
Research Article

Received 12 January 2015, Accepted 24 September 2015 Published online 12 October 2015 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.6761

Precision of maximum likelihood
estimation in adaptive designs
Alexandra Christine Graf,a*† Georg Gutjahrb and
Werner Brannathb

There has been increasing interest in trials that allow for design adaptations like sample size reassessment or
treatment selection at an interim analysis. Ignoring the adaptive and multiplicity issues in such designs leads to
an inflation of the type 1 error rate, and treatment effect estimates based on the maximum likelihood principle
become biased. Whereas the methodological issues concerning hypothesis testing are well understood, it is not
clear how to deal with parameter estimation in designs were adaptation rules are not fixed in advanced so that, in
practice, the maximum likelihood estimate (MLE) is used. It is therefore important to understand the behavior
of the MLE in such designs. The investigation of Bias and mean squared error (MSE) is complicated by the fact
that the adaptation rules need not be fully specified in advance and, hence, are usually unknown. To investigate
Bias and MSE under such circumstances, we search for the sample size reassessment and selection rules that lead
to the maximum Bias or maximum MSE. Generally, this leads to an overestimation of Bias and MSE, which can
be reduced by imposing realistic constraints on the rules like, for example, a maximum sample size. We consider
designs that start with k treatment groups and a common control and where selection of a single treatment and
control is performed at the interim analysis with the possibility to reassess each of the sample sizes. We consider
the case of unlimited sample size reassessments as well as several realistically restricted sample size reassessment
rules. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

There has been increasing interest over the last years in adaptive two-stage clinical trials where more than
one treatment group are compared with one common control. These trials allow for design adaptations as,
for example, sample size reassessment or treatment selection at an interim analysis. It is well known that
ignoring the adaptive and multiplicity issues lead to a considerable inflation of the type 1 error rate and
that effect estimates based on the maximum likelihood principle may be biased. For the comparison of a
single treatment with a control and balanced sample sizes between groups, Proschan and Hunsberger [1]
showed that the maximum type 1 error rate can be inflated from 0.05 to 0.11. Graf and Bauer [2] extended
this arguments to allow for individual sample size reassessment rules in the treatment and control group
respectively, which increases the maximum type 1 error to 0.19. However, when selecting one out of k
treatments and control for a second stage, Graf et al. [3] showed that if using the Dunnett test to adjust
for multiplicity [4], the maximum type 1 error rate may not exceed the pre-specified 𝛼-level for specific
restrictions on the second stage sample size reassessment rule because of the over-correction for the
treatments not tested at the end of the study. A large number of hypothesis testing methods have been
developed that allow for flexible sample size adaptations (not pre-fixed in advance) without compromising
the overall type 1 error rate based on the combination test approach [5–7] or the conditional error principle
[8,9] and have been extended to multi-armed clinical trials allowing for treatment selection [6,7,10–12].
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Whereas the methodological issues concerning hypothesis testing are well understood, up to now, it
is not clear how to deal with parameter estimation after flexible interim adaptations. Several methods
have been proposed to reduce or remove the Bias [12–19]. The Bias depends on many different features
as the selection procedure, the sample size reassessment rule, or the unknown parameters. The proposed
methods therefore do only apply to specific adaptation rules and, hence, are not generally applicable. In
particular, in designs were adaptation rules are not fixed in advance, estimation is still an unsolved issue,
so that in practice the maximum likelihood estimate (MLE) is still used.

Bauer et al. [20] investigated the impact of treatment selection on the mean Bias and the mean squared
error (MSE) when selecting those j (out of k) treatments with the largest observed effects while fixing the
total per-group sample size. They further considered designs where the sample size is reshuffled equally
to the selected treatment arms and control with the conclusion that due to regression of the mean, Bias
decrease as compared with the scenario without reshuffling. To our knowledge, no investigations of other
types of sample size and selection rules where undertaken yet. Hence, the behavior of MLE is not yet
fully understood for adaptive designs.

Adaptive designs have the practically important feature that the selection and sample size reassessment
rule need not be fully pre-specified. This complicates the investigation of Bias and MSE, which depend
on the actually unknown sample size and selection rule. Simulations or numerically investigations under
typical adaption rules are important, however, can only give partial answers. We therefore investigate the
behavior of the MLE from another point of view; we search for the selection and sample size reassessment
rule leading to the maximum mean Bias or maximum MSE when using the MLE at the end of the adaptive
trial to estimate the treatment effect. Brannath et al. [16] calculated the maximum mean Bias for the case
of a one-sample z-test and concluded that the maximum mean Bias in a flexible two stage design is in
general and not larger than that of a conventional group sequential design. We will consider scenarios
where more than one treatment groups are compared with a common control, and one treatment and the
control are selected for the second stage. Moreover, we also allow for flexible choices of the second stage
allocation ratio, permitting, for example, a larger increase in sample size for the selected treatment than
for the control group.

The case of unlimited sample sizes provides upper bounds for Bias and MSE. We therefore consider
also scenarios with restrictions on the sample size to obtain less conservative estimates for real adaptive
trials. We will, for instance, investigate bounded second stage sample sizes as well as the restriction on
the control group to have a smaller sample size than that of the treatment group. We will also consider
designs with a fixed overall sample size for the control group and designs with a fixed total sample
size permitting only a reshuffling between the selected treatment and the control, with and without the
restriction of a smaller control group.

We will see in this paper that the maximum mean Bias and maximum MSE of the MLE are independent
from the true means in the treatment and control groups, without and with restrictions on the second stage
sample sizes. As a consequence, they are the same under the null and all alternative hypothesis. This is
a very attractive property of the maximum mean Bias and maximum MSE of the MLE that simplifies its
investigation and discussion considerably.

The rest of the paper is organized as follows. In Section 2, we describe the type of interim adaptations
investigated to calculate the maximum mean Bias and maximum MSE. In Section 3, we investigate the
maximum mean Bias and maximum MSE for the case when only k = 1 treatment is compared with one
control. In Section 4 we generalize the arguments to the scenario of selecting one out of k > 1 treatments
and control for the second stage. A strategy that is intensively discussed in the literature [11–13, 18, 20].
We will end with a discussion of the results in Section 5.

2. Designs with treatment selection

Assume a clinical trial with parallel groups and a two-stage design that starts at the first stage with k
treatments and a control and continues in the second stage with one selected treatment and the control. We
assume normally distributed outcomes, X(i,j,l) ∼ N(𝜇i, 𝜎

2), i = 0,… , k, where i represents the treatment
group, with i = 0 for the control and i = 1,… , k for the experimental treatments, and j ∈ {1, 2} is the
index for the stage. The index l stands for the individual, where l = 1,… , n(i,1) in the first stage and
l = 1,… , n(i,2) in the second stage for each treatment group i. The common variance 𝜎2 is assumed to
be known.
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An interim analysis is performed after recruitment of n(i,1) patients in the ith experimental treatment
and n(0,1) in the control group. For simplicity, we assume balanced sample sizes in the first stage, that is,
n(i,1) = n(0,1) = n for all i = 1,… , k, which is a common scenario. However, the second stage sample sizes
can be unbalanced. Based on the data of the first stage, X(i,1,l), i = 0,… , k and l = 1,… , n, we select one
out of the k treatments, say treatment s ∈ {1,… , k}, and the control for the second stage. We may also
reassess the second sample sizes based on the first stage data. In the second stage, n(s,2) = rsn, patients are
recruited in the selected treatment and n(0,2) = r0n in the control group, where second-to-first-stage ratios
0 ⩽ ri ⩽ ∞ for i = 0, s, can depend on the first stage data. Note that the selected treatment (or control)
can also be stopped at interim by setting rs = 0 (or r0 = 0). In contrast to the majority of the literature on
point estimation in designs with treatment selection, we do not assume a specific selection or sample size
reassessment rule and thereby consider the full flexibility permitted with adaptive designs [6, 7, 10, 11].

Treatment selection here means to decide on the treatment ‘of interest’ for which the effect estimate will
further be investigated. For treatments, not selected in the interim analysis, we assume that the treatment
effect is not of interest at the end of the trial. In the final analysis, the overall effect of the selected
treatment to control is calculated using the maximum likelihood estimators, calculated over both stages:

x̄i =
x̄(i,1) + rix̄(i,2)

1 + ri
,

where i = 0, s, x̄(i,1) =
1
n

∑n
l=1 x(i,1,l) is the sample mean of the first stage, and x̄(i,2) is the sample mean

of the second stage for group i = 0, s. If sample size adjustments are performed based on the first stage
data, the overall sample mean x̄i may be biased (see e.g. Brannath et al. [16]).

