, Muhammad Yousaf Shani 1,2, 
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Heat stress poses a significant environmental challenge that profoundly impacts wheat productivity. 
It disrupts vital physiological processes such as photosynthesis, by impeding the functionality of the 
photosynthetic apparatus and compromising plasma membrane stability, thereby detrimentally 
affecting grain development in wheat. The scarcity of identified marker trait associations pertinent 
to thermotolerance presents a formidable obstacle in the development of marker-assisted selection 
strategies against heat stress. To address this, wheat accessions were systematically exposed to 
both normal and heat stress conditions and phenotypic data were collected on physiological traits 
including proline content, canopy temperature depression, cell membrane injury, photosynthetic 
rate, transpiration rate (at vegetative and reproductive stage and ‘stay-green’. Principal component 
analysis elucidated the most significant contributors being proline content, transpiration rate, 
and canopy temperature depression, which exhibited a synergistic relationship with grain yield. 
Remarkably, cluster analysis delineated the wheat accessions into four discrete groups based on 
physiological attributes. Moreover, to explore the relationship between physiological traits and DNA 
markers, 158 wheat accessions were genotyped with 186 SSRs. Allelic frequency and polymorphic 
information content value were found to be highest on genome A (4.94 and 0.688), chromosome 1A 
(5.00 and 0.712), and marker Xgwm44 (13.0 and 0.916). Population structure, principal coordinate 
analysis and cluster analysis also partitioned the wheat accessions into four subpopulations based 
on genotypic data, highlighting their genetic homogeneity. Population diversity and presence of 
linkage disequilibrium established the suitability of population for association mapping. Additionally, 
linkage disequilibrium decay was most pronounced within a 15–20 cM region on chromosome 1A. 
Association mapping revealed highly significant marker trait associations at Bonferroni correction 
P < 0.00027. Markers Xwmc418 (located on chromosome 3D) and Xgwm233 (chromosome 7A) 
demonstrated associations with transpiration rate, while marker Xgwm494 (chromosome 3A) 
exhibited an association with photosynthetic rates at both vegetative and reproductive stages under 
heat stress conditions. Additionally, markers Xwmc201 (chromosome 6A) and Xcfa2129 (chromosome 
1A) displayed robust associations with canopy temperature depression, while markers Xbarc163 
(chromosome 4B) and Xbarc49 (chromosome 5A) were strongly associated with cell membrane injury 
at both stages. Notably, marker Xbarc49 (chromosome 5A) exhibited a significant association with 
the ’stay-green’ trait under heat stress conditions. These results offers the potential utility in marker-
assisted selection, gene pyramiding and genomic selection models to predict performance of wheat 
accession under heat stress conditions.
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Rising global warming instigate the changes in pattern of rainfall, disease incidence and vulnerable atmospheric 
temperature for  crops1,2. Despite the advances in improved technology for agricultural crops, climatic changes 
jeopardize the genetic potential of crop  productivity3–5. Increasing threats of high temperature restrict sustain-
able crop  production6. Projections from global climate models portend an anticipated surge of 5.8 °C in average 
temperatures by the end of twenty-first  century7. Wheat stands as a pivotal staple crop globally, contributing to 
70% of caloric intake and 12–15% of protein consumption for  humans8. However, heat stress instigates irrevers-
ible impairment to wheat crop development. Each degree Celcius increase in temperature above 32 °C during 
anthesis and grain filling reduces 1.0–4.2% grain yield in  wheat1,9. In Pakistan, wheat planted between 20th 
October to 20th November and each day delay in sowing reduces 1.2% grain  yield10. Nevertheless, approxi-
mately 20% of wheat cultivation adheres to the normal planting, with deviations attributed to delay harvesting 
of rice and cotton  crops11,12. Late planting curtails the wheat crop life cycle by completing growing degree days 
earlier, thereby exacerbating heat stress  conditions13–15. High temperatures intricately regulate photoperiodic 
and vernalization-sensitive genes, precipitating a reduction in grain filling duration and impeding the plant’s 
capacity to harness available resources  effectively16–18. Selection of desirable physiological traits associated with 
thermotolerance provides opportunities for crop improvement and genetic yield gain.

Heat stress exerts its influence on photosynthesis by impeding the functionality of photosystem-II and the 
electron transport chain mediated photosystem-I19,20. It also reduces the chlorophyll content and chloroplast 
integrity due to leaf senescence, thereby impeding the overall process of  photosynthesis21–23. Cell membrane is 
composed of lipids and proteins, regulates enzymatic activity and ion transport. High temperature disrupts the 
hydrogen bonding between proteins and adjacent fatty acids, consequently perturbing membrane  fluidity24,25. 
Additionally, leaf senescence hampers the synthesis of photosynthetic products, impeding their translocation 
into developing  grains26–28.

Leaf senescence during the reproductive phase reduces green leaf area due to decreased chlorophyll and 
carotenoid content, which are essential for photosynthesis. High temperatures disrupt chloroplast integrity 
and accelerate leaf senescence, impairing photosynthesis in wheat. Therefore, stay-green during anthesis to 
physiological maturity assures the retention of chlorophyll content and maintains photosynthesis under adverse 
environmental  conditions29–31.

Proline accumulation in wheat is regulated by proline dehydrogenase activity and Δ1-pyrroline-5-carboxylate 
synthetase/reductase (P5CS)32. High temperatures increase P5CS activity and decrease proline dehydrogenase, 
leading to proline synthesis from glutamate under heat stress. At temperatures of 35–40 °C, proline content 
can increase by up to 200%, enhancing the defense mechanisms, photosynthetic efficiency, and yield of wheat 
 seedlings33. Proline content accumulation also stabilizes the photosynthesis and antioxidant enzyme activity, 
and acts as osmo-protectant against heat stress  conditions34.

Cooler canopy determines the stomatal conductance that maintains evapo-transpiration and photosynthesis 
in  wheat35–37. These intricate cellular and physiological processes coupled with membrane fluidity dynamics 
determine wheat growth and development under heat stress conditions.

Selection for thermo-tolerance can be accomplished utilizing physio-morphic traits and molecular markers 
but lack of knowledge regarding genetic basis of thermo-tolerance. Earlier, genetic diversity among accessions 
was identified using physio-morphic traits but integration of molecular markers into the selection process holds 
the promise of enhanced efficiency, reliability, expedience, and robustness, while concurrently mitigating suscep-
tibility to environmental variability. Among array of molecular markers, simple sequence repeats (SSR) markers 
stand out for their high polymorphism, co-dominance, and replicability throughout the entire  genome38,39. 
Furthermore, SSR markers are widely favored in genetic mapping endeavors, as they yield more informative data 
compared to biallelic SNPs  markers40,41. Utilization of SSR markers serves to augment marker density in specific 
genomic regions, thereby facilitating the construction of comprehensive genetic  maps42–44.

