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MatchMiner: an open-source platform for cancer precision
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Widespread, comprehensive sequencing of patient tumors has facilitated the usage of precision medicine (PM) drugs to target
specific genomic alterations. Therapeutic clinical trials are necessary to test new PM drugs to advance precision medicine, however,
the abundance of patient sequencing data coupled with complex clinical trial eligibility has made it challenging to match patients
to PM trials. To facilitate enrollment onto PM trials, we developed MatchMiner, an open-source platform to computationally match
genomically profiled cancer patients to PM trials. Here, we describe MatchMiner’s capabilities, outline its deployment at Dana-
Farber Cancer Institute (DFCI), and characterize its impact on PM trial enrollment. MatchMiner’s primary goals are to facilitate PM
trial options for all patients and accelerate trial enrollment onto PM trials. MatchMiner can help clinicians find trial options for an
individual patient or provide trial teams with candidate patients matching their trial’s eligibility criteria. From March 2016 through
March 2021, we curated 354 PM trials containing a broad range of genomic and clinical eligibility criteria and MatchMiner facilitated
166 trial consents (MatchMiner consents, MMC) for 159 patients. To quantify MatchMiner’s impact on trial consent, we measured
time from genomic sequencing report date to trial consent date for the 166 MMC compared to trial consents not facilitated by
MatchMiner (non-MMC). We found MMC consented to trials 55 days (22%) earlier than non-MMC. MatchMiner has enabled our
clinicians to match patients to PM trials and accelerated the trial enrollment process.
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INTRODUCTION
Genomic profiling of patient tumors has become an integral
part of cancer care as new druggable targets are discovered
and precision medicine (PM) treatments gain widespread
use1–5. Drugs targeting specific alterations such as EGFR
mutations, BCR-ABL fusions, and BRAF mutations have provided
great clinical benefit6–8. To continue to advance the state of
cancer therapy, more patients need to participate in clinical
trials to test new PM drugs. Despite the more common use of
genomic profiling, as few as 10-15% of patients with profiled
actionable mutations participated in genotype-driven trials9–13.
Low PM trial participation can be caused by several factors
including low clinician awareness of eligible trials, patient
performance status, and patient attitudes and financial
concerns14–16.
Another barrier for trial participation is matching patient

genomic data to PM trial eligibility criteria. Without advanced
trial matching systems, individual oncologists must track
hundreds of active clinical trials, only a few of which may be
relevant for any given patient17,18. In addition, PM trials are
often basket trials that enroll patients across histologies with
similar genomic changes, making recruiting patients across
multiple departments a laborious process19–21. Several trial
matching platforms have already been developed, but these
platforms are proprietary and cannot easily be adopted by
other institutions17,22. Molecular tumor boards (MTB) have also
proven to be successful for patient enrollment, but MTB can be

resource-intensive and focused on specific cancer types23–25.
Thus, an open-source informatics system with proven clinical
impact would be useful to support PM trial enrollment.
At Dana-Farber Cancer Institute (DFCI) over 40,000 patient

tumor samples have been genomically profiled. Patient tumors
are sequenced with two next-generation sequencing (NGS)
panels: (1) OncoPanel, which identifies mutations, copy
number alterations, structural variants, and mutational signa-
tures in ~450 cancer relevant genes26, and (2) Rapid Heme
Panel, which identifies mutations and copy number alterations
in 88 genes relevant in hematological malignancies27. DFCI
uses OnCore for its clinical trial management system and Epic
for patient electronic health records (EHR). To integrate these
DFCI systems into a single platform for PM trial matching and
viewing patient and trial data, we developed MatchMiner, an
open-source software platform for matching cancer patients to
PM trials.
The goals of this manuscript are to (1) outline the core