Our intention is to derive the worst case, meaning that we are searching for the sample size reassessment
and selection rule maximizing the mean Bias (denoted in sequel as "Bias" for short) or the MSE for
the selected treatment compared to the control. We prefer to consider the ‘root mean squared error’,
RMSE =

√
MSE, because it is on the same scale as the mean and the Bias. In the context of designs with

treatments selection, the Bias and MSE are defined as follows:

Bias = E
[
(X̄s − X̄0) − (𝜇s − 𝜇0)

]
and MSE = E

[
((X̄s − X̄0) − (𝜇s − 𝜇0))2

]
.

These quantities have also been denoted by ‘selection Bias’ and ‘selection MSE’ (cf. Bauer et al. [20]).
The general idea of this paper is to determine the maximum Bias or maximum MSE by maximizing at

each interim sample point the conditional Bias or conditional MSE given the interim data. By searching
for the treatment selection and sample size adaptation rules that maximizes the conditional Bias (or MSE),
we obtain the treatment selection and sample size rules that maximizes the overall Bias (or MSE). This
idea has been used in Brannath et al. [16] to obtain the maximum Bias in the one-sample case and, thereby,
also in the balanced two-sample case. A similar idea has earlier (and later) been used to determine the
maximum type 1 error rate of the naive z-test or Dunnett-test [1–3].

3. Two-arm trials with sample size reassessment

For illustrative purposes, we start with the scenario where only one treatment group (k = s = 1) is
compared with a control. The results will be generalized to k > 1 in Section 4. We start with a discussion
of the maximum Bias and then proceed with a similar investigation of the maximum RMSE.

3.1. Maximum Bias

Brannath et al. [16] calculated the maximum Bias of the one-sample mean in a two-stage design with
data-driven sample size reassessments. Their result easily generalizes to the treatment effect estimate in
a two-arm parallel group design with balanced first and second stage sample sizes, because the treatment
effect estimate in a balanced two-arm trial is formally equal to the one-sample mean of observations
with variance 2𝜎2. According to the result in [16], the maximum Bias in an adaptive two-stage trial with
two-arms and the restriction n(0,2) = n(1,2) becomes

B∗(n, 𝜎, rmin, rmax) =
√

2𝜎√
n
𝜙(0)

(
1

1 + rmin
− 1

1 + rmax

)
≈ 0.6 𝜎√

n

(
1

1 + rmin
− 1

1 + rmax

)
(1)
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where 𝜙 denotes the standard normal density and rmin and rmax are pre-specified lower and upper bounds
for the data driven second-to-first-stage ratio r = n(0,2)∕n = n(1,2)∕n. Note that the maximum Bias is
independent from the true means 𝜇0 and 𝜇1. We can set rmin = 0 and rmax = ∞ if no such bounds exist.
In this case, the maximum Bias becomes B∗(n, 𝜎, 0,∞) = 𝜙(0)

√
2 𝜎∕

√
n ≈ 0.6 𝜎∕

√
n.

3.1.1. Flexible second-to-first-stage ratios. The restriction to n(0,2) = n(1,2) may be too strong for appli-
cations because it does not permit an unequal increase or decrease of the sample sizes in the two arms.
For instance, if the control is a placebo, ethical reasons may advise us to increase the sample size only
in the treatment group or even decrease it in the control arm. A reduction in the placebo allocation ratio
will usually also increase the willingness to participate in the trial. We, therefore, also consider the Bias
under unequal sample size adaptations, which can be determined by maximizing the conditional Bias
with regard to n(0,2) and n(1,2) without the constraint n(0,2) = n(1,2). We will see in subparagraph 3.1.5
(where we describe our calculations) that the maximum Bias remains independent from 𝜇1 and 𝜇0 for
flexible second stage sample sizes n(0,2) and n(1,2). Note that r0 = n(0,2)∕n and r1 = n(1,2)∕n are the individ-
ual second-to-first-stage ratios for the control and treatment group with rmin ⩽ min(r0, r1) ⩽ max(r0, r1)
⩽ rmax.

Figure 1 (A) for k = 1 shows the maximum Bias, B∗, standardized by the standard error
√

2𝜎2∕n of
the first-stage mean. The shown results do therefore also not depend on the first stage sample size n or
the common known variance 𝜎. The solid lines in Figure 1 (A) show B∗∕

√
2𝜎2∕n for rmin = 0, 0.5,

and 1 and rmax varying from 0 to 3. As expected, the maximum Bias is increasing with decreasing rmin
and increasing rmax, showing that more flexibility leads to a larger maximum Bias. For example, for
rmin = 1, meaning that the second-stage sample size has to be as least as large as the first-stage sample
size and rmax = 2 allowing a doubling of the second-stage sample size as compared with the first stage,
the maximum Bias is 0.09 times the first-stage standard error, increasing to 0.19 and 0.38 for rmin = 0.5
and 0, respectively. This shows that the option for sample size reductions (including early stopping) can
largely increases B∗.

The maximum Bias appears to be large for some of the scenarios in Figure 1 (A). However, recall
that we have plotted B∗ in units of

√
2𝜎2∕n and that

√
2𝜎2∕n decreases with increasing per group first-

stage sample size n. Assume, for instance, that n is half the sample size required for a z-test with power
90% at 𝛿 = 𝜇i − 𝜇0 in a classical two-armed parallel group design at one-sided level 𝛼 = 0.025. Then√

2𝜎2∕n = 𝛿{Φ−1(0.975) +Φ−1(0.9)}−1 = 0.31 𝛿, and if (rmin, rmax) = (1, 2), then B∗ = 0.09
√

2𝜎2∕n is
only 3% of the effect size 𝛿 assumed in the sample size calculation. Allowing for more flexibility, as, for
example, (rmin, rmax) = (0, 2), the bias is substantially increasing to 12% of the effect size.

3.1.2. Restriction to r1 ⩾ r0. A reasonable constraint to reduce the maximum Bias is to require that the
experimental treatment group is never smaller than the control group. In this case, r0 can vary between
(rmin, rmax), while r1 is restricted to (r0, rmax). The dot-dashed lines in Figure 1 (A) show the standardized
maximum Bias for this type of restriction. As expected, the maximum Bias is always smaller than the
maximum Bias with flexible ratios but larger than the one with balanced second-stage sample sizes. Its
line is right in the middle of the two other lines. The dotted lines in Figure 1 (A) shows the standardized
maximum Bias if we restrict the second-stage sample sizes to be balanced. If rmax = 2, the standardized
maximum Bias under the given constraint becomes 0.08, 0.16, and 0.32 for rmin = 1, 0.5, and 0, respec-
tively. We can see that for rmin ⩾ 0.5 the difference in Bias between the constraints r1 = r0 and r1 ⩾ r0
is small.

3.1.3. Fixing r0. A stronger restriction is to fix the total sample size of the control group (that is, fixing
r0) while in the experimental treatment group sample sizes are reassessed within the window (r0, rmax).
The MLE of the control group is then unbiased. The maximum Bias, therefore, does not depend on the
interim outcome of the control group. However, it depends on the fixed r0. The dashed lines in Figure 1
(A) give the standardized maximum Bias for r0 = 0, 0.5, or 1 while rmax varies from r0 to 3. For example,
if r0 = 1 and rmax = 2, then the standardized maximum Bias is 0.05, that is, a little more than half of
the Bias with flexible sample size reallocations. We are aware that fixing r0 = 0 may be an unrealistic
scenario always resulting in a second stage without control. However, for complete presentation of the
results, the Figure also shows the line for r0 = 0.