Genome wide associations and linkage mapping/bi-parental mapping are methods to decipher genetic archi-
tecture underlying quantitative  traits45,46. Association mapping is an alternative to quantitative trait loci (QTL 
mapping), serves to identify novel genes or loci leveraging diverse cultivars, landraces or elite lines. It aids 
in understanding the genetic basis of quantitative traits related to thermo-tolerance in wheat. Its advantages 
over bi-parental based mapping include broader genetic divergence among population and high  resolution47–50. 
Association mapping investigatethe relationship among phenotypic variation and genetic polymorphism based 
on linkage disequilibrium. Linkage disequilibrium (LD) denotes the non-random alleles associations at differ-
ent loci and its frequency subject to deviate by factors such as mating system, recombination rate, genetic drift 
and population dynamics. Elucidating LD pattern improves the accuracy and precision of association mapping 
 endeavors51–54. However, a notable challenge in association mapping is false positive associations that ensue from 
family relatedness. Mixed Linear Model (MLM) has been devised to effectively eliminate the false positives in 
association  mapping42,55,56.

Previous studies predominantly emphasized agronomic attributes viz., plant height, tillers per plant, leaf 
area, grains per spike, thousand grain weight under invariable environmental  conditions11,45,57 but identifica-
tion of marker trait associations (MTAs) under heat stress environment for physiological attributes is limited. 
Scarcity of knowledge regarding genomic regions linked to thermo-tolerant traits served as the impetus for this 
research endeavor. Therefore, current study was meticulously designed to unveil the genomic regions controlling 
physio-morphic traits via association mapping leveraging a panel of 186 SSR markers. Such insights not only 
facilitate breeders in delineating marker-assisted selection strategies under heat stress conditions but also lay 
the groundwork for a deeper comprehension of the genetic architecture governing thermo-tolerance in wheat.



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20134  | https://doi.org/10.1038/s41598-024-70630-0

www.nature.com/scientificreports/

Materials and methods
Plant material
A diverse panel of 158 wheat accessions from Pakistan and CIMMYT (Mexico), encompassing entries from 23rd 
and 24th SAWYT (Semi-arid wheat yield trial) as explained in Supplementary Material Table 1.

Soil composition
Prior to sowing, basic soil analysis were performed for electrical conductivity,  pH58, soil  moisture59, soil texture 
 classification60, potassium  level61, extractable phosphorus  content62 and total nitrogen  content63. Soil texture was 
determined to be sandy clay, EC 0.19 dS  m−1, pH 7.65, moisture content 9.14% and organic carbon in soil 0.52% 
showing deficiency i.e. < 1% organic matter. Nitrogen content was measured 0.41 mg  g−1 in soil whereas extract-
able potassium, Olsen phosphorus and ammonium nitrates in soil were 82.8, 1.8 and 0.64 mg  kg−1, respectively. 
Therefore, fertilizers were applied comprising N@118 kg/ha and P@ 58 kg/ha. Agronomic practices such as 
weeding, hoeing and irrigation were diligently executed in accordance with the specific requirements of wheat 
cultivation.

Growing conditions and experimental layout
Wheat accessions were systematically planted using triplicated Augmented Complete Block Design along with 
check (control) cultivars namely Pakistan-13 and Gold-16 with thirteen blocks (12 accessions with 2 checks 
in each block) at the shelter house of PMAS-AAUR (33.117283°N, 73.010958°E) Pakistan. Each accession was 
planted in a single 3-m row and checks were replicated in each block. Planting was carried out during the 1st 
week of November coinciding with the wheat growing season (Rabi season) spanning 2018–2019, 2019–2020 and 
2020–2021. Temperature in the shelter house was maintained 21 ± 0.8 °C day/15 ± 0.7 °C night (controlled set) 
and 26 ± 1.2 °C day/18 ± 0.9 °C night day/night (heat treated set) with relative humidity maintained 70–75% for 
7 days at tillers stage Zadoks scale  3964. Subsequent data collection on physiological attributes occurred after a 
recovery period of 4–5 days. At the anthesis stage, as per Zadoks scale 69, temperature conditions were adjusted 
to 26 °C during the day and 18 °C at night for the controlled set, while the heat-treated set experienced elevated 
temperatures of 32 °C during the day and 20 °C at night, with a relative humidity range of 70–75% over another 
7-day interval. Data recording on physiological attributes ensued following a similar recovery period of 4–5 days.

Data recording
Photosynthetic rate and transpiration rate
Photosynthetic rate and transpiration rate was measured spanning from 10:00 am to 12:00 pm utilizing an 
advanced infrared gas analyzer (IRGA), LCA-4, ADC, Joddeson, UK. Measurements conditions were constant 
at  CO2 360 mmol  mol−1 and PAR-1600 mmol  m−2  s−1 65.

Proline content
Proline content were quantified involving extraction of 0.5 g leaf ground suspended in 3% sulphosalicyclic acid 
solution subsequently centrifuged for 10 min @ 10,000 rpm. Supernatant (4 mL) was reacted with glacial acetic 
acid (4 mL) and boiling at 100 °C in water bath for 1 h and 8 mL toluene was added after cool down on ice for 
30 min and absorbance was estimated on spectrophotometer at 520  nm66. Proline content were determined 
using formula

Cell membrane injury
Cell membrane injury was recorded from flag leaf samples. Two distinct sets were washed with  ddH2O and sub-
sequently filled with 4  mLddH2O water. One set was exposed to heat stress at 40 °C for 1 h whereas the control 
was treated at room temperature (25 °C). After heat treatment, additional 16 mL  ddH2O was added in heat treated 
set and incubated 24 h at 10 °C. Initial electrolyte leakage (T1 and C1) was estimated with electric conductivity 
meter. These sets were autoclaved for 10 min and second electrolyte leakage (T2 and C2) was  measured67. Cell 
membrane injury was calculated using the CMI (%) formula given below:

Canopy temperature depresssion
Canopy temperature was recorded within the time frame of 10:00am to 12:00 pm with infrared  thermometer68. 
Canopy temperature depression (CTD) involved subtracting the air temperature (Ta) from canopy temperature 
(Tc) as outlined by formula provided below.

