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The Hippo pathway responds to diverse environmental cues and plays key roles in

cell fate determination, tissue homeostasis, and organ regeneration. Aberrant Hippo

signaling, on the other hand, has frequently been implicated in diversified pathologies

such as cancer and immune dysfunction. Here, we summarize the recent but rapid

progress in understanding the involvement of the Hippo pathway in innate immunity,

with a special focus on the intrinsic mechanisms and mutual interactions between

Hippo-YAP signaling and the innate immune response and its physiological impacts

on anti-microbial immunity and anti-tumor immunity. Moving forward, we believe that

systematic investigations under the physiological setting are needed to draw a clearer

picture of the actions of Hippo in innate immunity.

Keywords: Hippo-YAP signaling, innate immunity, anti-tumor immunity, anti-microbial, nucleic acid sensing,

antiviral immunity, interferon, cGAS-STING

INTRODUCTION

The Hippo pathway responds to diverse extracellular cues and plays key roles in tissue homeostasis,
organ regeneration, and tumorigenesis. Originally discovered in Drosophila, the Hippo pathway
is highly conserved in evolution (1–4). A kinase cascade by four tumor suppressors constitutes
the core of the Hippo pathway, comprising two signaling complexes—the Hpo-Sav (MST-SAV in
mammals) and the Wts-Mat (LATS-MOB in mammals), which govern the cellular localization,
activity, and fate of signaling effectors YAP and TAZ (1, 5–8). Transcription coactivators YAP
and TAZ therefore serve as downstream effectors in response to unfavorable growth conditions
such as those derived from mechanical signals, cell adhesion, GPCR ligands, and cellular stresses
and instructed by upstream kinases including MST, MAP4Ks, TAO, and AMPK (9–19). Activated
LATS1/2 kinases directly phosphorylate five conserved serine residues on YAP (20), which drives
the binding of YAP to 14-3-3 proteins for sequestration and cytoplasmic retention (21, 22) as
well as the ubiquitination and proteasomal degradation (20, 23, 24). Otherwise, YAP/TAZ are
localized in the nucleus to form transcription complex and activate the TEAD family transcription
factors (25, 26), thereby transcribing target genes to promote cell proliferation, survival, and
migration (27).

In Drosophila, mutations in major kinases of the Hippo pathway (Hpo/Wts) or their upstream
regulators (Ex, Mer, Kibra, Ft, etc.) lead to overgrowth of eyes, wings, and other organs, mainly due
to a sustained Yki activation that induces excessive cell proliferation (23, 28). Correspondingly, a
sustained activation of YAP in mouse livers leads to cell transformation and tumor formation (22),
while knocking out of YAP in mouse tissues results in various abnormalities in heart, skin, and
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kidney (29–32). YAP and TAZ are also highly active in stem
cells and ancestral cells of various tissues and play important
roles in the maintenance of stemness (33). TAZ is also involved
in maintaining the self-renewal of breast cancer stem cells (34),
while YAP causes genomic instability in medulloblastoma (35).
Taken together, these observations indicate that the activities of
YAP/TAZ resulting from Hippo signaling are key factors in cell
fate determination and tissue homeostasis.

SIGNALING REGULATION AND
CROSSTALKS OF THE HIPPO PATHWAY

Since its discovery, the physiological and pathological aspects of
the Hippo pathway have been steadily established, particularly in
development, homeostasis, and regeneration of organs, including
liver, heart, intestine, brain and central nervous system (CNS),
lung, and kidney (36), and in diseases of cancer, immune
disorder, and cardiovascular dysfunction (27). The regulation of
Hippo-YAP signaling appears to be very complicated (Figure 1),
and there are crosstalks with the Notch pathway (37), the TGF-
β pathway (38), the WNT pathway (39), G protein-coupled
receptor (GPCR) signaling (11, 40), and innate immune signaling
(41, 42). Recently, two studies have revealed that the MAP4K
kinase family, including MAP4K1/2/3/5 and MAP4K4/6/7,
directly phosphorylate and activate LATS1/2 independent of
MST1/2 (13, 14), indicating the existence of other kinases
involved in LATS1/2 regulation under the distinct tissue and
signaling niches. Moreover, YAP and TAZ are targeted by
many other kinases such as AMPK (17, 18), CDK1 (20),
JNK (43), HIPK (44), and the tyrosine kinases c-Abl (45)
and the Src family (46–49), indicating that YAP and TAZ
possess a variety of additional regulations independent of the
Hippo pathway. One of the major research focuses regarding
the Hippo pathway is on understanding how it integrates
with cellular intrinsic factors and cooperates with the other
signaling pathways to regulate a myriad of physiological and
pathological processes. In this review, we are focusing our
discussions of the Hippo-YAP pathway on a specific topic,
innate immunity.