3.1.4. The effect of rmin. Figure 1 (A) indicates that the minimum rmin for the second-stage sample sizes
has quite some impact on the maximum Bias. To further elaborate the impact of rmin, we have calculated

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 922–941
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Figure 1. Standardized maximum Bias as a function of rmax for rmin = 0, 0.5, and 1. Values are given for a number
of k = 1 to 6 treatments in panels (A) to (F). Within one panel the standardized maximum Bias is shown for
different restrictions on the sample size reassessment rule: flexible second-to-first-stage-ratios (solid lines), equal
second-to-first-stage ratios (dotted lines), restricting r1 ⩾ r0 (dot-dashed lines), and fixing the control (dashed
lines). The gray horizontal line shows the standardized Bias for a fixed-size-sample test with post-trial selection.
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the maximum Bias for rmax = ∞ and rmin = 0, 0.5, 1. Table I shows the results for the standardized
maximum Bias. The row ‘flexible’ gives the maximum Bias with flexible second-stage allocation ratios;
in the row ‘r1 ⩾ r0’, the sample size of the experimental treatment group is constraint to be at least as
large as in the control group. ‘r0 = r1’ means that the second-stage sample sizes are restricted to be
balanced, and ‘fix r0’ that the sample size of the control group is fixed. Here, we are interested in the
case k = 1 (one experimental treatment only). We observe that the maximum Bias is halved by letting
rmin = 1 (i.e. forcing the second-stage sample sizes to be at least as large as the first-stage ones) compared
with rmin = 0. With rmin = 0.5, the maximum Bias is reduced by about 33%. These factors for the
maximum Bias seem to be completely independent from the additional restrictions on r1 and r0 which is
a remarkable finding. A possible explanation for this finding is that the maximum bias is dominated by
the minimum sample size rmin.

3.1.5. Determination of maximum Bias. As mentioned in the introduction, the sample size reassessment
rule, which maximizes the Bias, is obtained by maximizing the conditional Bias, that is, the deviation
of the conditional mean of the treatment effect estimate (given the interim data) from the true
parameter value.

For the calculation of the conditional Bias, we standardize the individual stage-wise means Z(i,j) =
(X̄(i,j) − 𝜇i)

√
n(i,j)∕𝜎2, i = 0, 1, j = 1, 2. Recall that n(1,1) = n(0,1) = n and our definition of ri = n(i,2)∕n,

i = 0, 1, with rmin ⩽ min(r0, r1) ⩽ max(r0, r1) ⩽ rmax. To simplify the notation, we will omit the index
j for the first stage data and summaries, for example, denoting the first-stage standardized means by zi,
i = 0, 1. Similar calculations as in [16] give the conditional Bias:

CB(z0, z1, r0, r1, n, 𝜎) = E
[
(X̄1 − X̄0) − (𝜇1 − 𝜇0) ∣ Z(i,1) = zi, i = 0, 1

]
= 𝜎√

n

[
z1

1 + r1
−

z0

1 + r0

]
.

(2)

To evaluate the worst case, the second-to-first-stage ratios r1 and r0 are searched to maximize (2):

C̃B(z0, z1, n, 𝜎, rmin, rmax) = max
rmin⩽r0,r1⩽rmax

CB(z0, z1, r0, r1, n, 𝜎) (3)

Note again that we assume in the following the same lower and upper bounds rmin, rmax for r0 and r1
and that (3) corresponds to the fully flexible case without additional restrictions on r0 and r1 (like e.g.
r1 ⩾ r0). The generalization to different boundaries and additional restrictions on (r1, r0) are formally
straightforward. Clearly, C̃B depends on the restrictions made for the ratios ri.

To assess the worst case reassessment rule for a given interim result, the true means of treatment
and control group have to be known. However, our intention is to evaluate an upper bound for the
overall Bias. The maximum Bias B∗ is evaluated by integrating the maximum conditional Bias over all
interim outcomes:

B∗(n, 𝜎, rmin, rmax) = ∫
∞

−∞ ∫
∞

−∞
C̃B(z0, z1, n, 𝜎, rmin, rmax)𝜙(z1)𝜙(z0)dz1dz0 . (4)

Obviously, the maximum Bias B∗(n, 𝜎, rmin, rmax) does not depend on the unknown 𝜇0 and 𝜇1.
Fortunately, (2) is the sum of two terms depending only on r1 or r0. Hence, in the fully flexible case, we

can maximize each term separately in r1 or r0, respectively. Denoting the worst case sample size fractions
by r̃i, i ∈ {0, 1}, we obtain r̃1 = rmin for z1 > 0 and r̃1 = rmax for z1 < 0. Similarly, r̃0 = rmax for z0 > 0
and r̃0 = rmin for z0 < 0. Figure (A) in the Appendix shows the four subsets of the interim outcome space
corresponding the four values of the tuple (r̃0, r̃1). The maximum Bias, B∗, is obtained by integrating the
maximum conditional Bias in each subset and summing up the four integrals. This leads to

B∗(n, 𝜎, rmin, rmax) =
2𝜎√

n
𝜙(0)

[
1

1 + rmin
− 1

1 + rmax

]
≈ 0.8𝜎√

n

[
1

1 + rmin
− 1

1 + rmax

]
. (5)

Without any restrictions on the second-stage sample size reassessment rule, that is, setting (rmin, rmax) =
(0,∞), the maximum Bias simplifies to B∗(n, 𝜎, 0,∞) = 2𝜙(0)𝜎∕

√
n ≈ 0.8𝜎∕

√
n. Comparison of (1)

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 922–941
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Table I. The standardized maximum Bias, B∗
k

√
n∕(2𝜎2), as

well as the standardized maximum root mean squared error,√
MSE∗

k (n∕(2𝜎2)), for different restrictions for the sample size
reassessment rules: flexible rs and r0, balanced second-stage sam-
ple size (rs = r0), a larger second stage sample size in the treatment
group (rs ⩾ r0) and fixing the sample size in the control (fix r0).
Values are given for rmin = 0, 0.5 and 1 setting rmax = ∞. For
comparison, the fixed design with rmin = rmax is given showing the
maximum selection Bias and mean squared error, respectively.

rmin

B∗
k

√
n∕(2𝜎2)

√
MSE∗

k n∕(2𝜎2)

k type 0 0.5 1 0 0.5 1

1 rmin = rmax 0.000 0.000 0.000 1.000 0.817 0.707
flexible 0.564 0.376 0.282 1.129 0.859 0.723
r1 ⩾ r0 0.482 0.321 0.241 1.092 0.843 0.717
r1 = r0 0.399 0.266 0.199 1.039 0.820 0.707
fix r0 0.282 0.188 0.141 1.080 0.842 0.717

2 rmin = rmax 0.399 0.266 0.199 1.246 0.955 0.799
flexible 0.764 0.509 0.382 1.320 0.980 0.809
rs ⩾ r0 0.628 0.419 0.314 1.276 0.963 0.801
rs = r0 0.598 0.399 0.299 1.258 0.956 0.799
fix r0 0.482 0.321 0.241 1.271 0.962 0.801

3 rmin = rmax 0.598 0.399 0.299 1.389 1.040 0.856
flexible 0.910 0.607 0.455 1.446 1.059 0.864
rs ⩾ r0 0.739 0.493 0.370 1.402 1.042 0.857
rs = r0 0.728 0.485 0.364 1.395 1.040 0.856
fix r0 0.628 0.419 0.314 1.399 1.042 0.857

4 rmin = rmax 0.728 0.485 0.364 1.489 1.099 0.897
flexible 1.022 0.681 0.511 1.537 1.117 0.904
rs ⩾ r0 0.827 0.551 0.414 1.495 1.100 0.897
rs = r0 0.882 0.548 0.411 1.492 1.099 0.897
fix r0 0.739 0.493 0.370 1.493 1.100 0.897

5 rmin = rmax 0.822 0.548 0.411 1.565 1.145 0.929
flexible 1.109 0.739 0.555 1.608 1.161 0.935
rs ⩾ r0 0.898 0.599 0.449 1.567 1.146 0.929
rs = r0 0.896 0.597 0.488 1.566 1.145 0.929
fix r0 0.827 0.551 0.414 1.567 1.145 0.926

6 rmin = rmax 0.895 0.597 0.448 1.625 1.181 0.954
flexible 1.180 0.787 0.590 1.666 1.197 0.960
rs ⩾ r0 0.957 0.638 0.479 1.627 1.182 0.954
rs = r0 0.956 0.637 0.478 1.627 1.181 0.954
fix r0 0.898 0.599 0.449 1.626 1.182 0.954

and (5) reveals, that when dropping the constraint of equal second-stage sample sizes, the maximum Bias
is increased by the factor

√
2, that is, by about 41%.