µmoles proline/g of plant sample =





�

µg proline/ml×ml toluene
115.5 µg/µmoles
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{1− (C1/C2)}
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× 100
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Stay green
In order to collect data for the "stay-green", green leaf area and spikes were scored visually (0–9 scale) at inter-
vals of 3–4 days from anthesis to maturity using the LAUG  approach69 and calculated using the formula below

where t(i + 1)—ti = Time between two consecutive reading in days and Yi = Difference of green spike and flag 
leaf at time.

Grain yield
Grain yield was calculated from each plant and computed the average in grams.

Genotyping and marker analysis
DNA extraction was performed in 96 wells  plate70. A set of 186 SSR primers was randomly selected for polymer-
ase chain reaction (PCR) covering all 21 wheat chromosomes (Supplementary Material Table 2). M13 tail (CAC 
GAC GTT GTA AAA CGA C) was synthesized at the 5′ end of the forward primer. Four fluorescent dyes (PET, NED, 
HEX and FAM) were used for PCR with different primers and PCR products were analyzed on DNA analyzer 
ABI-373071, a sophisticated instrument renowned for its precision and reliability in DNA fragment analysis, 
facilitating the elucidation of genetic information encoded within the amplified DNA sequences.

Statistical analysis
Physiological trait data were analyzed utilizing PROC MIXED, employing a fixed effect for entries and a random 
effect for blocks. Best linear unbiased predictions (BLUPs) were then computed to derive genotypic means while 
mitigating environmental variability, employing the SAS software  package72. Descriptive statistics and relative 
performance metrics were computed for both physiological traits and grain  yield73. Additionally, heritability, a 
crucial parameter indicative of the genetic control of traits and provides the valuable insights into the inheritance 
patterns of the observed traits was estimated using a standard formula.

where σ 2 G represents the variance of genotype variance, σ 2 e is residual variance and nE is number of 
environments.

Principal component analysis for physiological traits was performed, extracting Eigen values, variance propor-
tions and loading factors using the R-4.0.3 software package, facilitated by Factoextra, FactoMiner and ggplot2 
libraries (accessed on 15 February 2023). Additionally, correlation analysis was performed and diagram was 
constructed using corrplot package. Cluster analysis was performed and dendrogram was drawn employing 
ggplots package in R-4.0.3, contributing to a comprehensive understanding of the interrelationships and cluster-
ing patterns among the physiological attributes.

For genotypic data, fragment analysis and allele calling was computed on GeneMapper software v3.774. Allelic 
frequency and polymorphism information content (PIC) were calculated for determination of genetic  diversity75. 
Genotypic data were analyzed by admixtured model in STRU CTU RE76. For genetic dissimilarity among individu-
als, 1–12 clusters were presumed with 5 independent runs. For each run, simulation length 100,000 replications 
and Burn-in length 50,000 cycles were adopted to estimate lnPr(X|K) peak in the range of 1–12 subpopula-
tions. DeltaK value based on the Evano criterion was performed using the web-based program STRU CTU RE 
HARVESTER v0.6.9377. PCoA was performed in  Statistica78 whereas cluster analysis employing the UPGMA 
(Unweighted Pair-Group Method with Arithmetic mean) with 1000 permutations using Jacords method executed 
in software DARwin 6.079 and genetic dissimilarity matrix was employed to construct dendrogram by FigTree 
v1.3.180. Linkage disequilibrium was assessed at 95% confidence interval for rare allele frequency and significant 
(P-value < 0.001) correlations  (r2 > 0.1) for each pair of loci were considered in software TASSEL V4.3.181. Extent 
of linkage disequilibrium (P < 0.01 with  r2 > 0.1) for each genome and chromosome was  estimated82. MTAs were 
identified using Mixed Linear Model and convergence criteria were set at highly significant P ≤ 0.001 value in 
default run with 1000 number of iterations in TASSEL V4.3.183. Bonferroni correction was subsequently applied 
by dividing P ≤ 0.05 by the number of SSR marker to establish the more stringent threshold. Bonferroni correc-
tion was subsequently applied by dividing P ≤ 0.05 by the number of SSR marker to establish the more stringent 
threshold.

Ethics approval and consent to participate
"This study complied with relevant institutional, national, and international guidelines and legislation of Pakistan. 
The plant material was obtained from Pakistan and CIMMYT (Mexico). No special permissions were neces-
sary to collect samples. Otherwise, the plant materials used and collected in the study comply with Pakistani 
guidelines and legislation".

Results
Phenotypic data analysis
Normal wheat planting faced optimum temperature at tillering (20 ± 1.2 °C) and anthesis stage (25 ± 1.5 °C). 
However, wheat crop was exposed to heat stress at tillering (24 ± 0.8 °C) and anthesis (32 ± 1.5 °C) as displayed 
in Fig. 1A,B. In the present study significant phenotypic variation was observed among the 158 wheat accessions 

LAUG = �

[{

Yi +
Y(i + 1)

2

}

times(t(i + 1)−ti)

]

H2
(B.S.) = σ 2G/σ 2G + (σ2e/nE)



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20134  | https://doi.org/10.1038/s41598-024-70630-0

www.nature.com/scientificreports/

under both conditions (Table 1). Relative performance of photosynthetic rate at vegetative stage indicated 42.5% 
reduction under heat stress than normal conditions. Photosynthetic rate at reproductive stage was reduced by 
47.9% under heat stress conditions. Transpiration rate was reduced by 37.8% and 58.6% at the vegetative and 
reproductive stage, respectively. Proline content exhibited an increase of 14.4% and 21.8% at the vegetative and 
reproductive stages under heat stress, respectively. Mean cell membrane injury was recorded at 29.1% (vegetative) 
and 19.7% (reproductive), canopy temperature depression at 11.1 °C (vegetative) and 9.0 °C (reproductive), leaf 
angle at 29.6°, and ’stay green’ at 47.1 under heat stress conditions. Broad-sense heritability ranged from 0.86 to 
0.99 under normal conditions and from 0.55 to 0.99 under heat stress, as indicated in Table 1.

