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Abstract: Out of control proliferation of toxic phytoplankton, called harmful algal blooms (HABs),
have a significant economic impact on bivalve aquaculture and harvesting in coastal waters. Some
phytotoxins, such as paralytic shellfish toxins (PSTs), are of concern due to the life-threatening
symptoms they can cause. Development of rapid and low-cost screening tools would be a welcome
addition to the laboratory methodologies employed in routine monitoring programs. However, most
of the assays and biosensors for the screening of PSTs, are restricted to a single target, saxitoxin
(STX), which is the most potent PST. The present study aimed at developing an assay for the
detection of N-sulfocarbamoyl PST—GTX5, which is one of the most abundant toxins in bivalves
during G. catenatum blooms as found on the Portuguese coast. Enzymatic assay employing PSTs’
transforming enzyme—carbamoylase—was proposed. Carbamoylase was extracted and purified
from the surf clam S. solida. Carbamoylase displayed similar specificity to both carbamate (STX) and
N-sulfocarbamate toxins (GTX5 and C1+2) converting them into decarbamoyl saxitoxin (dcSTX) and
decarbamoyl gonyautoxins 2+3 (dcGTX2+3), respectively. The enzymatic assay involved hydrolysis
of GTX5 by carbamoylase and quantification of the product of enzymatic reaction, dcSTX, using
a potentiometric chemical sensor. A potentiometric sensor with plasticized PVC membrane that
displayed sensitivity to dcSTX and selectivity in the presence of GTX5 was employed. Enzymatic
assay allowed determination of GTX5 in the concentration range from 0.43 to 3.30 µmolL−1, which
encompasses levels of GTX5 in contaminated bivalve extracts with toxicities above PSTs regulatory
limits. The feasibility of the carbamoylase-based potentiometric assay for detection of GTX5
was demonstrated.

Keywords: carbamoylase; paralytic shellfish toxins; potentiometric sensor; gonyautoxin 5;
decarbamoylsaxitoxin; enzymatic assay

1. Introduction

Most coastal countries are affected by out of control proliferation of microalgae—Harmful algal
blooms (HABs) [1,2]. Some of the species of these microalgae produce toxins, which can affect marine
organisms and can be accumulated by bivalves. Subsequent consumption of contaminated seafood
may provoke shellfish poisoning in humans [3]. Due to the unpredictability of the occurrence of
HABs, routine surveillance programs of toxins in commercial bivalves and toxic phytoplankton
species in seawater near bivalve harvesting areas were established in EU countries, including Portugal.
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Three groups of toxins, classified according the symptoms they cause in humans, are included in the
monitoring program: diarrheic shellfish toxins (DSTs), paralytic shellfish toxins (PSTs) and amnesic
shellfish toxins (ASTs), besides some other lipophilic toxins [4].

PSTs comprise about 30 3,4,6-trialkyl tetrahydropurine compounds with different combinations of
hydroxyl, carbamoyl and carbamoylsulfate substituents [5]. All PSTs have the same mode of action,
the inhibition of the voltage-gated sodium channel in excitable cells, though their toxicity varies
significantly. Toxic episodes caused by the paralytic toxins are less frequent in Portuguese coastal
waters compared to the other types of toxins [6], however, these compounds are of particular concern
due to the severe neurological symptoms they impart to humans. In extreme cases, paralytic shellfish
poisoning can be fatal, with overall mortality ranging between 2–14% [5,7].

Until 2005, the official reference method for the detection of PSTs in bivalves was the mouse
bioassay (MBA), which involved injection of bivalve extracts into a mouse followed by observation of
the animal’s condition over a predefined time frame. MBA is not only unethical and cruel, but it is also
slow, expensive, and technically inadequate. Besides, it lacks selectivity, as it can respond to other
toxic substances, such as metals, and display insufficient detection limits, which are close to regulatory
values [8]. Ongoing efforts to discontinue the use of MBA in monitoring programs in EU have been
confronted with several obstacles. One of them is the implementation of the alternative analytical
method for PST detection, Liquid Chromatography with Fluorometric Detection (LC-FLD) [9], which
requires investment in expensive apparatus and highly skilled personnel to operate it. Furthermore,
LC-FLD involves laborious and time-consuming sample preparation. In this context, development
of less expensive and complex assays and probes for PST detection and quantification is of practical
interest for both routine and out of the laboratory shellfish safety screening.