We finally note how to account for constraints like r1 ⩾ r0. To account for r1 ⩾ r0, we need to rule out
that r1 = rmin and r0 = rmax. For z0 > 0 and z1 > 0, we therefore maximize CB(z0, z1, r0, r1, n, 𝜎) under
the assumption r1 = r0. In this case, the maximum depends on z1 − z0: it is attained for r1 = r0 = rmin
if z1 − z0 > 0 and otherwise for r1 = r0 = rmax. The maximization of CB(z0, z1, r0, r1, n, 𝜎) under the
constraint of a fixed r0 follows similar lines as in the fully flexible case (leading to a rule that depends on
z1 only).
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3.1.6. Reshuffling. Assume now that a sample size of ng patients per group is pre-planned over both
stages, resulting in a total of 2ng patients in the trial. This overall patient number is kept fix. The interim
analysis is performed after recruitment of tng patients per group where t ∈ (0, 1). The ratio t can be
interpreted as the timing of the interim analysis. To keep the overall sample size, the second stage needs
to consist of 2(1−t)ng patients in total. This number is allocated to the experimental treatment and control
group in a data dependent manner. This means that in the interim analysis, a second-stage sample size
allocation rate v, 0 ⩽ v ⩽ 1, is chosen based on the interim results, such that in the second stage a number
of v2(1− t)ng patients is allocated to the control and (1−v)2(1− t)ng to the experimental treatment group.
The conditional Bias (2) can be rewritten as follows:

CB(z0, z1, v, ng, t, 𝜎) =
𝜎√
tng

[
z1

1 + (1 − v)wt
−

z0

1 + vwt

]
(6)

where we use the notation wt = 2( 1
t
− 1) for mathematical convenience. The allocation ratio 0 ⩽ v ⩽ 1 is

now searched to maximize the conditional Bias (6). By setting the first derivative of the conditional Bias
to zero, we obtain a quadratic equation with the two roots

v(1),(2) =
−z1 + z0(wt + 1) ±

√
−z0z1(wt + 2)

(z0 + z1)wt

that are candidates for the ṽ maximizing the conditional Bias. The candidates v(1) and v(2) do only exist
if z0 and z1 have different signs and z0 ≠ −z1. If z0 = −z1 > 0, one can see from (6) that the conditional
Bias is maximized for v(3) = 1∕2. Furthermore, v(1) and v(2) are ineligible if larger than 1 or smaller than
0. Whether v(1) or v(2) is actually the maximizer depends on z0 and z1. To assess the global maximum, the
candidates v(4) = 0 and v(5) = 1 also have to be investigated. Note that for z0 = −z1 < 0, candidates v(4)

and v(5) coincide and show the maximizer of the conditional Bias. The worst case conditional Bias is the
maximum of the five candidates.

C̃B(z0, z1, ng, t, 𝜎) = max
i=1,...,5∶0⩽v(i)⩽1

[
CB(z0, z1, v

(i), ng, t, 𝜎)
]
. (7)

Figure (B) in the Appendix shows the subspaces of the interim outcome in terms of the standardized
means in the treatment and control groups corresponding to the different maximizer v(i) for t = 0.5. The
white area gives the subspace where either v(1) or v(2) are the global maximum. The dashed line gives the
subspace, where v(3) is the global maximum. It can be seen that v(1) is no global optimum for t = 0.5.
Numerical integration can be used to compute the overall Bias:

B∗(ng, t, 𝜎) = ∫
∞

−∞ ∫
∞

−∞
C̃B(z0, z1, ng, t, 𝜎)𝜙(z1)𝜙(z0)dz1dz0. (8)

For numerical integration, we used the R-package R2Cuba [21]. In the following, we also show results
under the restriction 0 ⩽ v ⩽ 0.5, which guarantees that the second-stage sample size of the experimental
treatment group is never smaller than that of the control group. The solid black line, marked with 1 in
Figure 3 (A), shows the standardized maximum Bias as a function of the timing of the interim analysis
t for k = 1 and 0 ⩽ v ⩽ 1. The maximum Bias is now standardized by the standard error of a fixed-

size-sample test with per group sample size ng, that is,
√

2𝜎2∕ng. We are not standardizing with the
standard error of the interim estimate because it depends on t. The dashed line (marked with 1) gives
the standardized maximum Bias under the restriction 0 ⩽ v ⩽ 0.5. One can see that (for k = 1) the
standardized maximum Bias is decreasing with increasing t, that is, the later interim analysis, the smaller
the maximum Bias. This is due to the larger first and smaller second-stage sample sizes. For t = 0.5,
that is, planning the interim analysis half way, the standardized maximum Bias is 0.40 if 0 ⩽ v ⩽ 1 and
decreases to 0.21 if 0 ⩽ v ⩽ 0.5.

3.2. Maximum mean squared error

To maximize the MSE, we proceed similar to calculating the maximum Bias. For each interim outcome,
the sample size reassessment rule is searched that maximize the conditional MSE (worst case). The
conditional MSE, given the interim outcome, can be calculated as follows (see Appendix A.1):
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CMSE(z0, z1, r0, r1, n, 𝜎) = E
[(
(X̄1 − X̄0) − (𝜇1 − 𝜇0)

)2 ∣ Z(i,1) = zi, i = 0, 1
]

= 𝜎2

n

[(
z1

1 + r1
−

z0

1 + r0

)2

+
r1(

1 + r1

)2
+

r0(
1 + r0

)2

]
(9)

For each z0 and z1, r0 and r1 are searched to maximize the CMSE:

C̃MSE
(
z0, z1, n, 𝜎, rmin, rmax

)
= max

rmin⩽r0,r1⩽rmax

CMSE
(
z0, z1, n, 𝜎, r0, r1

)
(10)

where rmin and rmax again denote the lower and upper bounds for the second-to-first-stage ratios ri, i =
0, 1. Additional constraints on (r0, r1) like r1 ⩾ r0 need to be accounted in the maximum (10). Integrating
over all interim outcomes gives the maximum MSE, denoted by MSE∗ in the sequel,

MSE∗(n, 𝜎, rmin, rmax) = ∫
∞

−∞ ∫
∞

−∞
C̃MSE(z0, z1, n, 𝜎, rmin, rmax)𝜙(z0)𝜙(z1)dz0dz1 . (11)

Note that MSE∗ is also independent from the group means 𝜇i, i = 0, 1.

3.2.1. Flexible second-to-first-stage ratios. We start investigating the case of completely flexible r1 and
r0 within the boundaries (rmin, rmax). Note again that we assume equal bounds for the treatment and the
control group; however, the sample size reassessment rule for the treatment and control group can be
different. To maximize the CMSE in (9), for given z0 and z1 at interim, a total of nine candidates have
to be investigated, and the global maximum is the maximum over these nine candidates. Integrating over
all interim outcomes gives the MSE∗. Details can be found in Appendix A.2.

The solid lines in Figure 2 (A) show the maximum RMSE, say RMSE∗, divided by the standard error of
the first-stage mean difference, that is,

√
MSE∗∕

√
2𝜎2∕n. Note that we use here the same standardization

as for the maximum Bias and that the standardized RMSE∗ does not depend on n or 𝜎. As for the Bias, for
increasing rmin and decreasing rmax, the standardized RMSE∗ is decreasing. Setting rmax = 2 and rmin = 0,
RMSE∗ is 1.10 times first-stage standard error. Increasing rmin to 0.5 or 1, the values are decreasing to
0.84 and 0.71.

The gray horizontal line through 1 represents the standardized RMSE of the first-stage mean difference.
For the investigated rmin ⩾ 0.5, the standardized RMSE∗ is always smaller than 1, meaning that we gain in
precision from the second stage, independently of the sample-size reassessment rule. If rmin = 0, RMSE∗

is larger than the first-stage RMSE, indicating that we can lose in precision if sample sizes are reassessed
and the trial can be stopped at interim (compared with a trial that consist of the first stage only). The latter
is because of the Bias that is possible under sample-size reductions and early stopping (Figure 1 (A)).

Setting rmin = rmax > 0 gives the RMSE to a fixed-size sample test with a sample size larger than the
first stage. For example, rmin = rmax = 0.5, the standardized RMSE is 0.82 decreasing to 0.71 for rmin =
rmax = 1. It is interesting to see that for rmin ⩾ 0.5, RMSE∗ under flexible sample-size reassessments
is only slightly increasing in rmax and remains close to the RMSE of the fixed-size-sample test with
second stage per group sample size rminn. Hence, for sufficiently large rmin, the Bias from any adaptive
sample increase will not have a substantial negative effect on the precision of the overall maximum
likelihood estimate.

The rows ‘flexible’ in Table I shows the standardized RMSE∗ when setting rmax = ∞ for rmin = 0,
0.5, 1. Without any restrictions on the reassessment rule, setting (rmin, rmax) = (0,∞), the standardized
RMSE∗ is 1.13. Setting rmin = 1 and rmax = ∞, it is 0.72 as compared with 0.71 for the corresponding
fixed-size-sample test.