THE FUNCTION OF THE HIPPO PATHWAY
IN INNATE IMMUNE CELLS

By regulating the transactivation of TEAD family transcription
factors, Hippo-YAP signaling exerts critical roles in cell
proliferation, apoptosis, migration, and pluripotency (50).
Recently, accumulating evidence has suggested that the
Hippo pathway is considerably involved in regulation of the
differentiation, metabolism, and functions of innate immune
cells (51–56). Macrophages and dendritic cells (DCs) are
pivotal types of innate immune cells connecting the innate and
adaptive immunity (57–59). Under physiological conditions,
macrophages are polarized into M1 type, which mainly
engages in pro-inflammatory and anti-tumor responses, or
differentiated into the M2 type, which is mainly responsible
for anti-inflammatory and pro-tumorigenic signals (60, 61).

Activated YAP/TAZ in tumor cells and hepatocyte appears
to be an effective attractant to drive the tissue infiltration of
macrophages in the contexts of the tumor immune-environment
and organ fibrosis, although the expression levels of YAP/TAZ
in macrophages are still a controversial topic (62). For example,
the activation of YAP in hepatocellular carcinoma underlies the
M2 macrophage recruitment by tumor-initiating cells (TICs)
(63) or promotes the migration and infiltration of M1-like
macrophages (53), while the genetic deletion of Mst1/2 in
hepatocytes upregulates MCP1 expression and causes a massive
infiltration of macrophages with mixed M1 and M2 phenotypes,
which promotes the development of HCC (64). A recent report
also showed that YAP in macrophages impaired the IL-4/IL-13-
induced M2 macrophage polarization but meanwhile promoted
the LPS/ IFN-γ-triggered activation of M1 macrophage, which
produced excessive IL-6 to aggravate intestinal bowel disease
(IBD) (65). In another report, CYR61, but not CCL2/CSF1 (63),
functioned as the downstream factor of YAP/TAZ in hepatocytes
to attract liver macrophage infiltration, leading to liver
inflammation and fibrosis (66). These intriguing observations
may reflect context- and cellular type-dependency of the Hippo
pathway in the regulation of macrophage polarization and
tissue infiltration.

On the other hand, less is known about the role of the Hippo
pathway in DCs, another major group of antigen-presenting
cells (APCs) that present antigens to CD8+ T cells and activate
cytotoxic T cells to obliterate virus, bacteria, and tumor cells
(67–69). Recently, the Chi group found that the DC-specific
deletion of MST1/2, but not LATS kinases or YAP/TAZ, leads
to selective disruption of the homeostasis and function of
CD8α+ T cells (51). They revealed that CD8α+ DCs exhibited
a particularly robust oxidative metabolism that critically relies on
MST1/2 signaling tomaintain both the bioenergetic activities and
mitochondrial dynamics. As a result, MST1/2-deficient CD8α+

DCs were impeded in the presentation of extracellular proteins
and cognate peptides to prime CD8+ T cells (51). This report
unveils the intriguing interaction between immune signaling and
metabolic reprogramming that underlies the unique function of a
subset of DCs. In addition, Torres-Bacete and colleagues revealed
that depending on CCR7-RhoA signaling, MST1 selectively
regulated the cyto-architecture, endocytosis, andmigratory speed
of mature dendritic cells (mDCs) (55). Taken together, these
studies suggest that the Hippo pathway may participate in the
homeostasis and function of DCs via distinct mechanisms. The
functions of the Hippo pathway in innate immune cells are
usually independent of LATS kinases and YAP/TAZ effectors,
due to the general deficiency of YAP and TAZ expression in
these cells.