Fig. 1.  (A) Temperature data during wheat life cycle 2018–19, 2019–20 and 2020–21 under normal conditions.  
Source: Department of Environmental Science, PMAS-AAUR. (B) Temperature data during wheat life cycle 
2018–19, 2019–20 and 2020–21 under heat stress conditions. Source: Department of Environmental Science, 
PMAS-AAUR.
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Genetic variability using multivariate analysis
Multivariate analysis techniques including principal component analysis, correlation analysis and cluster analy-
sis were employed to discern the genetic variability among wheat genotypes based on their physiological traits 
and grain yield. Principal component analysis unveiled that first six principal components exhibited more than 
1 Eigen value, collectively contributing 73.7% of the total variability. However, graphical representation of all 
variables was constructed, emphasizing the highest contribution from the first two principal components, which 
accounted for 41.2% of the variability (Fig. 2). PC1 and PC2 contributed 26.9% and 14.4% of the variability, 
respectively. Highest contributing traits were proline content, transpiration rate at vegetative and reproductive 
stage, canopy temperature depression at reproductive stage and stay green under both conditions. Cluster analy-
sis based on the dataset revealed seven distinct clusters of wheat genotypes under both normal and heat stress 
conditions. Remarkably, genotype G23 exhibited the highest proline content under normal conditions, whereas 
genotype G18 displayed this trait prominently under heat stress conditions, at both vegetative and reproductive 
stages. Additionally, genotype G-133 showcased the highest transpiration rate under normal conditions, while 
genotypes G-117 and G-65 demonstrated this trait prominently under heat stress conditions.

Correlation analysis was conducted to explore the relationships between physiological traits and grain yield 
under both normal and heat stress conditions, as depicted in Fig. 3. Transpiration rate exhibited a synergistic 
association with photosynthetic rate at both stages, irrespective of the environmental conditions. Conversely, cell 
membrane injury demonstrated an antagonistic relationship with all studied traits; however, these associations 
were found to be non-significant at both the vegetative and reproductive stages. Notably, ’stay green’ exhibited 
a significant positive correlation with transpiration rate, photosynthetic rate, and proline content under both 
normal and heat stress conditions. Furthermore, grain yield demonstrated a synergistic relationship with tran-
spiration rate, photosynthetic rate, proline content, and grain yield under both normal and heat stress conditions.

Cluster analysis was implemented utilizing Ward’s method to stratify the wheat genotypes into distinct group-
ings, as depicted in Fig. 4. This method effectively segregated the wheat genotypes into four primary clusters 
denoted as Cluster-A, Cluster-B, Cluster-C, and Cluster-D. Cluster-A exhibited further subdivision into three 
subgroups: cluster-1A, comprising 16 genotypes; cluster-2A, comprising 15 genotypes; and cluster-3A, compris-
ing 18 genotypes. Similarly, Cluster-B showcased division into subgroups namely cluster-1B consisting of 16 
genotypes, cluster-2B consisting of 9 genotypes, cluster-3B consisting of 13 genotypes and cluster-4B consisting 
of 10 genotypes. Moreover, both Cluster-C and Cluster-D manifested subdivision into two subgroups. Cluster-1C 
and cluster-2C comprised of 24 and 15 genotypes respectively within Cluster-C and cluster-1D and cluster-2D 
consisted of 10 and 12 genotypes respectively within Cluster-D. Cluster-A predominantly comprised wheat 
varieties sourced from various institutes across Pakistan, while clusters-B, cluster-C and cluster-D primarily 
encompassed wheat genotypes obtained from CIMMYT advanced lines and Pakistani varieties recommended 
for rainfed areas.

Allelic frequency and PIC
Allelic frequency and polymorphic content determines the genetic variability among chromosomes and genomes. 
However, 341 alleles (2–13 alleles) were calculated on genome-A whereas 246 alleles (2–10 alleles) on genome-B 
and 275 alleles (2–9 alleles) on genome-D. Notably, the highest allelic frequency was observed on genome-A 

Table 1.  Phenotypic performance under normal and heat stress conditions. EV Transpiration rate at 
vegetative stage, ER Transpiration rate at reproductive stage, PnV Photosynthetic rate at vegetative stage, PnR 
Photosynthetic rate at reproductive stage, ProV Proline content at vegetative stage, ProR Proline content at 
reproductive stage, GY Grain yield per plant, CMIV Cell membrane injury at vegetative stage, CMIR Cell 
membrane injury at reproductive stage, CTDV Canopy temperature depression at vegetative stage, CTDR 
Canopy temperature depression at reproductive stage, LA Leaf angle, SG Stay green, SE Standard error, H2: 
Broad sense heritability.

Traits

Normal

H2

Heat stress

H2 RPMean Range S.E Mean Range S.E

EV 0.37 0.22–0.53 0.0051 0.94 0.23 0.13–0.44 0.0041 0.92 37.84

ER 0.29 0.16–0.48 0.0056 0.87 0.12 0.07–0.29 0.0054 0.84 58.62

PnV 20.38 14.68–29.73 0.2404 0.99 11.72 8.68–19.07 0.1446 0.86 42.49

PnR 16.86 12.82–22.25 0.1834 0.86 8.78 5.76–16.37 0.1498 0.81 47.92

ProV 0.439 0.232–0.607 0.0071 0.95 0.513 0.36–0.723 0.0065 0.92 14.42

ProR 0.510 0.339–0.683 0.0059 0.94 0.652 0.475–0.87 0.0069 0.90 21.78

GY 7.94 5.89–10.2 0.361 0.85 5.11 3.42–8.76 0.341 0.89 35.64

CMIV 29.07 14.37–45.05 0.6076 0.79

CMIR 19.74 11.02–30.79 0.3613 0.62

CTDV 11.09 8.42–13.01 0.0660 0.90

CTDR 9.00 6.93–11.08 0.0763 0.55

LA 29.56 8.58–43.00 0.6061 0.99

SG 47.10 16.61–67.54 1.0586 0.68
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(4.94), followed by genome-B (4.56), and genome-D (4.37). Among chromosomes, highest mean alleles (5.00) 
possessed by chromosome 1 (Table 2). Remarkably, highest allelic frequency (13 alleles) was calculated on marker 
xgwm44 (Supplementary Material Table 3). Moreover, the polymorphic information content (PIC) value was 
maximized on genome-A (0.688), succeeded by genome-B (0.663) and genome-D (0.658). Noteworthy, chromo-
some 1 boasted the highest PIC value (0.712), followed by chromosome 7 (0.690) and chromosome 3 (0.684).

Population structure of wheat collection
Population structure was derived to determine genetic similarity among the wheat accessions. Remarkably, 
DeltaK (K = 4) clearly partitioned the wheat accessions into four groups (Fig. 5). Subpopulation G1 exhibited 
the highest number of wheat accessions (55) comprising primarily accessions sourced from the 23rd Semi-Arid 
Wheat Yield Trial (SAWYT) originating from CIMMYT and certain varieties historically cultivated in Pakistan 
including Chakwal-97 and Chakwal-86 (Fig. 6). Subpopulation G2 encompassed 41 wheat accessions including 
lines collected from 24th SAWYT and certain varieties popular in Pakistan including Dirk, Rawal-87, Mexipak, 
Bahawalpur-97, Sariab-92 and TD-1. Meanwhile, subpopulation G3 comprised 33 wheat varieties primarily 
cultivated in the rain-fed regions of Pakistan, inclusive of popular varieties like Khirman, Sarsabz, Zardana, 

Fig. 2.  Graphical representation of scree plot showing the percentage of variability of principal components and 
contribution of traits towards variability of physiological traits under normal and heat stress conditions.
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Fig. 3.  Graphcial display showing the association of physiological traits under normal and heat stress 
conditions where n.s: non-significant, * at p = 0.05, ** at p = 0.01 and *** p = 0.001.