3.2.2. Balanced second-stage sample sizes. Restricting the second-stage sample size to be balanced
between the treatment groups (r = r1 = r0) reduces the CMSE (9) to

CMSE(y, n, 𝜎, r) = 2𝜎2

n(1 + r)2
(
y2 + r

)
, (12)

930
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Figure 2. Standardized maximum root mean squared error (RMSE) as a function of rmax for rmin = 0, 0.5, and 1.
Values are given for a number of k = 1 to 6 treatments in panels (A) to (F). Within one panel, the standardized
maximum RMSE is shown for different restrictions on the sample-size reassessment rule: flexible second-to-first-
stage ratios (solid lines), equal second-to-first-stage ratios (dotted lines), restricting r1 ⩾ r0 (dot-dashed lines),
and fixing the control (dashed lines). The solid gray horizontal line shows the standardized maximum RMSE for
a fixed-size-sample test with post-trial selection. The dashed gray horizontal line shows the standardized RMSE

of a fixed-sample-size test when selecting the treatment with the maximum effect at the end.
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where y = (z1 − z0)∕
√

2 is standard and normally distributed. Setting the first derivative to 0, a candidate
for the global maximum can be evaluated by r(1) = 1 − (z1 − z0)2. By calculating the second derivative
at the point r(1), it can be shown, that r(1) is a maximum if ∣ (z1 − z0) ∣⩽

√
2. This candidate is the global

maximum if rmin ⩽ r(1) ⩽ rmax; otherwise, the global maximum is achieved for r(2) = rmin or r(3) = rmax.
The worst case CMSE can be evaluated as the maximum over all three candidates.

C̃MSE(y, n, 𝜎, rmin, rmax) = max
i=1,2,3∶rmin⩽r(i)⩽rmax

CMSE(y, n, 𝜎, r(i)), (13)

and the maximum MSE is obtained by numerical integration

MSE∗(n, 𝜎, rmin, rmax) = ∫
∞

−∞
C̃MSE(y, n, 𝜎, rmin, rmax)𝜙(y)dy

The dotted lines in Figure 2 (A) show the standardized RMSE∗ for the case of equal second-stage sam-
ple sizes in the groups. The restriction to balanced sample sizes decreases the RMSE∗, the decrease
being smaller for larger rmin. Setting rmax = 2, the standardized RMSE∗ is 1.04, 0.82, and 0.71 for
rmin = 0, 0.5, or 1, respectively. Note that, for rmin ⩾ 0.5, the lines corresponding to the different restric-
tions are indistinguishable. The rows ‘r1 = r0’ for k = 1 in Table I show the standardized RMSE∗ for
rmax = ∞. Without any restrictions (rmin = 0), the standardized RMSE∗ is 1.04 and, hence, can still be
larger than the RMSE of the first stage. For rmin = 0.5 and 1, the standardized RMSE∗ is more or less
equal to the standardized RMSE of the corresponding fixed-size-sample test with per group sample size
rminn. This shows that, for sufficiently large rmin, the worst case Bias from data driven, balanced second-
stage sample size increases has a more or less negligible effect on the precision of the overall maximum
likelihood estimate.

3.2.3. Restricting the treatment to r1 ⩾ r0. The dot-dashed lines in Figure 2 (A) show the standardized
RMSE∗ when restricting the sample size of the treatment group to be as least as large as the sample size
of the control group. Setting rmax = 2, the standardized RMSE∗ is 1.07, 0.83 and 0.71 for rmin = 0, 0.5
or 1, respectively, which is only slightly larger than RMSE∗ under balanced second-stage sample sizes.
The rows ‘r1 ⩾ r0’ for k = 1 in Table I shows the maximum for rmax = ∞. Without any restrictions
(rmin = 0), the standardized RMSE∗ is 1.09. Here, we see some inflation of the RMSE∗ compared with
the one under the constraint r1 = r0.

3.2.4. Fixing r0. Note that, when fixing r0, the MLE of the control group is unbiased. In the maximization
of the CMSE only three of the nine candidates remain. Two candidates are derived by setting r1 = r0
(= rmin) or r1 = rmax. The third candidate can be calculated as candidate r(6) in the maximization of the
CMSE with flexible ratios in Appendix A.2. with rmin replaced by r0.

The dashed lines in Figure 2 (A) show the standardized RMSE∗, assuming r0 = 0, 0.5, or 1 and
r0 ⩽ r1 ⩽ rmax. As expected, the standardized RMSE∗ is smaller than the ones with flexible reassessment
in the control; however, the difference decreases with increasing rmin. Setting rmax = 2, the standardized
RMSE∗ is 1.06, 0.83, and 0.71 for r0 = 0, 0.5, and 1, respectively. We can see from Table I and Figure 2
(A) that, for sufficiently large rmin or large rmax, the differences in RMSE∗ between the rule with fixed r0
and the one with r1 ⩾ r0 are only small, so that there is no substantial gain in (minimum) precision from
fixing r0 (the lines in Figure (A) are indistinguishable).

3.2.5. Reshuffling. In case of reshuffling, the CMSE can be rewritten as follows:

CMSE(z0, z1, v, ng, t, 𝜎) =
𝜎2

tng

[(
z1

1 + (1 − v)wt
−

z0

1 + vwt

)2

+
(1 − v)wt

(1 + (1 − v)wt)2
+

vwt

(1 + vwt)2

]
,(14)

where, as before, wt = 2( 1
t
− 1). Recall that the per-group first-stage sample size is tng, and the total

overall sample size is fixed at 2ng. At the second stage, v2(1 − t)ng patients are allocated to the control
and (1 − v)2(1 − t)ng patients to the treatment group.
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Figure 3. Standardized maximum Bias, panel (A), and the standardized maximum root mean squared error, panel
(B), as a function of the timing t of the interim analysis for k = 1 to 6 treatments compared with one common
control for the case of full (solid black lines) and restricted reshuffling (dashed black-lines). For comparison, the
standardized Bias and root mean squared error are given for an adaptive design with treatment selection and a

sample size of (1 − t)ng(k + 1)∕2 in the second stage (gray lines).

By setting the first derivative of (14) to zero, candidates for the global maximum are found. This
problem can be reduced to finding the roots of a third-degree polynomial, and therefore, at maximum
three candidates (v(1), v(2), v(3))must be assessed. Note that we did not derive these candidates analytically.
Instead, we used the R-function polyroot [22] for the numerical root finding. Considering furthermore
v(4) = 0 and v(5) = 1, the worst case CMSE is the maximum over five candidates. Integrating over all
interim outcomes gives the maximum MSE, denoted as before by MSE∗. Figure (D) in the Appendix
gives the subspaces of the interim outcome of treatment and control to evaluate the worst case CMSE.
In the white area either v(1), v(2) or v(3) are the global maximizer. As for the maximum Bias, we will,
furthermore, also give results when restricting 0 ⩽ v ⩽ 0.5, which means that a larger sample size has to
be allocated to the treatment group.

The solid line marked with 1 (the case k = 1) in Figure 3 (B) shows RMSE∗ for 0 ⩽ v ⩽ 1
divided by the standard error of a fixed-size-sample test with per-group sample size ng. The standard-
ized RMSE∗ is plotted as a function of the timing of the interim analysis t. The dashed line marked
with 1 gives the corresponding standardized RMSE∗ if 0 ⩽ v ⩽ 0.5. Like the Bias, the standardized
RMSE∗ is decreasing with increasing t. For t = 0.5, the standardized RMSE∗ is 1.39 if 0 ⩽ v ⩽ 1 and
decreases to 1.23 if 0 ⩽ v ⩽ 0.5. Note that the standardized RMSE∗ is always larger than 1, that is, the
RMSE with sample reshuffling (between the experimental and control group) is always larger, and for
small t substantially larger, than the RMSE of the reference fixed-sample design with the same overall
sample size.

4. Multi-arm trials with interim treatment selection

In this section, we consider two-stage designs, which start with a control and k > 1 experimental treatment
groups and where one experimental treatment, say treatment s ∈ {1,… , k}, and the control are selected
for the second stage. The second stage sample sizes are then set based on the interim results. Again, we
assume balanced sample sizes in the first stage, while in some of our rules the second-stage sample sizes
are permitted to be unbalanced.