THE HIPPO PATHWAY IN REGULATION OF
INNATE IMMUNE SIGNALING

Innate immunity, which presents in both immune cells and
non-immune cells, functions as the first defense line of defense
against pathogen invasion. The host recognizes the pathogen-
associated molecular patterns (PAMPs) of pathogens, and this
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FIGURE 1 | The signaling mechanism and regulation of the Hippo pathway in drosophila and mammals. The Hippo pathway answers to a variety of intracellular and

extracellular cues and regulates cell proliferation, survival, and migration via the signaling cascade of MST1/2-LATS1/2-YAP/TAZ-TEADs.

triggers immune responses via numerous pattern recognition
receptors (PRRs) (70), including membrane-anchored Toll-like
receptors (TLRs) and C-type lectin receptors (CLRs) (71, 72),
which are distributed mainly in immune cells, and cytosolic
receptors such as RIG-I-like receptors (RLRs) (73–76), Cyclic
GMP-AMP synthase (cGAS) (77–80), NOD-like receptors (81,
82), and AIM2-like receptors (83, 84), which have widespread
expression. The Hippo pathway appears considerably involved
in the regulation of innate immunity during pathogen infection,
which is largely distinct from its canonical roles in organ growth
control and tissue homeostasis maintenance. Our group and
others have revealed that YAP and TAZ functioned as potent
suppressors to compromise the production and signaling of
type I interferons (IFN-Is) (41, 85, 86) and the activation of
NF-κB (42) and that they served as positive regulators for
differentiation of the Treg lymphocytes (87). For example,
Zhang et al. revealed that YAP and TAZ acted as potent
suppressors of TBK1, the central kinase in innate nucleic

acid-sensing signaling (33); Deng et al. revealed that YAP/TAZ
attenuated NF-κB signaling by directly inhibiting IKKα/β
activation in an osteoarthritis murine model (88); Ni et al.
found that YAP was highly expressed in Treg cells to amplify
TGFβ-SMAD activation, which strengthened Foxp3 expression
and Treg functions (87). These observations are supported
by the greater severity of inflammatory phenotypes and the
elevated anti-tumor immunity in mice with YAP and/or TAZ
deficiency (87–92). Studies from several independent groups
also suggested that YAP activation facilitated the expression of
SOCS3 and suppressed the JAK-STAT inflammatory cascade in
astrocytes (89), and during vascular inflammation, prevented
NF-κB signaling by associating with TRAF6 and facilitating its
degradation (90). In the case of myocardial fibrosis, YAP in
epicardium promoted the recruitment of suppressive immune
cells Tregs and thus suppressed the post-infarct inflammatory
response and myocardial fibrosis (91). These observations under
various physiological or pathological conditions thus suggest
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FIGURE 2 | The Hippo pathway in innate anti-bacterial immunity. Hippo-YAP signaling is considerably involved in innate anti-bacterial immunity at multiple layers to

address the activity of TLRs and NF-κB and ROS production.

that YAP and TAZ function as suppressors of innate immune
signaling and inflammatory responses.

On the other hand, the Guan group reported that deletion
of kinases LATS1/2, which resulted in YAP/TAZ activation,
induced the secretion of nucleic acid-rich extracellular vesicles
(EVs) to promote IFN-I production, dendritic cell maturation,
and CD8+ T-cell expansion and eventually contributed to anti-
tumor immunity (93). YAP was also shown to promote NF-κB
signaling by suppressing USP31, a negative regulator of NF-κB
signaling, which resulted in the acceleration of sarcomagenesis
(94). In endothelial cells, the activity of YAP/TAZ was suppressed
by atheroprotective unidirectional shear stress, which resulted
in downregulated expression of pro-inflammatory genes and
decreased monocyte infiltration (95). Therefore, the roles of
YAP/TAZ in innate immune signaling and inflammation appear
to be highly context-dependent.