Fig. 4.  Dendrogram representing the grouping of wheat genotypes based on their physiological traits under 
normal and heat stress conditions.

Table 2.  Genetic diversity in wheat genomes revealed by 186 SSR markers.

Loci Allele frequency Mean alleles Alleles range PIC mean PIC value range

A genome 69 341 4.94 2–13 0.688 0.151–0.916

B genome 54 246 4.56 2–10 0.663 0.135–0.885

D genome 63 275 4.37 2–9 0.658 0.052–0.859

Whole genome 186 862 4.63 2–13 0.671 0.052–0.916

Chromosome 1 44 220 5.00 2–10 0.712 0.450–0.879

Chromosome 2 25 103 4.12 2–7 0.628 0.052–0.839

Chromosome 3 23 105 4.57 3–9 0.684 0.516–0.872

Chromosome 4 25 118 4.72 2–13 0.637 0.133–0.916

Chromosome 5 29 131 4.52 2–9 0.672 0.221–0.829

Chromosome 6 19 91 4.78 2–8 0.668 0.280–0.846

Chromosome 7 21 94 4.48 2–8 0.690 0.372–0.859
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SKD-1, Sarhad-82, Pirsabak-91, and Pirsabak-05. Lastly, subpopulation G4 encapsulated 29 wheat varieties 
predominantly favored in irrigated areas, such as Faisalabad-08, Miraj-2001, Wafaq-2001, Lasani-08, Punjab-11, 
and Shahkar-13, suggesting a shared ancestral origin among these accessions.

Cluster analysis also categorized the wheat accessions into distinct four groups based on their genetic dissimi-
larity (Fig. 7). Cluster 1 (C-I) comprised 30 accessions, with 29 originating from the 23rd Semi-Arid Wheat Yield 
Trial (SAWYT). Meanwhile, Cluster 2 (C-II) encompassed 43 accessions, among which 36 were derived from the 
24th SAWYT. Cluster 3 (C-III) featured 40 lines, with 37 representing varieties prevalent in the rain-fed regions 
of Pakistan, alongside three belonging to the 24th SAWYT. Cluster 4 (C-IV) consisted of 45 accessions, with 38 
representing well known varieties in irrigated areas of Pakistan, three sourced from the 23rd SAWYT and four 

Fig. 5.  Population structure estimation to identify the DeltaK from population ranging from 1 to 10. DeltaK is 
the function of K, the peak K = 4 represent the 4 subpopulations.

Fig. 6.  Bayesian approach based Population Structure of 158 wheat genotypes observing 4 clusters based on 
inferred ancestry analyzed by 186 SSR markers. Each color segment represents the membership fraction of each 
genotype. Horizontal coordinates represents the codes of wheat accession in Supplementary material Table 1.
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from 24th SAWYT. Additionally, as an alternative to the Bayesian approach, principal coordinate analysis was 
employed to characterize wheat accessions. First three principal components (PCs) collectively accounted for 
21.01% of the variation (PC1: 10.69%, PC2: 6.10%, and PC3: 4.22%), those distinctly segregated the 158 wheat 
accessions into four major groups (Fig. 8).

Fig. 7.  Clustering of wheat genotypes into four clusters based on dissimilarity matrix using Jacords method 
with 1000 permutations. Different color lines represent each cluster viz., C-I, C-II, C-III and C-IV. Codes of 
accessions are provided in the supplementary material Table 1.

Fig. 8.  3D plotting of principal coordinate analysis based on SSR marker analysis of the wheat accession. 
Different circles represent the geographical ecotype and codes provided in supplementary material Table 1.
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Linkage disequilibrium and linkage disequilibrium decay
SSR identified LD pattern evident at chromosome and genome level. In current investigation, a total of 20,107 
linked locus pair were discerned across all three genomes of wheat. Notably, highly significant loci (P < 0.001) 
exhibiting linked locus pairs with  r2 > 0.1,  r2 > 0.2 and  r2 > 0.5 were 1553 (7.7%), 665 (3.3%) and 125 (0.6%) 
respectively (Table 3). Genome-A had 10,753 linked locus pairs and highly significant locus pairs (P < 0.001) with 
 r2 > 0.1,  r2 > 0.2 and  r2 > 0.5 were 1159 (10.8%), 267 (2.5%) and 24 (0.2%), respectively. Genome-B displayed 4429 
linked locus pairs, among which those demonstrating significance (P < 0.001) with  r2 > 0.1,  r2 > 0.2 and  r2 > 0.5 
were 513 (11.6%), 275 (6.2%) and 66 (1.5%) linked locus pairs, respectively. Additionally, Genome-D exhibited 
4925 linked locus pairs and P < 0.001 with  r2 > 0.1,  r2 > 0.2 and  r2 > 0.5 were 214 (4.4%), 123 (2.5%) and 35 (0.7%) 
linked loci, respectively.

In Genome-A, the chromosome 1A exhibited the highest number of paired loci (8001) with significant 
associations (P < 0.001) observed at varying levels of r2 thresholds including  r2 > 0.1,  r2 > 0.2 and  r2 > 0.5 were 
621, 202 and 13 paired loci, respectively (Table 4). Within the B genome, chromosome 5B was distinguished 
by a notable presence of highly significant (P < 0.001) paired loci, with counts at  r2 > 0.1 (96),  r2 > 0.2 (48), and 
 r2 > 0.5 (16). Similarly, among the D genome chromosomes, chromosome 1D showcased significant paired loci at 
P < 0.001 with  r2 > 0.1 (57),  r2 > 0.2 (32) and  r2 > 0.5 (6). Linkage disequilibrium (LD) decay was conducted across 
the entire genome as well as individual chromosomes of wheat. Particularly, the largest LD block of 15–20 cM 
was discerned on chromosome 1A. On average, the LD block within the chromosomes of genome-A exhibited 
a range of 5–10 cM at P < 0.01 and  r2 > 0.1 (Supplementary material Table 6). Contrastingly, the LD decay was 
notably less than 5 cM, for both the genome-B and genome-D.