Several biosensors and immunoassays based on monoclonal and polyclonal antibodies have been
proposed for PSTs’ detection [10,11]. The most commonly used detection platforms include surface
plasmon resonance (SPR) biosensors [12–16], enzyme labeled immunosorbent assay (ELISA) [13,17,18],
flow cytometric assay [19] and optical [20,21] and electrochemical [22] biosensors.

Assays and sensors making use of the PSTs’ action in blocking voltage gated sodium channel,
a protein present in several types of cells, have been proposed, including neuroblastoma cell-based
assays [23,24] and impedimetric biosensors [25,26], and sodium channel or receptor based assays [27,28],
and biosensors with detection by quartz microbalance [29] and sodium-selective electrode [30].

Nerve cell and receptor-based methods have the important advantage of producing toxicity
estimates which are well correlated with MBA, making unnecessary use of the toxicity equivalency
factors. However, these methods involve laborious preparation procedures, use radioactive isotopes
in the case of receptor based assays, display long response times and lack stability resulting in low
reliability and reproducibility of measurements [23,27,31,32].

Antibody-based assays and biosensors display very high specificity and low detection but only to
some of the known PSTs. Antibodies employed in these tools are mostly produced against saxitoxin
and, thus, assays and biosensors possess low affinity to other PSTs, especially to toxins differing from
saxitoxin in the epitope region such as the sulfocarbamoyl ones [33,34]. A combination of different
antibodies in assays to achieve broader sensitivity has been suggested in order to overcome this
limitation [18]. No antibodies to N-sufocarbamoyl toxins have been reported in the literature. However,
PST outbreaks caused by dinoflagellate Gymnodinium catenatum generate toxin profiles in bivalves that
primarily include N-sulfocarbamoyl and decarbamoyl toxins, while saxitoxin is typically absent [35],
making existing antibody based assays inapplicable. While G. catenatum is less common compared to
other PST-producing dinoflagellates, it has a worldwide distribution including the Gulf of California,
Gulf of Mexico, Venezuela, Argentina, Korea, China, Japan, the Philippines, Tasmania, New Zealand,
the Mediterranean and the Atlantic coasts of Spain, Portugal and Morocco [36,37].

Simultaneous quantification of four PSTs, STX, dcSTX, GTX5 and C1+2 using an electronic tongue
comprising six potentiometric sensors was reported earlier [38]. However, two issues were identified in
the previous work: higher errors of determination of sulfocarbamoyl toxins GTX5 and C1&2 due to the
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low selectivity of the sensors to these toxins in the presence of dcSTX and STX, and the necessity to use
cleaned up bivalve extracts for the measurements. Extract cleanup is a laborious and time-consuming
procedure that would be desirable to avoid. The rational to develop an enzymatic assay for detection of
GTX5 was, firstly, improvement of the quantification precision of this toxin, and, secondly, elimination
of the bivalve extract cleanup step by using a sensor capable to detect dcSTX (the enzymatic reaction
product) in bivalve extracts without cleanup [38].

The purpose of this study was thus the development of an enzymatic assay with potentiometric
detection for determination of PSTs typically related to G. catenatum blooms. The proposed assay relies
on the use of an enzyme capable of hydrolyzing the carbamate and sulfocarbamoyl groups of PSTs.
PST hydrolysis attributable to the enzymatic activity was observed in several clam species [39–41] and
two enzymes with different specificity, named sulfocarbamoylase and carbamoylase, were extracted
from two East-Asian clam species, Peronidia venulosa and Mactra chinensis, respectively [42,43]. Similar
toxin-transforming action has been observed in the crude extracts of bivalve species from the Portuguese
coast including Spisula solida [44,45], which was used as the source of enzyme in the present study.
As far as we know, no enzyme-based biosensors for PST determination were previously reported in
the literature.