functionalities of MatchMiner; (2) describe the capabilities of
Clinical Trial Markup Language (CTML) and how it is used to
encode PM trial eligibility criteria for MatchMiner; (3) explain how
MatchMiner is used at DFCI; (4) characterize the PM trials that have
been curated into MatchMiner; and (5) assess the clinical utility of
MatchMiner by a) characterizing the PM trial consents that have
occurred because of MatchMiner and b) determining the impact
of MatchMiner on the speed with which patients consent to PM
trials.
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RESULTS
MatchMiner capabilities
We designed MatchMiner to provide patient matches to PM trials.
MatchMiner trial matching is performed via the MatchEngine, an
algorithm that computes trial matches based on patient genomic
and clinical data and PM trial eligibility criteria (Fig. 1a). The
MatchEngine accepts many different data inputs for patient-trial
matching and therefore is adaptable to data available at any
institution. Data inputs can include: (1) patient-specific genomic
sequencing data, including mutations, copy number alterations
(CNA), structural variants, tumor mutational burden and muta-
tional signatures including mismatch repair deficiency, tobacco,
and UV light, (2) patient-specific clinical data, including primary
cancer type, gender, age, and vital status, and (3) trial criteria
including genomic eligibility, cancer type, age, and accrual status.
MatchMiner can accept a range of genomic specificity in trial
matching, ranging from any mutation in a gene to specific amino
acid changes. In addition to trial matching, patient genomic
reports and PM trial information are viewable in a user-friendly
format, providing context to trial matching results and acting as a
resource for clinicians to view current PM trials. For data integrity
and security standards, MatchMiner meets HIPAA requirements
when deployed within an institutional firewall.
MatchMiner has several modes of clinical use: (1) patient-

centric, where clinicians look up patients to view all trial matches
for that particular patient, (2) trial-centric, where clinical trial teams
identify patients for their particular PM trials of interest, and (3)
trial search, where clinicians manually enter search criteria of
interest to identify available trials based on external genomic
reports (Fig. 1b). In general, MatchMiner serves as a pre-screening
tool since not all trial eligibility criteria are included in the
matching process and there is no consideration about a patient’s
readiness to participate in a trial.
In patient-centric mode, a trial match summary page displays all

potential NGS-based trial matches and highlights the genomic
alteration(s) responsible for each trial match (Supplementary
Fig. 1). While matches are shown per trial, MatchMiner actually

matches patients to specific arms of a trial, providing additional
precision in the trial match results. Trial matches are ranked
according to variant actionability and can be filtered according to
genomic targets or other trial features. A clinician can also (1) view
additional trial details (e.g., number of arms, status of each arm,
individual trial arm eligibility criteria) to determine whether a trial
is suitable for their patient; (2) contact the trial investigator
through an embedded email icon; and (3) access the patient’s full
NGS report. Trial matches are updated nightly with matches to
currently enrolling arms of open trials, making the patient-centric
mode an up-to-date resource for trial options.
In trial-centric mode, a clinical trial team sets up a filter based

on the genomic and clinical features of interest for a particular
trial (Supplementary Fig. 2a). Filters match against all living
patients in the system, and matches (i.e., all candidate patients
for their trial) are viewed on the “Matches” page (Supplemen-
tary Fig. 2b). This page displays select clinical and genomic
features of each trial match and provides a link to email a
patient’s physician to help determine their eligibility and
interest in a PM trial. As patient eligibility is reviewed, clinicians
can place patients in “bins” according to their eligibility status.
Filter matches are updated nightly, and clinical trial team
members receive an email when new matches are identified for
their filters. Thus, trial-centric mode is a method to identify new
candidate patients for a trial in real-time.
In trial search mode, users can explore all the curated trials that

are used to generate patient-centric matches (Supplementary Fig.
3). The trial search page can be used to find matches for patients
who have had external NGS (i.e., their NGS results are not available
within MatchMiner). Genomic and clinical features from the
external report are inputted manually and all available trials are
searched. A faceted search interface allows for further filtering
based on multiple criteria, including genomic changes, cancer
type, trial status, and trial phase. The trial search page is also a
convenient place for clinicians to view all the latest available PM
trials at their institution, including arm status and trial eligibility
information. For example, all trials targeting BRAF can be viewed,
or specific drugs of interest can be searched. Trial search mode

Clinical Trial Status

ClosedOpen

Structured Clinical 
Trial Data

a

Match
Engine

b
Patient-centric

Genomic Alterations

Mutations, amplifications, signatures, etc.

Clinical Data

Cancer type (OncoTree), age, and gender

Patient

TrialPatient Trial

Trial Search

Trial-centric Trial search

Fig. 1 MatchMiner overview of data flow and modes of use. a Data inputs from patients and trials are utilized by the MatchEngine to match
patients to trials. b Shown are the 3 modes of matching patients to trials: patient-centric, trial-centric, and trial search. Orange lines indicate
patient-trial matches.
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helps match patients with external genomic sequencing data to
PM trials and acts as a resource for clinicians to view PM trial
information.
To ensure results provided in each clinical mode of use are

timely, MatchMiner requires daily data updates. Updated genomic
data (e.g. from an institutional enterprise data warehouse), patient
vital status (e.g. from Epic or other EHR) and trial accrual status at
both the trial and arm level (e.g. from OnCore or other trial
management system) are ingested daily (Supplementary Fig. 4).
Following the daily data update, the MatchEngine runs to
compute updated matches for all living patients to all open arms
of open trials, as well as to all filters. As a result of these daily
updates, MatchMiner is able to provide clinicians with accurate
and timely trial matches.