4.1. Maximum Bias

To evaluate the maximum Bias, we search for the selection and sample size adaptation rule that maximize
Bias. These are obtained by first maximizing for each MLE, X̄i − X̄0, the conditional Bias (see formula
(2) for k = 1) with respect to the sample size fractions ri and r0 and then selecting the treatment s with
largest maximized conditional Bias;
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s = arg max
i=1,…,k

C̃B
(
z0, zi, n, 𝜎, rmin, rmax

)
(15)

Integrating over all interim outcomes gives the worst case Bias;

B∗
k

(
n, 𝜎, rmin, rmax

)
= ∫

∞

−∞
…∫

∞

−∞
C̃B

(
z0, zs, n, 𝜎, rmin, rmax

)
𝜙(zk)…𝜙(z0)dzk · · · dz0, (16)

where s is data dependently determined as in (15) and zs, z0 denote the observed interim out-
come of the selected treatment and control group, respectively. Note that, for the given zi, each
C̃B(z0, zi, n, 𝜎, rmin, rmax) can be calculated according to the case of k = 1 (Section 3.1).

4.1.1. Flexible second-to-first-stage ratios. In case of flexible second-to-first-stage ratios, r0 is maxi-
mized independently from rs (see formula (2) with r1 replaced by rs). Because the conditional Bias and
thereby also its maximum C̃B are increasing in zs for fixed z0, we have

max
i=1,…,k

C̃B
(
z0, zi, n, 𝜎, rmin, rmax

)
= C̃B

(
z0, max

i=1,…,k
zi, n, 𝜎, rmin, rmax

)
. (17)

This means that the treatment with the largest worst case conditional Bias at interim is the treatment with
the largest observed zi, that is, zs = maxi=1,…,k zi and (15) reduces to the selection of treatment

s = arg max
i=1,…,k

C̃B
(
z0, zi, n, 𝜎, rmin, rmax

)
= arg max

i=1,…,k
zi

The maximum Bias (16) can therefore be reduced to

B∗
k

(
n, 𝜎, rmin, rmax

)
= ∫

∞

−∞ ∫
∞

−∞
C̃B

(
z0, zs, n, 𝜎, rmin, rmax

)
kΦ(zs)k−1𝜙(zs)𝜙(z0)dzsdz0, (18)

where Φ denotes the cumulative distribution function of the standard normal distribution. Note, the prob-
ability density function of the maximum of independent standard normal distributions is kΦ(x)k−1𝜙(x).
Like for k = 1, the maximum Bias is independent from 𝜇i for all i = 0, 1,… , k.

The solid lines in Figure 1 (B) to (F) show the standardized maximum Bias for k = 2 to 6 as a function
of rmax for rmin = 0, 0.5, and 1. The maximum Bias is standardized by the first-stage standard error√

2𝜎2∕n of one treatment-to-control comparison. Because of this standardization, the shown Biases are
also independent of the first stage sample size n and the common variance 𝜎2.

The gray horizontal line shows the standardized Bias for a fixed sample size of n patients per
treatment group and post-trial selection [20], which results here from setting rmin = rmax = 0. Set-
ting rmin = rmax > 0 gives an adaptive design where in an interim analysis, one treatment and the
control are selected for the second stage and a second stage with a fixed sample size is performed.
This means that rmin = rmax gives the selection Bias without any additional Bias because of sample
size reassessment.

As expected, the standardized maximum Bias is increasing with increasing k. For flexible reassessment
rules, the difference of the maximum Bias to the pure selection Bias (the case rmin = rmax) is large for all
shown k; however, it is not increasing (rather decreasing) in k. Again, the maximum Bias is effectively
decreased by increasing rmin.

4.1.2. Maximum Bias under restrictions on the second-stage sample-size ratios. Obviously, equality (17)
holds also under restrictions like r0 = rs, r0 ⩽ rs or a fixed r0. Hence, we can also utilize the mathematical
results from Section 3.1 when restricting the second-to-first-stage ratios.

The dotted and the dashed-dotted lines in Figure 1 (B) to (F) show the standardized maximum Biases
for k = 2 to 6 with balanced second-stage sample sizes (rs = r0) and under the restriction rs ⩾ r0,
respectively. Both restrictions substantially reduce the maximum Bias. For k ⩾ 2, we see only a small
difference between the maximum Bias with balanced sample sizes and the one with the restriction
rs ⩾ r0.
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The difference of the maximum Bias to the selection Bias (rmin = rmax), that is, the additional Bias
due to sample size reassessment is still rather large for rmin = 0 but becomes substantially smaller for
rmin ⩾ 0.5 and is decreasing with increasing number of treatments k. This means that with a larger
number of treatments the selection Bias dominates the Bias from data-driven sample-size reassessments.
Fixing r0 (dashed lines) leads to a further reduction in the maximum Bias, which is then close to the
selection Bias.

4.1.3. Maximum Bias for rmax = ∞. To investigate the influence of rmin more carefully, we give in Table I
the standardized maximum Biases for different rmin, setting rmax = ∞ also for k ⩾ 2. For comparison, the
rows rmin = rmax contain the selection Bias without any sample size reassessments. The maximum Bias
is decreasing in rmin also in this fixed sample size case because of the increasing second stage sample
sizes. Like for the case k = 1, the reduction in the maximum Bias due to an increase in rmin is more or less
independent from the further restrictions on rs and r0, and it seems independent from k: the maximum
Bias always decreases by about 33% when setting rmin = 0.5 (compared with rmin = 0) and by about
50% for rmin = 1.

The table confirms the finding that the restriction rs ⩾ r0 leads to a substantial reduction in the
maximum possible Bias, while the restriction to balanced second-stage sample sizes does not lead to a
substantial further reduction. For k ⩾ 2 and rmin ⩾ 0.5, fixing r0 has some (but not a large) additional
effect on the maximum Bias and brings the Bias close to the pure selection Bias (rmin = rmax). We may
deduce from this findings that a data driven increase in the sample size for the selected experimental
treatment group will (when initially large enough) not lead to a substantially additional Bias.

4.1.4. Reshuffling. Like in Section 3.2.5, we assume now that a total sample size of ng patients per-
group is pre-planned for the two stages, whereby tng per-group are used in the first stage, t denoting the
timing of the interim analysis. As a consequence, the overall pre-planned second-stage sample size is
(1− t)ng(k + 1). Now, in the interim analysis, one treatment is selected and the second-stage sample size
(1−t)ng(k+1) is reshuffled between the selected treatment and control that means that for some v ∈ (0, 1),
(1 − v)(1 − t)ng(k + 1) patients are allocated to the selected experimental treatment and v(1 − t)ng(k + 1)
patients to the control group. The conditional Bias can be calculated to be (6) with wt = (k+1)∕t−(k+1).
Note that the sample size over both stages is tng + (1 − v)(1 − t)ng(k + 1) in the selected treatment and
tng + v(1 − t)ng(k + 1) in the control group. It can be shown that equality (17) holds also in the case of
reshuffling (Appendix A.3), so that in the calculation of the maximum Bias B∗

k , the (k + 1) dimensional
integral can be reduced to a two-dimensional integral.

Figure 3 (A) shows values of B∗
k standardized by the standard error of a two-group fixed-size-sample

test with sample size ng, that is,
√

2𝜎2∕ng. The standardized maximum Bias is shown as function of t
for k = 1 to 6. The solid lines show the values for 0 ⩽ v ⩽ 1 and the dashed lines for 0 ⩽ v ⩽ 0.5.
Recall that v ⩽ 0.5 corresponds to the constraint that the control group is smaller or as large as the
selected experimental treatment group. For comparison, the gray solid lines give the maximum Bias for
an adaptive design with interim selection of one treatment and control at time point t, the second-stage
sample size being (1 − t)ng(k + 1)∕2 per-group. This is the selection Bias without additional sample size
reassessment. The selection Bias is 0 for t = 0 because we then perform a fixed-sample-size test with
only one treatment and control. It is increasing with increasing t, being the selection Bias for a trial with
post-trial selection for t = 1. This is equivalent to setting rmin = rmax = 0 in Figure 1. The standardized
maximum Bias (including selection Bias and the Bias due to sample size reassessment) is decreasing
with increasing t for v ⩽ 1; however, there is a non-monotonous behavior for the standardized maximum
Bias if restricting v to be smaller than 0.5. The maximum Bias is depending on both the selection Bias
and the Bias for additional sample-size reassessment. The selection Bias is increasing with t, and the
Bias due to sample size reassessment is decreasing with t. This leads to a tradeoff between both types of
Bias for k ⩾ 1.