2. Materials and Methods

2.1. Reagents

Sodium hydrogen phosphate and dihydrogen phosphate, hydrochloric acid and sulfuric acids,
sodium hydroxide, aniline, multiwalled carbon nanotubes (MWCNT), tetrahydrofuran (Chromasolv),
ammonium formate, acetic acid, TRIS (tris(hydroxymethyl) aminomethane (BioPerformance Certified)
were from Sigma Aldrich Química, S.L. (Algés, Portugal), ammonium sulfate and aprotinin were from
VWR International—Material de Laboratório, Lda (Alfragide, Portugal); bestatin was from Santa Cruz
B6iotechnology Inc. (Heidelberg, Germany). Sodium dodecyl sulfate (SDS), methanol and acetonitrile
(HPLC grade) was from Riedel-de-Haën (Seelze, Germany). Sodium hydroxide, sodium chloride and
hydrogen peroxide were purchased from Merck Millipore (Algés, Portugal). Pierce™ BCA Protein
Assay Kit was from Thermo Fisher Scientific (Porto Salvo, Portugal). All reagents were p.a. (for
analysis) grade unless stated otherwise.

Solutions of PSTs, namely saxitoxin (STX), decarbamoyl saxitoxin (dcSTX), gonyautoxin-5 (GTX5),
N-sulfocarbamoyl toxins C1+2 and decarbamoyl gonyautoxin 2+3 (dcGTX2+3), were certified reference
material from the Institute for Marine Biosciences, National Research Council (Halifax, NS, Canada).
High molecular weight polyvinyl chloride, dibutyl phthalate, potassium tetrakis(4-chlorophenyl)borate
and octadecyl 4-formylbenzoate were Selectophore® grade from Sigma Aldrich. Screen-printed
electrodes (SPE) with gold working and auxiliary electrodes and silver reference electrode were from
DropSens (Asturias, Spain). Ultrapure water (18 MΩcm−1) was used for all solution preparation.

2.2. Extraction and Purification of PST Transforming Enzymes

Enzyme was extracted from digestive gland and crystalline style tissues dissected from surf
clam (S. solida) specimens purchased at a local market. Extraction and purification procedures were
adopted from [42,43]. Briefly, digestive glands were homogenized with equal volume of 100 mmolL−1

phosphate buffer (pH 7) at 4 ◦C. After centrifugation at 4 ◦C and 1500× g for 15 min, followed by
3900× g for 15 min, and then 8000× g for 60 min, and filtration of the supernatant through 10- followed
by 5-µm membrane filters, crude extract was obtained. Crude extract was submitted to salting out
procedure by adding solid ammonium sulfate to a saturation of 20%, stirring for 2 h and centrifuging
at 10,000× g for 30 min at 4 ◦C. The 60% ammonium sulfate fraction was collected and dissolved
in 50 mL of 50 mmolL−1 phosphate buffer (pH 7) containing 1.5 molL−1 of ammonium sulfate, and
filtered through 5- and 0.65-µm membrane filters. Crystalline style was homogenized at 4 ◦C with
approximately 10 volumes of 50 mmolL−1 phosphate buffer containing 0.5 molL−1 of ammonium
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sulfate, 5 mg L−1 of aprotinin, 5 mg L−1 of bestatin, and 0.1 mmolL−1 of EDTA. After centrifugation
at 4 ◦C and 550× g followed by 7500× g for 30 min and filtration of the supernatant through 10-µm
membrane, crude extract was obtained.