Table 3.  Linkage disequilibrium (LD) pattern on individual genome at significant (P-value < 0.001) linkage 
disequilibrium utilizing 186 SSR markers.

Genome Observed P < 0.001 (%) r2 > 0.1(%) r2 > 0.2(%) r2 > 0.5(%)

Linked locus pair

 Genome A 10,753 1159 (10.8) 826 (7.7) 267 (2.5) 24 (0.2)

 Genome B 4429 630 (14.2) 513 (11.6) 275 (6.2) 66 (1.5)

 Genome D 4925 270 (5.5) 214 (4.4) 123 (2.5) 35 (0.7)

 Genome wide 20,107 2059 (10.2) 1553 (7.7) 665 (3.3) 125 (0.6)

Unlinked locus pair

 Genome A 42,222 3690 (8.7) 2567 (6.1) 830 (1.9) 70 (0.2)

 Genome B 23,301 2256 (9.7) 1828 (7.8) 1106 (4.8) 364 (1.6)

 Genome D 29,266 2515 (8.6) 2035 (6.9) 1237 (4.2) 440 (1.5)

 Genome wide 94,789 8461 (8.9) 6430 (6.8) 3173 (3.4) 874 (0.9)

Table 4.  Linkage disequilibrium (LD) pattern on individual chromosome at significant (P-value < 0.001) 
linkage disequilibrium utilizing 186 SSR markers.

Genome A 1A 2A 3A 4A 5A 6A 7A

Observed 8001 496 231 1378 528 780 820

P < 0.001 860 56 19 62 71 91 97

r2 > 0.1 621 41 13 44 52 50 72

r2 > 0.2 202 19 10 18 24 11 25

r2 > 0.5 13 4 4 5 1 1 5

Genome B 1B 2B 3B 4B 5B 6B 7B

Observed 465 820 990 465 1711 78 325

P < 0.001 127 65 130 41 127 10 33

r2 > 0.1 96 53 102 37 96 8 26

r2 > 0.2 59 23 68 29 48 7 21

r2 > 0.5 19 3 19 16 16 2 10

Genome D 1D 2D 3D 4D 5D 6D 7D

Observed 1431 496 861 595 861 703 496

P < 0.001 66 39 69 93 63 86 118

r2 > 0.1 57 30 60 75 56 65 96

r2 > 0.2 32 19 40 37 41 48 60

r2 > 0.5 6 6 16 10 16 20 18
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Marker trait association
MTA analysis was conducted utilizing the set of 186 SSR markers to explore associations with traits observed 
under both normal and heat stress conditions (Table 5). A consistent set of marker trait associations, exhibit-
ing resilience across both standard and heat stress circumstances, focusing on key physiological traits such as 
transpiration rate, photosynthetic rate and proline content with two distinct associations identified, denoted by 
the markers Xcfa2147 and Xwmc418. Similarly, a parallel stability was observed with two notable associations 
for grain yield, attributed to the markers Xcfd30 and Xbarc8, thus underlining the robustness of these markers 
across varied environmental conditions. Moreover, the relative performance of physiological attributes such as 
cell membrane injury, canopy temperature depression, leaf angle, and stay green was leveraged to discern marker 
trait associations under heat stress conditions. As a result, a total of 16 marker trait associations, underscoring 
the efficacy of this methodology in elucidating key genetic relationships amidst challenging environmental 
conditions.

Individually, ten highly significant (P < 0.001) MTAs were identified under normal conditions while forty 
one MTAs were observed under heat stress conditions for grain yield and physiological attributes but here 
we discussed the most significant associations using a Bonferroni correction for stringent threshold cut-off at 
P < 0.00027. Notably, proline content at the reproductive stage exhibited a significant correlation with marker 
Xbarc42 (3D at 17 cM) under normal conditions. Conversely, under heat stress, the transpiration rate at the 
vegetative stage demonstrated an association with marker Xwmc418 (3B at 37 cM), while the transpiration rate 
at the reproductive stage was linked to marker Xgwm233 (7A at 7 cM). Moreover, the photosynthetic rate at both 
vegetative and reproductive stages exhibited correlations with marker Xgwm494 (3A at 37 cM). Canopy tempera-
ture depression at the reproductive stage displayed highly significant associations with markers Xcfa2129 (1A at 
79 cM) and Xwmc201 (6A at 43 cM) under heat stress conditions. Furthermore, cell membrane injury showed 
an association with marker Xbarc163 (4B at 35 cM) at the vegetative stage, while at the reproductive stage, it was 

Table 5.  Marker trait associations (MTAs) for physiological traits under normal and heat stress. Chr 
Chromosome, cM Position in centimorgan, P Probability, R2 Correlation coefficient, ProV Proline content 
at vegetative stage, ProR Proline content at reproductive stage, PnV Photosynthetic rate at vegetative stage, 
PnR Photosynthetic rate at reproductive stage, EV Transpiration rate at vegetative stage, ER Transpiration 
rate at reproductive stage, CMIV Cell membrane injury at vegetative stage, CMIR Cell membrane injury at 
reproductive stage, CTDV Canopy temperature depression at vegetative stage, CTDR Canopy temperature 
depression at reproductive stage, SG Stay green, GY Grain yield per plant.

Trait Marker Chr cM P R2 Trait Marker Chr cM P R2

Normal conditions

 EV xcfa2147.4 1B 108.8 0.000568 0.08073 PROV xbarc42.3 3D 17.0 0.000687 0.09049

 EV xwmc418.4 3B 73.0 0.000518 0.08178 PROR xbarc42.1 3D 17.5 0.000249 0.10614

 GY xcfd27.3 1D 108.9 0.00337 0.05012 GY xcfd160.2 2D 94.5 0.00062 0.06415

 GY xcfd30.4 6A 129.5 0.00355 0.04124 GY xbarc35.4 2B 36.9 0.00061 0.07154

 GY xbarc8.3 1B 53.6 0.00221 0.04127 GY xwmc28.3 5B 144.7 0.00125 0.06257

Heat stress

 EV xwmc11.1 3A 13.0 0.000996 0.07322 ER xwmc469.5 1A 63.5 0.000177 0.08583

 EV xcfa2147.4 1B 108.8 0.000145 0.09487 ER xwmc11.1 3A 13.0 0.000239 0.10240

 EV xwmc418.2 3B 73.0 0.000120 0.09704 ER xgwm233.1 7A 7.5 0.000130 0.11032

 EV xgdm125.1 4D 61.2 0.000539 0.06324 ER xgwm18.1 1B 33.8 0.000730 0.06903

 CTDV xwmc150.1 2A 113.3 0.000730 0.07102 ER xcfd76.1 6D 68.3 0.000730 0.06903

 CTDR xcfa2129.3 1A 79.5 0.000073 0.06896 CMIV xbarc163.3 4B 35.1 0.000071 0.06924