For t = 0.5 and k = 2, 3, 4, the standardized maximum Bias is 0.80, 1.00, 1.14 if v ⩽ 1 and 0.43, 0.50,
0.52 if v ⩽ 0.5, respectively. For comparison, the selection Bias is 0.23, 0.28, and 0.29 for k = 2, 3, and
4. In summary, a sample-size reshuffling between the selected treatment and the control group can lead
to a substantial Bias. The maximum Bias is halved by the constraint that the control group is never larger
than the selected experimental treatment group.
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4.2. Maximum mean squared error

To evaluate the maximum MSE, we proceed similar to evaluating the maximum Bias. The selection
rule to maximize the MSE is to select the treatment with the maximum worst case CMSE based on the
interim result:

s = arg max
i=1,…,k

C̃MSE
(
z0, zi, n, 𝜎, rmin, rmax

)
(19)

Note that the treatment with the maximum worst case CMSE is not necessarily the treatment with the
maximum observed zi at interim or the treatment with the maximum absolute difference to the control|zi − z0|, because the conditional error (9) cannot be written as a function of zi − z0. The maximum MSE
is a (k + 1) dimensional integral over all interim outcomes:

MSE∗
k

(
n, 𝜎, rmin, rmax

)
= ∫

∞

−∞
…∫

∞

−∞
C̃MSE

(
z0, zs, n, 𝜎, rmin, rmax

)
𝜙(zk)…𝜙(z0)dzk … dz0, (20)

where C̃MSE is calculated as discussed in Section 3.2 and s is chosen as in (19). To evaluate the (k + 1)
dimensional integral, numerical integration was performed using the R-package R2Cuba [21].

4.2.1. Results. Figure 2 (B) to (F) shows the standardized RMSE∗
k for k = 2 to 6. As for k = 1, the

maximum RMSE was standardized by the standard error of the first stage, that is,
√

MSE∗
k∕
√

2𝜎2∕n.
The solid lines show the scenario with full flexibility on the reassessment rules within the boundary
(rmin, rmax), the dashed lines when fixing the sample size of the control group. The dot-dashed lines show
the values when restricting the sample size of the treatment to be larger as the sample size of the control
(r0 ⩾ rs) and the dotted lines when restricting the second stage sample size to be balanced (r0 = rs). For
comparison, the dashed gray horizontal line shows the standardized RMSE of a fixed-sample-size test
when selecting the treatment with the maximum effect at the end. The solid gray horizontal line represents
the case rmin = rmax = 0 where we select after n observations per group the treatment with maximum
CMSE. By definition (see also formula (9)), for rmin = rmax = 0, the CMSE is simply the square of the
difference between the estimated and true effect.

Note also that, if we restrict the second stage sample size to be balanced between groups, the treatment
with the maximum CMSE at interim is the treatment with the maximum observed ∣ zi − z0 ∣. Again, the
values for rmin = rmax give the selection RMSE without additional sample size reassessment. We can see
from the figures that even though the adaptive sample size reassessment may increase Bias substantially,
it has only a small effect on the RMSE, that is, sample-size reassessments do not increase the RMSE much
over the RMSE under treatment selection, at least when sample-size reductions are limited to rmin ⩾ 0.5.
Especially for rmin ⩾ 0.5 lines for the different restrictions are indistinguishable because of the small
difference between the results.

Table I give the standardized RMSE∗
k for several scenarios setting rmax = ∞. Recall that, for a com-

parison, the rows rmin = rmax show the RMSE under treatment selection only. Like the maximum Bias,
RMSE∗

k is increasing with increasing k; however, for rmin > 0, the additional increase in RMSE∗
k due to

sample size reassessment is small in particular under the additional restrictions on rs and r0. The differ-
ence becomes smaller, the larger rmin and k are. The difference between the fixed and adaptive sample
size case is particularly small with balanced second stage sample sizes. This may be due to the fact that
balanced sample sizes are optimal with regard to the variance of the second-stage effect estimate. More-
over, aiming on the reduction of RMSE∗

k , we find for k ⩾ 1 that fixing r0 is not more and can even be
less effective than the restriction to balanced sample sizes (in contrast to what we find for the maximum
Bias). Again, there is no large difference between the constraints rs ⩾ r0 and rs = r0, in particular, for
larger k.

4.2.2. Reshuffling. For the case of a sample-size shuffling between the selected treatment and the con-
trol group, the maximum conditional mean squared error, C̃MSE, can be calculated as in Section 3.2.5.
Figure 3 (B) shows the resulting standardized RMSE∗

k for k = 1 to 6 for 0 ⩽ v ⩽ 1 (solid black lines) and
for the restriction 0 ⩽ v ⩽ 0.5 (dashed black lines). The gray solid lines gives the maximum selection
RMSE for an adaptive design, selecting one treatment and control at interim time point t, allocating in the
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second stage (1−t)ng(k+1)∕2 patients to each of the two groups. In this balanced case, the treatment with
the maximum CMSE at interim is the treatment with the maximum absolute observed difference |zi − z0|
at interim. Note again that this is not necessarily true if we allow for reshuffling leading to unbalanced
second stages.

The selection RMSE (gray lines) is increasing with increasing t. This is similar to the results of [20]
where the selection Bias was calculated for the case of selecting the treatment with maximum effect at
interim. We note again that selecting the treatment with the maximum treatment effect is not the same as
selecting the treatment with the maximum CMSE at interim. As for the Bias, the standardized RMSE∗

k
shows a non-monotonous behavior. There is a trade-off between the variance, which is increasing with
t for selection and the Bias due to sample size reassessment, which is decreasing with t. For k ⩾ 2 and
with the constraint v ⩽ 0.5, there is a t for which the RMSE is minimal. The minimum is achieved at
t-values close to 0.5.

The later the interim analysis the smaller the difference between RMSE∗
k and selection RMSE. For

t = 0.5 and k = 2, 3, 4, the standardized maximum Bias is 1.56, 1.67, 1.74 if v ⩽ 1 and 1.28,
1.27, 1.25 if v ⩽ 0.5. For a comparison, the selection RMSE is 0.99, 0.93, 0.88 for k = 2, 3, and
4, respectively. Note that the case t = 1 gives the worst case RMSE of a classical fixed-sample-size
parallel group design where the single treatment is selected post-trial (in a fully flexible manner), and
that the RMSE∗

k of an adaptive design with mid-trial treatment selection and sample size reshuffling
is smaller.

5. Discussion

We investigated in this paper the maximum effect of data-driven sample-size reassessments and treatment
selection on Bias and precision of maximum likelihood estimators in multi-armed adaptive designs. We
assumed that in an interim analysis, one out of k treatments and the control are selected for a second
stage and sample sizes are reassessed in a fully flexible manner with and without restrictions. To best
of our knowledge, we are the first who consider Bias and MSE under flexible selection and sample size
reassessment rules. In [20], for instance, selection Bias and MSE were considered without sample size
reassessment and only for some specific selection rules.

To cope with flexible decision rules, we calculated the maximum Bias and maximum MSE searching
at each possible interim outcome for the worst case treatment selection and sample size assignments,
which maximize the conditional Bias or conditional MSE. We are aware of the fact that the determina-
tion of maximum Bias and MSE will lead to an overestimation and that Bias and MSE may in reality
be (substantially) smaller. To bound the conservatism of our approach, we considered several restric-
tions on the sample-size rules, like balanced second-stage sample sizes or to rules for which the selected
experimental treatment group is as least as large as the control group. We saw that these restrictions sub-
stantially reduce the maximum Bias and maximum MSE and that in some cases (e.g. when k = 1 and
rmin = 1) the maximum Bias and maximum inflation of the MSE is small enough to justify the use of
the MLE.

In spite of the conservatism of our approach, we have been able to draw several important con-
clusions. One important conclusion is that a lower bound for the second stage sample sizes may
effectively reduce Bias and inflations of the MSE. We saw, for instance, that under the constraint
that the second stage sample sizes are at least as large as the first stage n (i.e. the case rmin = 1);
Bias is in general limited and not much larger than the pure selection Bias. This is particularly the
case under the restriction that in the second stage sample the treatment group is as least as large
as the control group. Moreover, we found that the maximum Bias is not much further decreased by
forcing the treatment groups to be balanced at the second stage or the size of the control group to
be fixed. Constraining the second stage sample sizes to be at least as large as the first stage n has
an even more pronounced effect on the maximum MSE, which is more or less independent from
the maximum sample size (rmax) and the additional restriction on the second-stage allocation ratios.
We can, therefore, conclude that with a sufficiently large minimal second-stage sample size a further
increase of the sample size in the selected treatment group has only a limited negative effect on Bias
and MSE.