The 60% ammonium sulfate fraction of digestive gland extract and crude crystalline style extract
were independently loaded onto an octyl Sepharose 4 fast flow column as described below. Prior to
purification of digestive gland extract, the column was equilibrated with 50 mmolL−1 phosphate buffer
(pH 7) containing 1.5 molL−1 of ammonium sulfate. The column was eluted stepwise with five column
volumes of 50 mmolL−1 phosphate buffer containing 0.7 molL−1, than 0 molL−1 ammonium sulfate
and ending with deionized water at a flow rate of 4 mL min−1. Prior to purification of crystalline style
extract, the column was equilibrated with 50 mmolL−1 phosphate buffer (pH 7) containing 0.5 molL−1

of ammonium sulfate and was eluted stepwise with five column volumes of 50 mmolL−1 phosphate
buffer and deionized water at a flow rate of 2.5 mL min−1. The 50 mmolL−1 phosphate buffer eluates
obtained from both purification procedures were concentrated by ultrafiltration using a 30 K filter and
stored at −80 ◦C prior to use.

2.3. Enzyme Characterization

Enzymatic activities of crude extracts and purified enzyme towards STX, GTX5 and C1+2 were
evaluated using the following procedure: 1 µmolL−1 of toxin certified material solution was mixed
with 100 µL of enzyme extract in 50 mmolL−1 phosphate buffer and incubated during 3 h at 25 ◦C.

Specific activity of carbamoylase, present in the extracts, towards those three toxins was determined
using discontinuous assays. A series of solutions have been prepared by mixing 50 µL of purified
enzyme solution, 50 mmolL−1 phosphate buffer and 1 µmolL−1 of toxin solution. Reaction mixtures
were incubated for 10, 20, 30, 45 and 60 min at 25 ◦C. One munit (mU) enzyme was defined as the
amount of enzyme that catalyzes the reaction of 1 nmol of substrate per minute.

The influence of experimental conditions on the enzymatic reaction was evaluated by varying
temperature and composition of buffer solutions. Enzymatic reaction was run at 14, 20, 25 and 30 ◦C.
The following buffers were tested: phosphate buffer (pH 7) with concentrations of 0.25, 1, 13, 25 and
50 mmolL−1, Tris buffer (pH 7) with concentrations of 0.25, 1, 2 and 50 mmolL−1 and borate buffer
(pH 9) with concentration of 50 mmolL−1. Reaction mixtures were prepared by mixing 100 µL with
1 µL of toxin solutions and incubated during 3 h at 25 ◦C. Effect of the temperature was tested using
enzyme extracts in 50 mmolL−1 phosphate buffer.

Enzymatic reactions were stopped by addition of 10 µL of 10 molL−1 acetic acid, after which they
were frozen at −18 ◦C till further analysis of PSTs by LC-FLD. Assays were run in triplicate.

Enzyme concentration in extracts was determined using a protein quantification kit, based on the
Smith method, and used according to the instructions of the manufacturer.

The molecular weight of carbamoylase was determined by 12% SDS-PAGE as described by
Laemmli [46].

2.4. PSTs’ Quantification

Quantification of PSTs in the enzymatic reaction mixtures was done using LC-FLD according to
the official AOAC method [47]. The LC analysis was carried out using a Hewlett-Packard/Agilent
model 1050 quaternary pump, Model 1100 in-line degasser, autosampler, column oven, and model 1200
fluorescence detector (Agilent Tehcnologies, Santa Clara, CA, USA). The Hewlett-Packard Chemstation
software performed data acquisition and peak integration. The procedure used in the oxidation of
PSTs was based on [13] with a procedural modification for determination of N-sulfocarbamoyl and
decarbamoyl compounds. The toxin oxidation procedure, chromatographic conditions and details in
PSTs quantification are described elsewhere [48,49].
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2.5. Sensor Fabrication and Potentiometric Measurements