Clinical trial markup language (CTML)
Protocols for PM trials are often lengthy documents that contain
genomic and clinical eligibility criteria in an unstructured format,
making it difficult to extract information for patient-trial matching28.
To structure genomic eligibility data for trial matching, we developed
clinical trial markup language (CTML). CTML is a human-readable
markup language that allows users to structure clinical trial details
including clinical and genomic eligibility. While CTML may be used
standalone as a means of encoding trial eligibility, its main utility is as
part of a trial matching system. Trial eligibility criteria can be
translated into CTML documents via a text editor. Alternatively, an
open-source curation platform (MatchMinerCurate) allows a user to
pull in criteria from clinicaltrials.gov29 – this can be helpful for
extracting basic trial information, but specific genomic and clinical
eligibility may need to be entered manually.
CTML supports a wide range of clinical trial information and is

easily extended to include new criteria. Eligibility criteria including
genomic, clinical, and demographic criteria, are encoded with nested
Boolean logic. Criteria can be encoded into CTML according to any
institution-specific standards. Genomic criteria can be populated
according to any variant specification and cancer type can be
populated with any hierarchical ontology, although for trial matching
purposes, these must align with the patient-specific clinical and
genomic data. As part of the MatchMiner data ingestion process,
cancer types may need to be translated using an ontology to
ontology mapping tool, e.g. one provided with OncoTree30.
Additional fields can be added to CTML to document the provenance
of the curation or any other metadata.
In trial protocols, eligibility criteria are typically written in a

numbered list with subcriteria (Fig. 2a). CTML files are structured
similarly to clinical trial eligibility criteria but have defined core
elements. They have an intrinsic tree-like structure anchored by
core trial details and extended by arms and dose levels (Fig. 2b).
Each arm and dose level component of a trial may have its own
distinct eligibility criteria, which is encoded in the CTML
document. The flexibility to encode eligibility criteria, as well as
accrual status, at any arm or dose enables CTML to accurately
capture complex trial structures and results in more precise trial
matches.
CTML has five core components:

● Trial: Basic metadata, such as short and long trial titles, the
national clinical trial (NCT) purpose and identifier from the
public registry of trials at clinicaltrials.gov, contact information,
and study phase.

● Treatment: Steps, arms, doses, and expansion cohorts of a
clinical trial, which form a tree-like structure for complex trials.
Nodes of this tree have match criteria, which contain genomic
and clinical eligibility information.

● Match: Contains Boolean logic specifying genomic and clinical
criteria. Additional match components are referenced via
logical operators (and/or/not).

● Clinical: A Boolean clause that contains specific clinical
criteria. Currently supported fields are age, gender, and cancer
type according to the OncoTree ontology30.

● Genomic: A Boolean clause that contains specific genomic
criteria. Currently supported alterations include mutations,
which can be restricted to specific types of mutations, exon
locations or protein changes, gene-level copy number
alterations, structural variants and mutational signatures.

From a trial matching perspective, the most important part of
any CTML document is the match clause. All match clauses must
be enclosed within an “and” or “or” clause which contains
eligibility attributes. “And” and “or” clauses may be nested within
each other and there is no limit to the depth or breadth of a single
match clause. Any clinical or genomic criteria can be marked as an
exclusion criteria by prefacing the relevant criteria with “!” (Fig.
2b). For matching purposes, the eligibility criteria within CTML
match clauses must reflect the available patient data. For example,
if a patient’s date of birth is unavailable, then the trial curations
should not include an age restriction. Thus, the match clause must
consist of available data and be accurate for successful trial
matching.