We also learned that when fixing the total sample size and reshuffling the (fixed) second-stage sample
size between the control and selected treatment group the additional Bias and MSE due to the sample-
size reassessments may be substantial even under the (realistic) constraint that the control group is not
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larger than the experimental treatment group. This is particularly the case when the interim analysis is
done early. Note that the results with fixed and flexible overall sample sizes are not easy to compare
because we had to use different standardizations for the reshuffling and the other cases, and because
in the other cases, the total sample size is not fixed but data dependent and of an less determined
magnitude.

Our paper necessarily leaves important questions open. It is known that the selection Bias can
be severe even without sample-size reassessments if selection is done late. Early selection in gen-
eral will reduce the Bias as compared with ‘post-trial’ selection [20]. Our findings confirm these
results. Hence, an important question, that goes beyond the scope of this paper, is the performance of
adjusted estimates to account for the selection Bias under flexible selection and sample-size reassess-
ments. To this end, it is important to note that Bias adjusted estimates have only been suggested and
considered for designs with fixed (known) selection rules, namely selecting the seemingly most effi-
cient treatment. We consider shrinkage estimates as one of the most interesting candidates as they are
known to perform well in terms of the MSE under the common treatment selection process (com-
pared with [19]) but other estimates may be considered as well. Another interesting and important
extension of our work would be the consideration of selections rules with more than one selected
experimental treatment and with realistic constraints on the selection process. Selection of more than
one treatment for the play-the-winner rule without additional sample-size reassessment was inves-
tigated in [20]. Calculation of the maximum Bias or MSE for further selection rules would be an
interesting contribution.

Appendix

A.1 Calculation of the CMSE

For the calculation of the conditional mean squared error, we set Z(i,j) = (X̄(i,j) − 𝜇i)
√

n∕𝜎2 for i = 0, 1
and j = 1, 2.

CMSE(z0, z1, r0, r1, n) =

= E
[(
(X̄1 − X̄0) − (𝜇1 − 𝜇0)

)2 ||| Z(i,1) = zi, i = 0, 1
]

= E

⎡⎢⎢⎢⎣
⎛⎜⎜⎝

𝜎√
n
Z(1,1) +

r1𝜎√
n(1,2)

Z(1,2)

1 + r1
−

𝜎√
n
Z(0,1) +

r0𝜎√
n(0,2)

Z(0,2)

1 + r0

⎞⎟⎟⎠
2 |||||| Z(i,1) = zi, i = 0, 1

⎤⎥⎥⎥⎦
= E

⎡⎢⎢⎢⎣
⎛⎜⎜⎝

𝜎√
n
Z(1,1)

1 + r1
−

𝜎√
n
Z(0,1)

1 + r0

⎞⎟⎟⎠
2

+ 2
⎛⎜⎜⎝

𝜎√
n
Z(1,1)

1 + r1
−

𝜎√
n
Z(0,1)

1 + r0

⎞⎟⎟⎠
⎛⎜⎜⎝

r1𝜎√
nr1

Z(1,2)

1 + r1
−

r0𝜎√
nr0

Z(0,2)

1 + r0

⎞⎟⎟⎠
+
⎛⎜⎜⎝

r1𝜎√
nr1

Z(1,2)

1 + r1
−

r0𝜎√
nr0

Z(0,2)

1 + r0

⎞⎟⎟⎠
2 |||||| Z(i,1) = zi, i = 0, 1

⎤⎥⎥⎥⎦
= 𝜎2

n

[(
z1

1 + r1
−

z0

1 + r0

)2

+
r1

(1 + r1)2
+

r0

(1 + r0)2

]

because

E

⎡⎢⎢⎢⎣
⎛⎜⎜⎝

r1𝜎√
nr1

Z(1,2)

1 + r1
−

r0𝜎√
nr0

Z(0,2)

1 + r0

⎞⎟⎟⎠
2 |||||| Z(i,1) = zi, i = 0, 1

⎤⎥⎥⎥⎦ =
𝜎2

n

(
r1

(1 + r1)2
+

r0

(1 + r0)2

)
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Figure A1. Subsets of the interim outcome of treatment and control (z0, z1) to be used for evaluating the worst
case conditional Bias (first row) and the worst case conditional MSE (second row). Subsets are given for flexible

second-to-first-stage ratios (first column) and the case of reshuffling (second column).

and

E
⎡⎢⎢⎣

r1𝜎√
nr1

Z(1,2)

1 + r1
−

r0𝜎√
nr0

Z(0,2)

1 + r0

|||||| Z(i,1) = zi, i = 0, 1
⎤⎥⎥⎦ = 0

A.2 Maximizing the CMSE

To maximize the CMSE (9) for given z0 and z1 at interim, nine candidates have to be investigated.
Apparently, candidates (r(1)0 , r(1)1 ) = (rmin, rmin), (r

(2)
0 , r(2)1 ) = (rmax, rmin), (r

(3)
0 , r(3)1 ) = (rmin, rmax) and

(r(4)0 , r(4)1 ) = (rmax, rmax) have to be investigated. By setting the first derivative (with respect to r0 and r1)
to 0 and solving the corresponding system of two equations, candidate (5) can be assessed with

(
r(5)0 , r(5)1

)
=

(
−1 + 2z2

0 − z0z1 + z2
1

−1 + z0z1 + z2
1

,
−1 + 2z2

1 − z0z1 + z2
0

−1 + z0z1 + z2
0

)
.
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Depending on the given z1 and z0, this candidate is either a minimum or a maximum. If a maximum, this
candidate is ineligible if either r(5)0 or r(5)1 is larger than rmax or smaller than rmin. Setting r(6)0 = rmin, the
corresponding worst case reassessment rule for the treatment group can be calculated by setting the first
derivative with respect to r1 (assuming r0 fixed) to zero and results in

(
r(6)0 , r(6)1

)
=

(
rmin,

1 + rmin + 2z0z1 − 2z2
1 − 2rminz2

1

1 + rmin − 2z0z1

)

Candidates (r(7)0 , rmin), (rmax, r
(8)
1 ) and (r(9)0 , rmax) can be assessed similarly. The global maximum for given

z0 and z1 is the maximum over all nine candidates and formula (10) can be rewritten as.

C̃MSE
(
z0, z1, n, 𝜎, rmin, rmax

)
= max

i=1,...,9∶rmin⩽r(i)0 ,r(i)1 ⩽rmax

(
CMSE

(
z0, z1, n, 𝜎, r

(i)
0 , r(i)1

))
(21)

Evaluating C̃MSE for all possible (z0, z1) and integrating over all interim outcomes gives MSE∗.

Figure (C) in the Appendix shows the subsets (corresponding to the several candidates) when setting
rmin = 0 and rmax = ∞. The subset A5 is the area where candidate 5 is the global maximum. See also
the subsets for candidates 1 (area A1), 2 (area A2), 3 (area A3), 6 (area A6), and 7 (area A7). It can be
seen that candidates 4, 8, and 9 are no global maxima. Some of the regions are similar to the regions
maximizing the conditional Bias (Figure A). For z1 or z0 close to 0, the worst-case reassessment rule to
maximize the CMSE is different from setting r0 or r1 to rmin or rmax.

A.3 Maximum CB under reshuffling

The following equality holds in the case of reshuffling:

max
i=1,…,k

C̃B
(
z0, zi, ng, t, 𝜎

)
= C̃B

(
z0, max

i=1,…,k
zi, ng, t, 𝜎

)
. (22)

For fix v, ng, t, and z0, the conditional Bias (6) is monotonous in zi. Assume now that, for some
observed zs and z0, the optimal second-stage allocation rate is ṽ. For a z∗s > zs, because of mono-
tonicity, CB(z0, z

∗
s , ṽ, ng, t, 𝜎) > CB(z0, zs, ṽ, ng, t, 𝜎). ṽ may not be the allocation rate maximizing the

conditional Bias for z∗s , but finding the actual optimum ṽ∗ can only increase the Bias and therefore
CB(z0, z

∗
s , ṽ

∗, ng, t, 𝜎) ⩾ CB(z0, z
∗
s , ṽ, ng, t, 𝜎) concluding that C̃B is monotonous in zi (for fixed z0).

Therefore, equality (22) holds.
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