 CTDR xwmc11.1 3A 13.5 0.000131 0.07873 CMIV xwmc47.4 4B 9.1 0.000899 0.06094

 CTDR xwmc201.6 6A 43.0 0.000084 0.06771 CMIV xwmc331.4 4D 33.0 0.000325 0.07027

 CTDR xwmc553.6 6A 46.8 0.000274 0.05756 CMIR xgdm153.2 5D 68.5 0.000262 0.07225

 CTDR xcfa2147.1 1B 108.6 0.000076 0.08376 CMIR xcfd42.3 6D 39.6 0.000636 0.06410

 CTDR xwmc175.5 2B 89.7 0.000165 0.07653 CMIR xbarc96.1 6D 98.0 0.000202 0.07469

 CTDR xwmc418.4 3B 73.0 0.000131 0.07874 CMIR xwmc463.4 7D 71.8 0.0000079 0.08880

 PNV xgwm494.6 3A 37.5 0.000083 0.11789 PNR xbarc113.1 3A 43.5 0.000935 0.08381

 PNV xwmc73.4 5B 73.5 0.000162 0.10894 PNR xgwm494.6 3A 37.5 0.000669 0.08803

 SG xbarc49.3 7A 83.0 0.000159 0.05872 PNR xbarc156.2 5B 36.0 0.000542 0.09069

 GY xbarc71.4 3D 48.7 0.004112 0.08421 GY xbarc8.4 1B 25.5 0.002914 0.06474

 GY xbarc197.3 5A 117.4 0.003231 0.08154 GY xcfd30.1 6A 129.5 0.002345 0.07154

 GY xcfa2147.1 1B 108.8 0.000916 0.09154 GY xcfd132.1 6D 41.8 0.003047 0.08154

 GY xbarc83.1 1A 53.7 0.000820 0.07687 GY xwmc671.5 7D 111.7 0.000262 0.07415

 GY xcfd59.2 1A 61.1 0.000411 0.08454 GY xgdm72.3 3D 34.0 0.000916 0.08975

 GY xwmc75.4 5B 118.5 0.000197 0.08786



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20134  | https://doi.org/10.1038/s41598-024-70630-0

www.nature.com/scientificreports/

linked to marker Xwmc463 (7D at 73 cM) specifically under heat stress conditions. The ’stay green’ trait exhibited 
a significant association with marker Xbarc49 (5A at 83 cM) under heat stress conditions.

Discussion
Temperature influences wheat growth and development. Optimal temperature at reproductive stage viz., heading 
(15–22 °C), anthesis (23–26 °C) and grain filling (26–28 °C) is the prerequisite for crop growth that maintains 
the physiological processes and metabolic  activities3,84–89. Heat stress exposed the wheat plants to 3–4 °C above 
the threshold level and prompting the completion of growing degree days (GDD)  earlier14. In present study, 
the high temperature during tillering and anthesis stage restricts the efficiency of physiological and metabolic 
processes. High temperature induces the leaf senescence due to high canopy temperature that destabilizes the 
physiological processes viz., cell membrane stability, photosynthesis and transpiration. Therefore, wheat plants 
capable of maintaining traits such as ’stay-green’ characteristics, cooler canopy temperatures, transpiration rates, 
photosynthetic rates, proline content, and cell membrane integrity exhibit enhanced potential for grain yield 
under heat stress  conditions90–94. Furthermore, the moderate to high heritability values observed across these 
traits suggest a degree of uniformity in genotype performance across different growing seasons, consistent with 
previous  findings28,95,96.

Multivariate analysis techniques for assessing genetic diversity prove instrumental in unraveling the spectrum 
of variability within wheat germplasm and identification of desirable traits in breeding programs. Principal 
component analysis and cluster analysis enabled the quantification of genetic variability based on the phenotypic 
 traits97. It simplifies the high dimensional data into fewer one. Principal component analysis serves as a power-
ful tool for gauging the extent of variation across traits and delineating their respective contributions to overall 
 variability98. In current study, proline content, transpiration rate, canopy temperature depression and stay green 
emerged as key determinants, streamlining the selection process for enhancing wheat yield in subsequent breed-
ing endeavors under heat stress conditions. Notably, these traits have been previously underscored by research-
ers as pivotal targets for bolstering wheat productivity in the face of heat stress challenges, underscoring their 
significance in breeding programs aimed at mitigating adverse environmental  conditions99,100.

Moreover, association of physiological traits with grain yield is also essential to unveil the complex quanti-
tative traits. Assessing the strength of linear relationships, one can effectively discern and prioritize traits that 
exhibit significant correlations with grain yield, thereby facilitating the selection of desirable attributes crucial 
for enhancing wheat crop  productivity11. Notably, under heat stress conditions, a noteworthy positive correlation 
was observed between grain yield and physiological parameters such as proline content, transpiration rate, photo-
synthetic rate, and ’stay-green’ characteristics, while a negative correlation was noted with cell membrane injury.

High temperature induces a rise in canopy temperature, exerting a profound impact on the integrity of cell 
membranes within wheat leaves. It prompts the increase in kinetic energy within the molecular bonds con-
necting proteins and the lipid bi-layer of cell membranes, leading to bond rupture and subsequent electrolyte 
 leakage3. This disruption in cell structure invariably interferes with pivotal physiological processes, including 
photosynthesis and transpiration  rate90. High temperature also enhances the proline content in tolerant plant 
due to conversion of glutamate into proline content, serving as a protective mechanism against changing envi-
ronmental  conditions34.

Cluster analysis serves as a valuable tool in the identification and selection of promising wheat lines with 
diverse genetic backgrounds, thereby informing targeted breeding programs aimed at enhancing crop traits and 
 productivity101. In the present study, wheat genotypes were stratified into four distinct clusters, each represents 
the specific genetic profiles and origins. Cluster 1 comprised genotypes sourced from various research institutes 
across Pakistan, while clusters 2 and 3 predominantly consisted of lines derived from the 23rd and 24th Semi-
Arid Wheat Yield Trial (SAWYT) of the International Maize and Wheat Improvement Center (CIMMYT). 
Interestingly, cluster 4 possessed genotypes representing a mixture of Pakistani cultivars and CIMMYT lines, 
suggesting the potential shared parentage owing to the historical introduction of Pakistani cultivars from CIM-
MYT germplasm. Clustering approach has previously been employed to elucidate patterns of similarity and 
genetic diversity within wheat  genotypes99,102 that assist breeder in understanding of wheat germplasm dynamics 
and aiding in the selection of superior breeding lines.