MatchMiner use at Dana-Farber Cancer Institute
Since the launch of MatchMiner at DFCI, we have tailored the
platform according to institutional workflows and available NGS
data. For ease of use in the clinic, we integrated MatchMiner
patient-centric and trial search modes into Epic. This allows
clinicians to review trial matches directly alongside the clinical
data available in the electronic medical record to further aid
decision making (Supplementary Fig. 5). When viewing a patient’s
chart in Epic, a clinician can open a tab to view MatchMiner trial
matches for that patient or search through all MatchMiner trials.
To leverage the evolution of available NGS data at DFCI,
MatchMiner has added support for additional assays and data
types. Currently, MatchMiner supports trial matching based on
OncoPanel data in both patient-centric and trial-centric modes26,
while Rapid Heme Panel data is available within trial-centric
mode31.
MatchMiner has been integrated into the specific workflows of

various clinical groups. A collaboration with the Center for Cancer
Therapeutic Innovation (CCTI) resulted in a MatchMiner tumor
review board process, where a thorough assessment of potential
trial-centric matches was performed. Each week, matches for
several CCTI trials were filtered based on additional requirements,
such as an upcoming appointment, and then manually reviewed
by the MatchMiner team for evidence of progression in radiology
scan text impressions. The resulting list of patients was reviewed
with CCTI staff, and patients deemed ‘trial ready’ were flagged and
their treating physician contacted. In a separate collaboration with
the Gastrointestinal Cancer Center (GCC), we developed GI-
TARGET, a program which integrates the patient-centric mode of
MatchMiner with additional molecularly driven therapy sugges-
tions for holistic review by a team of experts, resulting in patient-
specific treatment suggestions. GI-TARGET continues to evolve
and be an essential component of the GCC.
MatchMiner users span nearly all disease groups at DFCI,

including Sarcoma, Breast, Thoracic, and Pediatric. For some trial-
centric users, the MatchMiner team supplements the trial-centric
mode by sending spreadsheets of patient-trial matches on a
weekly or monthly basis. The MatchMiner team also supports the
monthly DFCI pan-cancer molecular tumor board where we
frequently review all available MatchMiner trial matches for
specific patient cases. Thus, MatchMiner has been adapted for
the specific data available at DFCI and continues to be integrated
into departmental workflows for PM trial recruitment.
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Features of PM trials in MatchMiner
At DFCI, PM trials are added to MatchMiner after a structured peer
review process. Each week, a trial curator reviews all newly opened
trials to identify trials with genomic eligibility criteria. For each
identified trial, the curator downloads a CTML document from our
trial management system containing general trial information. The
curator manually adds the match clauses containing clinical and
genomic eligibility to the CTML, which is then peer reviewed by at
least one other curator prior to upload into MatchMiner for trial
matching. The same peer review process is utilized whenever a
new arm is added to a trial or an existing arm is removed. In
addition, the curation for all open trials are reviewed every
3 months to capture any changes in eligibility resulting from
protocol amendments. As of March 2021, we have 354 PM trials

curated in MatchMiner, reflecting all trials with genomic eligibility
that have been open at DFCI since MatchMiner launched in 2016.
These trials provide a breadth of options for patients, as 80% of
NGS-sequenced patients have at least one trial option, with an
average of 6 trial options for each patient.
To explore the landscape of PM trials available at DFCI, we

quantified genomic and cancer type inclusions in the 354 trials
curated in MatchMiner. A total of 222 genes, 7 mutational
signatures, and 59 specific cancer types (OncoTree metatypes,
91% of 65 total metatypes) were represented30. In addition,
general criteria for all solid or all liquid cancer types were also
commonly included as trial eligibility criteria. The gene most
frequently included as an inclusion criterion across all trials was
BRAF (n= 46 trials), followed by EGFR (n= 42 trials), and KRAS