Potentiometric sensors were constructed using commercially available SPE according to the
procedure described in [50]. Briefly, surface of SPE working electrode was rinsed with ethanol
and water, after which it was cleaned electrochemically by sweeping potential between −0.2 and
+1.2 V at 50 mV/s in 50 mmolL−1 sulfuric acid three times. A solid contact layer was prepared by
electropolymerizing aniline in the presence of carbon nanotubes, using deaerated aqueous aniline
solution 50 mmolL−1, hydrochloric acid 1 molL−1, SDS 0.1 molL−1 and 0.17 g L−1 MWCNTs by cycling
potential for 40 cycles between −0.23 and +0.85 V at 50 mV/s. Sensor was washed with ultrapure
water, conditioned in 10 mmolL−1 hydrochloric acid for 2 h and dried. An EZstat-Pro EIS instrument
(NuVant Systems Inc., Crown Point, IN, USA) was used for electrochemical experiments. A Ag/AgCl
(KCl 3 molL−1) reference electrode was used.

Membrane mixture had the following composition: PVC (33% w/w), dibutyl phthalate (66%
w/w), octadecyl 4-formylbenzoate (1% w/w) and potassium tetrakis(4-chlorophenyl)borate (0.5% w/w).
Membrane components were dissolved in tetrahydrofuran and 10 µL of membrane mixture were
deposited on top of the solid contact and spun at 700 rpm for 5 min using DELTA 10TT spin coating
(Süss-MicroTec, Garching, Germany). This procedure was repeated twice, after which the sensor was
left to dry at room temperature for 24 h. Prior to use, the sensor was conditioned in ultrapure water for
2 h.

Calibration measurements were made in dcSTX standard solutions prepared by diluting the
certified dcSTX solutions in 1 mmolL−1 phosphate buffer (pH 7). Concentrations of dcSTX ranged from
0.1 to 6.8 µmolL−1. A drop of the solution was applied on top of the sensor electrodes and potential was
recorded 5 min later, in order to ensure stable readings. Custom-made high input impedance digital
voltmeter (Sensor Systems LLC., St. Petersburg, Russia) was used for potentiometric measurements.
Voltmeter was connected to a PC for data acquisition. Sensor potentials were measured vs. SPE own
pseudo-reference electrode. Between measurements sensor was washed with ultrapure water until
stable potential readings were reached.

Enzymatic assays were carried out by mixing 20 µl of enzyme solution (3,9 mg mL−1) and GTX5
solutions with toxin concentrations varying from 0.52 to 6.7 µmolL−1. Mixed solutions were incubated
at 25 ◦C for 17 h and measured using the potentiometric sensor.

3. Results and Discussion

3.1. Carbamoylase Characterization

The purpose of this study was to develop an assay for the detection of N-sulfocarbamoyl PSTs based
on the enzyme carbamoylase. Carbamoylase catalyzes hydrolysis of the carbamate (R1 = –CONH2) or
N-sulfocarbamoyl moiety (R1 = –CONHSO3) of PSTs, turning them into the corresponding decarbamoyl
analogues, dcSTX in the case of STX or GTX5, dcGTX2 in the case of C1 and dcGTX3 in the case of C2
(Figure 1) [43,46].

Carbamoylases can use as substrates any carbamate and N-sulfocarbamoyl toxins, though with
varying specificity, which is also dependent on the origin of the enzyme. Carbamoylase is produced
by several clam species. It has been extracted and purified from M. chinensis [42], and its action
was documented for P. staminea [39,40] and S. solida [41,44,45]. S. solida was selected as the source of
carbamoylase in the present study.

It is important to note that the toxins C1 and C2, and dcGTX3 and dcGTX3 are stereoisomers
with respect to the sulfate group at C11 (R2 and R3, Figure 1). Both pairs of stereoisomers, C1 and
C2, and dcGTX2 and dcGTX3, are present as mixtures in bivalves and in the commercially available
reference materials are racemic mixtures: C1+2 contains 77% of C1 and 23% of C2, and dcGTX2+3
contains 77% of dcGTX2 and 23% of dcGTX3 [51]. Furthermore, isomers are detected together by the
reference method LC-FLD, as a single product is formed after oxidation. Thus, analytical detection by
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the sensor was also envisaged without stereoisomer distinction, and therefore, each pair of isomers
was considered as one compound in this work, i.e., C1+2 and dcGTX2+3.