Polymorphism information content allelic frequency on genomes and chromosomes provides valu-
able insights into the distribution of genetic diversity and aids in targeting gene rich regions of genome and 
 chromosome11,46,103. Higher number of alleles and PIC value represents the higher genetic rich regions. In 
the present investigation, the analysis revealed that the allelic frequency and PIC values followed the order of 
genome-D being the lowest subsequently genome-B and with genome-A exhibiting the highest values suggesting 
that genome-A harbors regions of greater genetic richness compared to genomes-B and genome-D among the 
Pakistani wheat cultivars and CIMMYT lines. These results delineate the potential targets for further exploration 
and exploitation in breeding programs aimed at enhancing wheat genetic diversity and productivity.

Bayesian approach based population structure utilizes relatedness frequencies among accessions in each 
group indicate geographic  habitat104,105 resulting in the formation of four clusters as determined by the software 
STRU CTU RE. These results from the population structure analysis of the two CIMMYT trials, 23rd SAWYT and 
24th SAWYT, and the historic varieties from various Pakistani provinces agreed with that expected based on the 
pedigree records. Prior, two main groups were predicted viz., CIMMYT lines and Pakistani accessions based on 
their geopgraphical origin but there was greater genetic variability in wheat accessions that lead to four groups. 
The unexpected grouping accessions may be due to geographical origin, selection of germplasm and varietal age 
that infleuences the structure of wheat accessions.

Consistency and reliability of this grouping methodology are reaffirmed through cluster analysis and princi-
pal coordinate analysis (PCoA) as reported  earlier11,106,107. PCoA, serving as an alternative visualization tool for 
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genotype data based on genetic distances, delineates the wheat accessions into four distinct groups, corroborating 
the findings of the population structure analysis. Moreover, the utilization of the unweighted pair group method 
with arithmetic mean (UPGMA) clustering further confirms the division of wheat accessions into four groups, 
thereby validating the results derived from the population structure analysis and phenotypic evaluation of wheat 
based on physiological attributes and grain yield. Genetic similarity within each sub-population suggested com-
mon parentage among the constituent accessions, particularly evident post-1960s, where a majority of Pakistani 
wheat varieties either directly originated from CIMMYT or were developed through cross-breeding with CIM-
MYT  germplasm108. This historical context likely accounts for the notable genetic resemblance among lines with 
varieties such as SOKOLL, PASTOR, KAUZ, and WBLL from CIMMYT emerging as apparent progenitors for 
many Pakistani wheat accessions (Supplementary material 1).

Association mapping requires presence of LD and strong association among linked loci indicated LD  decay109. 
Therefore, a comprehensive analysis employing 186 SSR markers was undertaken to elucidate the LD pattern 
across each genome and chromosome. Understanding the LD pattern intensifies the precision of identifying 
marker-trait associations (MTAs) both at the chromosome and genome levels, thereby facilitating a deeper 
understanding of the genetic architecture underlying quantitative  traits53,54,110.

LD decay was determined using paired loci and their genetic distance measured in  centimorgan111,112. LD 
decay within shorter genetic distance designates the higher resolution of association mapping and vice versa. 
Therefore, the detection of larger LD blocks within shorter genomic regions becomes imperative for enhancing 
the precision of association  mapping113,114. In current study, LD decay was the highest (5–10 cM) on the A genome 
and chromosome 1A (15–20 cM) representing highest number of loci in relation to other chromosomes. Notably, 
chromosome 1A emerges as a prime candidate for the identification of genomic loci linked to target traits, espe-
cially among Pakistani and CIMMYT wheat accessions, highlighting its significance in future breeding endeavors.

Population structure greatly affects the association mapping efficiency and may identify false positives due 
to spurious  correlations115,116. Traditional approaches often encounter difficulties in accurately identifying genes 
associated with quantitative traits within a single population due to the inherent variability in genetic differen-
tiation and phenotypic expression across diverse geographical  regions117. Statistical methods were developed 
to manage population structure to minimize the detection of false positives but that resulted in the detection of 
false negative  associations56,118. Mixed Linear Model remove these associations using Q matrix extracted from 
population structure and relative kinship matrix among  loci115,119.

Association mapping emerges as a pivotal tool for unraveling the intricate genetic architecture underlying 
quantitative traits associated with thermo-tolerance in wheat, offering insights into the molecular mechanisms 
governing heat stress responses. In the present study, several MTAs were identified for transpiration rate (3B 
and 7A), canopy temperature depression (1A and 6A), photosynthetic rate (3A), cell membrane injury(4B, 7D) 
and ‘stay green’(5A) under heat stress conditions whereas MTA were identified for proline content (3D) under 
normal conditions. Marker trait associations were previously reported for stay green on chromosome 5B, 5A, 4A, 
4B, 4D, 3B, 7B120,121, photosynthetic rate on 4A, 5A, 7A122,123, canopy temperature depression on 2D, 4D, 6A124,125 
and membrane stability on 7D126. However, intriguingly, leaf angle failed to exhibit significant associations with 
any marker under heat stress conditions, potentially attributed to limitations in the SSR markers employed for 
association mapping or inherent disparities in the genetic composition of the studied genotypes. Identification 
of these MTAs serves as a fundamental aspect for devising marker assisted selection strategies against thermo-
tolerance in wheat.

Conclusion
Marker trait association analysis has revealed genomic regions associated with key physiological traits involved 
in heat stress tolerance in wheat. Proline content, transpiration rate, canopy temperature depression, and stay 
green have emerged as robust selection criteria for identifying thermo-tolerant germplasm, exhibiting positive 
correlations with grain yield in wheat. PIC value and allelic frequency was perceived from lowest to highest 
D < B < A suggesting higher genetic rich regions for targeting on genome A than B and D. Moreover, principal 
component analysis and cluster analysis, employing phenotypic data, successfully categorized wheat accessions 
into four distinct groups. These findings were consistent with results obtained from principal coordinate analy-
sis (PCoA), cluster analysis, and population structure analysis using genotypic data, thereby indicating their 
geographical origins. LD decay on chromosome 1A suggested the potential for uncovering the genes associated 
with heat tolerant trait. Stable markers assiciated with physiological traits under normal and heat stress provides 
valuable insights for future MAS strategy for improving thermo-tolerance in wheat.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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