Fig. 2 Clinical trial markup language (CTML) provides a structured data format for PM trial eligibility criteria. a Free text subject eligibility
criteria from an example PM trial protocol. Arm A is enrolling patients with colorectal cancer and any KRAS G12 mutation except G12C. Arm B
is enrolling patients with EGFR altered (specifically EGFR exon 19 insertions or EGFR amplifications) solid tumors except breast cancer. b Trial
details transformed into CTML, with curated information related to basic trial metadata (orange) and the treatment arms (dark blue)
containing specific genomic (turquoise) and clinical (light blue) match criteria. Arm A and B exclusions are annotated using exclamation
points.
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(n= 38 trials) (Fig. 3a), reflecting the many therapies in PM trials
for these oncogenic drivers32–34. Other genes frequently leading
to PM trial eligibility included IDH1 (n= 24) and IDH2 (n= 20),
NTRK (n= 15), ALK (n= 27), and ROS1 (n= 12), and homologous
recombination repair (HR) genes such as BRCA1/BRCA2 (n= 35)
and PALB2 (n= 20). The majority of trials included 1–3 unique
genes in their eligibility criteria (n= 286, 81%) while a small
proportion of trials had 4 or more unique genes (n= 68, 19%) (Fig.
3b). For cancer types, trials most commonly enrolled all solid
tumors (n= 123), non-small cell lung cancer (n= 97), and breast
cancer (n= 50) (Fig. 3c), consistent with the abundance of Phase I
trials in solid tumors and targeted therapies for these cancer
types1,35,36. To explore the diversity of included cancer types
outside of trials with broad all solid/liquid eligibility, we next
examined how many specific cancer types are included for each
trial. Excluding trials with all solid/liquid eligibility, the majority of
trials enroll one specific cancer type (n= 185, 81%) and few trials
enroll 2 or more specific cancer types (n= 44, 19%) (Fig. 3d).
In addition to quantifying genes and cancer types, we also

examined the distribution of trial phases and the disease centers
running each trial. Phase I (38%) and Phase II trials (31%) were the
most common, followed by Phase I/II (17%), Phase III (11%), and
Phase II/III (0.8%) trials (Supplementary Table 1). The higher
proportion of earlier phase trials is consistent with the large
number of novel PM drugs emerging, and the fact that most drugs
do not progress to later phase trials37. Most trials (23%) were run
out of the CCTI followed by thoracic oncology (17%) and pediatric
oncology (11%). Thus, MatchMiner at DFCI has mostly Phase I and
II trials, involving a range of genomic criteria and cancer types.

Impact of MatchMiner on PM trial consent
We analyzed PM trial enrollment data to determine whether
MatchMiner led to earlier identification of trials among NGS-
sequenced patients. We have identified 166 MatchMiner patient
consents, derived from 159 patients (7 patients consented to

multiple trials) and 65 trials. These 166 patient consents were
attributed to MatchMiner (i.e., considered MatchMiner consents
[MMC]), because MatchMiner identified the potential match and
the provider or trial team viewed the match in MatchMiner prior
to the patient consenting to the PM trial. The average age of MMC
patients is 60 years old (min= 8, max= 86) with most patients
between 50 and 64 years old (n= 70, 44%) (Supplementary Table
2). 67% of patients are female (n= 106) and 33% are male
(n= 53). Most patients are white (n= 137, 86%), followed by
African American (n= 7, 4%), Asian (n= 6, 4%), and other/
unknown (n= 6, 4%). The socio-demographic features of the
MMC cohort are similar to the total DFCI patient population.
To further assess the impact of MatchMiner, we compared the

time to consent (i.e., time from NGS sequencing to PM trial
consent) for the 166-patient MMC cohort to a ‘control’ population.
The control population was composed of patients who also had
NGS sequencing and had consented to one of the 65 trials for
which there was a MatchMiner-linked consent, but for which there
was no record that their matches had been viewed in MatchMiner.
After applying filters to the control population, we identified 353
non-MatchMiner consents (non-MMC).
As outlined above, the primary outcome was the number of

days from when an OncoPanel report was uploaded into
MatchMiner (i.e., the MatchMiner ingestion date) to when the
patient consented to the PM study. We chose this outcome
because clinicians only have the potential to view trial matches
after an OncoPanel report is added to MatchMiner. We found the
time to consent for the MMC was 55 days faster than for the non-
MMC cohort (195 days [IQR= 85-341 days] vs 250 days
[IQR= 99–491 days], P= 0.004, Fig. 4b). An analysis of the
distribution of time-to-consent data for the MMC and non-MMC
cohorts found no evidence that outliers were skewing our data.
Thus, MatchMiner may provide clinical impact by accelerating
time to consent for these PM trials.
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To identify MatchMiner’s broader impact for PM trial enrollment
rates at DFCI, we also analyzed the proportion of MMC compared
to all PM trial consents. Within our analytic cohort, 32% of
consents (166 of 519) were facilitated by MatchMiner. As the
analytic cohort was limited to the 65 trials to which MMC
consented, we expanded our analysis to all 354 trials in
MatchMiner. To determine the subset of these consents which
MatchMiner had the potential to impact (e.g. patient had an
OncoPanel), we applied the same filters as were used in the
analytic cohort, yielding 847 PM consents. Thus, MatchMiner
facilitated 20% (166 out of 847) of all possible MMC.
Details of the clinical course for some of our MMCs highlight the