THE HIPPO PATHWAY IN INNATE
ANTI-BACTERIAL IMMUNITY

Organisms from drosophila to mammals are widely armed with
TLR-mediated anti-microbial responses. The Pan group found
that silencing of the Hippo pathway or activation of Yorkie in
drosophila fat bodies led to an increase in cactus expression,

which suppressed NF-κB signaling and thereby decreased the
production of anti-microbial peptides, eventually compromising
the resistance of host to gram-positive bacteria (42). Upon
bacterial infection, the Hippo pathway in Drosophila enterocytes
was coupled with the TGF-β and Src-MAPK pathways to
upregulate the transcription of upd3, which contributed to
intestinal stem cell-dependent tissue repair (96). In contrast,
LegK7, the effector kinase of L. pneumophila, could mimic the
host MST1 kinase to trigger the degradation of YAP/TAZ, which
interfered with PPARγ activity and altered the transcriptional
profile to impair macrophage anti-bacterial immunity (97).
Therefore, the precise mechanisms and physiological roles of
Hippo-YAP signaling in innate anti-bacterial immunity may
await further investigation.

On the other hand, several studies have unveiled that
other core components of the Hippo pathway, independent of
the canonical effectors YAP/TAZ, engage in the regulation of
innate anti-bacterial immunity. For instance, MST1/2 kinases
promoted mitochondria trafficking and reactive oxygen species
(ROS) production in phagocytes (98), which facilitated anti-
bacterial responses and bactericidal activity (99). Mechanistically,
MST1/2 facilitated the formation of TLR-triggered TRAF6-
ECSIT complex, which recruited mitochondria to phagosomes
and accelerated the production of mitochondrial ROS (98).
Intriguingly, MST1 disrupted the secretion of TLR4/9-triggered
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FIGURE 3 | The Hippo pathway in innate antiviral immunity. Hippo-YAP signaling connects the extracellular cues to innate antiviral responses via complex regulations

at multiple levels and in distinct physiological contexts.

inflammatory cytokines to avoid chronic inflammation in
hepatocellular carcinomas (HCCs) via priming the degradation
of IRAK1 in macrophages (100). MST4, a homologous kinase
of MST1/2, also restricted inflammatory responses via the
phosphorylation of TRAF6 (101). Taken together, these studies
suggest an important but complicated role for the Hippo
pathway, canonical or non-canonical, in innate anti-bacterial
immunity (Figure 2).

THE HIPPO-YAP PATHWAY IN INNATE
ANTIVIRAL IMMUNITY

In vertebrates, cytoplasmic nucleic acid sensing, which monitors
both foreign and aberrant nucleic acids in the cytosol, is an

essential component of innate antiviral immunity. RIG-I-
like receptors (RLRs, including RIG-I and MDA5) surveil
for heterogonous or aberrant RNA molecules (73–76), while
abnormal nuclear ormitochondrial DNAmolecules are primarily
sensed by cGAS (77–80), which initiates cGAS-STING signaling,
or by Aim2, which initiates the inflammasomal program.
Facilitated by mitochondrial or endoplasmic reticulum-localized
adaptor proteins MAVS/VISA/IPS-1/Cardif (102–104) or
STING/MITA/ERIS (105, 106), nucleic acid sensing activates
TBK1 and IKKε, which are responsible for phosphorylation
and mobilization of IRF3. Activated IRF3 is then dimerized
and translocated into the nucleus where it functions as a
transcriptional factor by synergizing with NF-κB to transcribe
type I IFNs and ISGs, eventually establishing an appropriate
immune state and modulating the adaptive immunity (107, 108).
Our group found that YAP and TAZ functioned as intrinsic
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FIGURE 4 | The emerging roles of Hippo-YAP signaling in the modulation of innate anti-tumor immunity. The Hippo pathway maneuvers anti-tumor immune

responses and tumorigenesis via regulating the production of type I IFNs and the infiltration, polarization, and maturation of innate immune cells.