impact of MatchMiner. A 67-year-old male with metastatic
esophageal cancer and ATM homozygous loss consented to an
ATR inhibitor trial 3 days after his report was viewed in
MatchMiner by the trial team. After 4 cycles of treatment, the
patient had a 10% reduction in index lesions. A 48-year-old female
with metastatic leiomyosarcoma and TSC2 mutation enrolled onto
a mTOR inhibitor trial 2 days after her report was viewed in
MatchMiner by the trial team. After 6 cycles of treatment, the
patient had a 23% reduction in index lesions. These 2 case studies
demonstrate MatchMiner’s ability to positively impact clinical
outcomes by speeding up time to patient consent.

DISCUSSION
Here, we described MatchMiner, an open-source software plat-
form for matching cancer patients to PM trials. Previous
informatics platforms have been developed to match patients to
PM trials including academic cancer center solutions17,22 and
commercial solutions from companies such as Foundation
Medicine, IBM Watson, and Syapse. However, the impact of these
solutions on clinically relevant outcomes is not well characterized,
many of these solutions are proprietary, and some of these
solutions are not portable to other institutions. Molecular tumor
boards (MTB) have also been developed to match patients to trials
through algorithmic matching and/or human intervention.
Although MTBs can be helpful for patient care, they are resource
intensive (i.e. requiring multiple oncologists, bioinformaticians,
and pathologists) and use expert recommendations or clinical-
trials.gov for trial matching25,38–42. MatchMiner is a clinical trial
matching platform that solves many of these limitations.

MatchMiner has several distinct advantages over other trial
matching platforms. MatchMiner is open-source and can be
readily adopted by other institutions. Data requirements are
similar to those required for local installations of other popular
open-source software platforms, like the cBioPortal for Cancer
Genomics43,44. Indeed, MatchMiner can also be integrated into
other clinical systems, or used in a research context (e.g.
MatchMiner-derived trial matches can be visualized within the
cBioPortal). Thus far, Princess Margaret Cancer Centre of University
Health Network and Memorial Sloan Kettering Cancer Center have
used MatchMiner for clinical or research purposes. In addition,
MatchMiner can be integrated with existing trial management
systems, enabling real-time trial matching. Other systems inte-
grate with clinicaltrials.gov for trial matching, which can be
problematic since trial status is not regularly updated45. Lastly,
MatchMiner has 3 modes of use, whereas other trial matching
platforms are focused on one mode, patient-centric or trial-
centric17,22,42. By having multiple modes for identifying trial
matches, MatchMiner allows use by both trial investigators and
patient oncologists in a single platform.
MatchMiner decreased time to consent by 55 days, demonstrating

impact for a clinically relevant outcome. Timely trial enrollment is
critical for patient care in part because a major barrier for trial
enrollment is poor performance status. Earlier trial identification
could provide options for patients before performance status
declines15,16. Timely enrollment is also critical for PM trials, where it
can be difficult to find genomically eligible patients. In addition,
MatchMiner decreased time to PM trial enrollment regardless of the
mode of use (patient-centric, trial-centric or collaboration with clinical
groups). We also described a more broad analysis of PM trial
enrollment at DFCI. MMCs made up 32% of consents in the analytic
cohort and 20% of all PM trial consents that MatchMiner could have
found at DFCI. Together, these analyses demonstrate that MatchMi-
ner has had clinical impact at DFCI. By using MatchMiner, other
institutions could have the opportunity to reduce time to enroll on
PM trials and increase patient accrual rates.
We are aware that there are potential confounding factors

because we performed a retrospective analysis. For example, we
were not able to control for interdepartmental variability in the
trial enrollment process. We also were not able to control for the
number of enrollments for each trial and individual trial
recruitment rates. Despite these limitations, a significant median
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Fig. 4 MatchMiner decreases time to consent for precision medicine trials. a 2,071 consents from 65 trials in MatchMiner were filtered to
generate comparison consents for MMC. 1,552 consents were excluded due to the patient not having an OncoPanel report or only having a
failed OncoPanel report, the OncoPanel report or trial consent date were prior to the launch of MatchMiner, or the trial consent date preceded
the ingestion of the OncoPanel report in MatchMiner. The remaining 519 enrollments were divided into MMC and non-MMC. b Density plot of
time period from MatchMiner ingestion date to consent date. MMCs had a median of 195 days (IQR= 85, 341 days) compared to non-MMCs
with a median of 250 days (IQR= 99, 491 days). Medians compared with a two-tailed Wilcoxon rank-sum test.
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difference of 55 days between MMC and non-MMC is strongly
suggestive of clinical impact for MatchMiner.
In addition to MatchMiner’s clinical impact, we highlighted