inhibitors of TBK1, being directly associated with TBK1 and
preventing the K63-linked ubiquitination and activation of
TBK1 (41). In contrast, cellular conditions favoring YAP/TAZ
inactivation and degradation relieved this YAP/TAZ-mediated
TBK1 suppression and thus augmented the antiviral immunity
(41). Zhou and colleagues also showed a few months later that
YAP in macrophages negatively regulated the antiviral response
via interfering with IRF3 dimerization and nuclear translocation
(85). Other groups also revealed that YAP/TAZ attenuated
NF-κB signaling by directly inhibiting IKKα/β activation in an
osteoarthritis murine model (88) and by associating with TRAF6
and facilitating TRAF6 degradation in vascular inflammation
(90). Recently, the Yu group reported that an isoform of TAZ
impeded JAK-STAT signaling to dampen the type I IFNs pathway
(86). In addition, our group found that, independent of LATS

kinases and YAP/TAZ, MST1 directly associated with and
phosphorylated IRF3 to attenuate its dimerization and promoter
binding (109), and our and other groups further revealed that
MST1 was also suppressive of TBK1 activation (109, 110).
During HIV-1 infection, the CLRs DC-SIGN recognized the
abortive HIV-1 RNA and triggered Raf-1-dependent MST1
activation, which facilitated the phosphorylation and activation
of mitotic kinase PLK1 to restrain TBK1 and thus compromise
MAVS antiviral signaling (110). Given the overall deficiency
of YAP/TAZ expression in many types of immune cells, the
observations with regard to the similarity but not the distinction
of YAP/TAZ andMST1 in innate immunity are rather intriguing.
Taken together, these observations suggest a considerable
involvement of the Hippo pathway in innate antiviral immunity
and the negative effects of YAP/TAZ and MST1 in antiviral
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immunity, depending on the distinct physiological contexts
(Figure 3).

EMERGING ROLES OF HIPPO-YAP
SIGNALING IN MODULATION OF INNATE
ANTI-TUMOR IMMUNITY

Type I IFNs bridge innate immunity and adaptive immunity and
play a pivotal role in anti-tumor immunity (111–113). Given
that there are numerous lines of evidence for the participation
of the Hippo pathway in innate immunity, it is no surprise
that Hippo-YAP signaling also effects anti-tumor immunity. For
example, the Guan group suggested an unexpected function
of the Hippo pathway in suppression of anti-tumor immunity
in three murine models. Tumor cells with LATS1/2 deficiency
secreted nucleic acid-rich EVs to facilitate TLRs-Myd88/TRIF
signaling and type I IFN production, which accelerated DC
maturation, CD8+ T lymphocyte expansion, and tumor growth
arrest (93). In contrast, the Zhao group found that in liver
tumor-initiating cells (TICs), YAP recruited M2 macrophages to
suppress immune clearance, thus promoting tumorigenesis (63).
In humanHCC, the Yang group also reported that YAP activation
induced the polarization of M1/M2 macrophages via Mcp1,
thus contributing to massive macrophage infiltration and HCC
progression (64). The Dey group reported that hyperactivated
TAZ, but not YAP, accelerated liver inflammation and tumor
development in a TEAD-dependent manner to induce myeloid
cell infiltration and pro-inflammatory cytokine secretion (114).
These somewhat diverse observations may reflect the fact that the
complex tumormicroenvironment and cancer cell types precisely
determine the exact role of the Hippo-YAP signaling pathways in
innate anti-tumor immunity. Future investigations are warranted
to define these elaborate situations (Figure 4).

CONCLUDING REMARKS

Contrary to the classic functions of Hippo-YAP signaling in cell
fate determination, tissue homeostasis, and organ development,
accumulating data in recent years has clearly pointed to the
critical roles of the Hippo-YAP pathway in innate immune

regulation. In this review, we have summarized the intriguing but

complex integrations of Hippo-YAP signaling in the functioning
of innate immune cells and signaling with specific focuses on
the innate anti-microbial immunity and anti-tumor immunity.
An intrinsic part of the nature of the Hippo pathway is its
very complicated interactions with innate immune signaling
at multiple levels and independent or dependent of signaling
effectors YAP/TAZ. The entirely distinct programs for the
expression of these core signaling players in innate immune cells,
particularly YAP and TAZ, appear to justify this requirement.

In conclusion, Hippo signaling through the kinase cascade
to YAP/TAZ is a conceptually straightforward pathway.
However, we have observed the amazing versatility and context-
dependence of the Hippo pathway responses in innate immunity.
Moving forward, we believe that systematic investigations under
physiological settings are particularly needed to decipher the
diversified functions and mechanisms of the Hippo pathway,
which, ultimately, will guide us to maneuver this critical pathway
to benefit our health.
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