several key advantages that make MatchMiner suitable as a
clinical tool for trial matching. (1) MatchMiner has consistent,
structured genomic eligibility criteria using the CTML standard,
which can be easily adapted for data inputs at other institutions.
CTML allows complex eligibility criteria to be curated for more
accurate matching. (2) MatchMiner gives clinicians real-time
access to comprehensive structured NGS and trial status data.
Real-time trial matching allows clinicians to make more accurate
trial enrollment decisions. (3) With EHR integration, MatchMiner
can be more easily adopted into existing clinical workflows. At
DFCI, we integrated MatchMiner into Epic, allowing departments
easier access to MatchMiner and more efficient cross-referencing
with patient medical history. These advantages, in addition to
being open-source, make MatchMiner a viable option for adoption
at other institutions nationwide.
While MatchMiner has been successfully established as a trial

matching tool throughout DFCI, we are also focused on
continuing to grow the platform. Integrating all of MatchMiner’s
features into an EHR system (e.g. Epic) is challenging, especially for
an open-source platform that aims to be EHR-vendor agnostic. To
address this issue, we are exploring open standards for future
releases such as SMART on FHIR, a set of open specifications to
integrate apps with EHRs46,47. A second major challenge is
integrating additional clinical eligibility criteria, such as prior
therapies and laboratory values, into trial matching. This requires
modifying the CTML to include additional clinical criteria, and
adjustments to interoperable standards for extracting structured
clinical data from EHRs. We envision proposing a formal standard
for CTML via widely used collaborative standard development
processes such as the Global Alliance for Genomics and Health
(GA4GH)48. Third, as the number of data sources integrated into
MatchMiner grows, standardization and data processing work-
flows will become more challenging. Genomic and clinical data
harmonization is important since pipelines call variants differently
and cancer ontologies can differ amongst institutions49. Lastly, it is
difficult to determine whether a patient is ready to enroll on a trial
(trial readiness) from limited clinical data. Further enrichment of
patient-trial matches with radiology data, for example, could more
precisely identify patients ready for trials.
In summary, MatchMiner is an open-source tool for matching

patient genomic profiling to PM trials. With three modes of use,
MatchMiner can be used to look up trials for individual patients or
to recruit patients for a trial. MatchMiner uses CTML to structure
trial eligibility criteria, and we continue to advocate for CTML as
the standard for structuring trial data. MatchMiner can be used
with a trial management system to show real-time trial status at
the arm level. The combination of real-time trial arm status with
detailed genomic eligibility down to the variant level allows
MatchMiner to provide highly specific matches to PM trials.
MatchMiner at DFCI has many PM trials with a range of genomic
and clinical eligibility criteria. MatchMiner accelerated PM trial
enrollment and future studies will aim to determine its impact
within specific departments at DFCI.

METHODS
MatchMiner technical details
MatchMiner is a two-tier web application with a mongo database
serving a Python-based REST application programming interface
(API) server and AngularJS 1.5 client (Supplementary Fig. 4). The
MatchMiner UI is written in AngularJS and displays the user
interface. The UI interfaces with the REST API and displays relevant
trial match information, as well as displaying a clinical trial search
interface. Institution-specific ETL pipelines are used to load

genomic and clinical data as well as retrieve trial data from
clinical trial management systems (Supplementary Fig. 4).
Authentication of users is performed via single sign-on configured
through Security Assertion Markup Language (SAML).

DFCI trial analysis
DFCI trials are run in collaboration with members of the Dana-Farber/
Harvard Cancer Center (DF/HCC) consortium which includes six other
Harvard-affiliated institutions, including Beth Israel Deaconess
Medical Center, Boston Children’s Hospital, Brigham and Women’s
Hospital, Harvard Medical School, Harvard T.H. Chan School of Public
Health, and Massachusetts General Hospital. We used 354 trial json
files from the DFCI MatchMiner application for our analysis. All trial
curations use oncotree_legacy_1.1 for cancer types, and genomic
eligibility was curated to be consistent with the variant calls resulting
from the OncoPanel pipeline. We extracted all inclusions of genes
and cancer types from each of our 354 trial json files. Inclusions are
defined as genes and cancer types without the “!” exclusion symbol,
and genes not labeled “wild type”. Extraction of genes and cancer
types was performed by recursively traversing trial CTMLs with
custom scripts and summarized with R ggplot2 and gtsummary50,51.
All cancer types from trials were annotated with their corresponding
OncoTree metatype (OncoTree version: oncotree_legacy_1.1)30. Trial
phases and disease center were extracted from the summary field of
trial json files with Python (v. 2.7) pandas json_normalize function52.
Mutational signatures include tumor mutational burden, APOBEC,
MSI-H/MMR-D, UVA, temozolomide, POLE, and tobacco.

MatchMiner impact consent filtering
166 MMCs were identified through an automated system that
recorded patient-centric and trial-centric page visits, followed by
manual review by the MatchMiner team. For a given putative
MMC, the MatchMiner team looks for evidence that a relevant
clinician viewed the patient in the context of the trial prior to the
patient consenting to the trial. For example, a breast oncologist
viewed trial matches for one of their patients in MatchMiner and
the patient then consented to one of the listed trials. The 166
MMC are likely an underestimate of trial consents facilitated by
MatchMiner for 2 reasons: (1) the process to identify trial-centric
consents requires that the filter is associated with the same trial
that the patient consents to. However, filters do not always have
the correct trial listed, for example a filter may be used to identify
patients for multiple trials, but only one trial is listed. (2)
MatchMiner may prompt a provider to reach out to a clinical
trial investigator about a specific trial, but the patient may end up
enrolling on a different study run by the investigator.
Our 166 MMC were distributed among 65 PM trials. A

comparison group, non-MMC, was therefore defined as all other
consents to the same 65 PM trials as the MMCs between March 29,
2016 (MatchMiner start date) and March 5, 2021 (data freeze date).
For patients with multiple OncoPanel reports, each trial consent
was paired with the closest OncoPanel report prior to the consent
date. To generate the analytic cohort, we applied the following
filters: (1) patient had a successful OncoPanel report, (2) the
patient’s OncoPanel report and trial consent date were both after
the launch of MatchMiner, and (3) the consent date is after the
OncoPanel report was added to MatchMiner. After filtering, we
identified 353 non-MMC to compare to our MMC.
To calculate the proportion of MMC to all PM trial enrollments,

we identified all trial registrations with consent dates between
March 29, 2016 (MatchMiner start date) and March 5, 2021 (data
freeze date) for our 354 MatchMiner trials (4,945 consents). To
compare the number of all possible PM trial consents to our
analytic cohort, we applied the same filters as our analytic cohort
analysis (described above) to all PM trial consents.
Consent dates were extracted from DFCI’s OnCore trial

registration database. For our analytic cohort, time from
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MatchMiner ingestion date to consent date was calculated on a
DFCI HIPAA-compliant server. Filtering was performed with Python
(v. 2.7) pandas commands and the MatchMiner ingestion date to
consent date time period was analyzed for MMC and non-MMC
using a two-tailed Wilcoxon rank sum test with R gtsummary51,52.
This study was approved by the institutional investigational review
board, which determined that neither the physicians nor the
patients needed to be consented for this retrospective study.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The time intervals between MatchMiner ingestion date and consent date for each
patient (which are presented in the Results section “Impact of MatchMiner on PM trial
consent” and in Fig. 4) are available in Supplementary Data 1 and 2. Detailed trial
eligibility data (which are discussed in results section “Features of PM trials in
MatchMiner” and in Fig. 3) are unavailable due to contractual restrictions with clinical
trial sponsors regarding the sharing of potentially proprietary eligibility criteria.

CODE AVAILABILITY
The MatchMiner MatchEngine (https://github.com/dfci/matchengine-V2), API (https://
github.com/dfci/matchminer-api), and UI (https://github.com/dfci/matchminer-ui) are
available in GitHub (https://www.github.com/dfci/matchminer) under a GNU Affero
License. More comprehensive documentation on MatchMiner deployment and data
inputs is available at https://www.matchminer.gitbook.io/matchminer/. For more
information or questions about MatchMiner at DFCI please visit our website: https://
www.matchminer.org.
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