Digestive gland and crystalline style were identified as the bivalve tissues with highest activity of
carbamoylase in earlier reports [42,43] and, thus, were selected for enzyme extraction. Table 1 shows
the enzymatic activity towards STX of crude and purified extracts of digestive gland and crystalline
style tissues. While all extracts contained enzyme capable of transforming STX, the highest activity
was observed in the purified extract of crystalline style. This result is in agreement with the anatomical
distribution of toxin transforming enzymes that was reported for other clam species [42,43]. Further
experiments were performed using purified enzyme extract from crystalline style.

Table 1. Enzymatic activity towards STX of carbamoylase present in crude and purified extracts of surf
clam digestive gland and crystalline style after 3 h of incubation.

Extract Activity, mU/mg

Digestive gland, crude 1.1 ± 2.0
Digestive gland, purified 162.7 ± 1.1
Crystalline style, crude 33.5 ± 0.3

Crystalline style, purified 478.5 ± 0.5
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Figure 1. Reaction of carbamoylase with PSTs: Cleavage of carbamoyl or sulfocarbamoyl moiety (R1).
The following transformation take place: STX→ dcSTX, GTX5→ dcSTX, C1+2→ dcGTX2+3.

The specific activity of the enzyme purified from crystalline style towards STX, GTX5 and
C1+2 determined using a discontinuous assay and the substrate consumption percentages after
1 h of incubation are presented in the Table 2. Carbamoylase transformed all three toxins with
affinities not statistically different from each other, which is consistent with literature data, though
direct comparison is difficult as substrate consumption percentages over longer periods of time are
reported. Carbamoylase obtained from Atlantic surf clam was reported to convert both carbamate
and N-sulfocarbamoyl toxins with a faster conversion rate of N-sulfocarbamoyl ones. Conversion of
95% of STX and 99% of GTX5 after 12 h of incubation (no tests were run with C1+2 by the authors)
was previously reported [45]. In another work [41], conversion of 100% of C1+2 and GTX5 after 1 h of
incubation was observed, while 100% of STX was converted only after 6 h. Carbamoylase extracted
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from the Japanese clam M. chinensis converted 83% and 92% of STX and GTX5, respectively, and only
13% of C1+2 after 24 h of incubation [42].

Table 2. Specific enzymatic activity towards STX, C1+2 and GTX5 of carbamoylase purified from
crystalline style of S. solida and substrate consumption (after 1 h of incubation).

Toxin Specific Activity, mU/mg Substrate Consumption, %

STX 38 ± 3 78
GTX5 37 ± 1 60
C1+2 35 ± 2 81

The mechanism of the enzymatic reaction, i.e., cleavage of the carbamate or sulfocarbamoyl moiety
as depicted in Figure 1, is consistent with LC-FLD results of analysis of enzyme incubated with STX,
GTX5 and C1+2 (Figure 2). In the enzymatic assay a decrease of the concentration of the substrate,
STYX, GTX5 or C1+2 was observed together with the appearance of the enzymatic reaction products,
dcSTX and dcGTX2+3.
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Molecular weight of the enzyme was estimated to be ca. 100 kDa by SDS-PAGE electrophoresis
(Figure 3), which is close to the value of 94 kDa reported for M. chinensis carbamoylase [42].Sensors 2020, 20, x 8 of 14 
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Sample is purified carbamoylase. Arrow indicates the 100 kDa molecular weight of the enzyme.

Due to its broad specificity, carbamoylase can be used in an assay for the detection of all three
studied PSTs. Given that STX is typically absent in bivalves from Portuguese coast, carbamoylase can
be used for detection of two N-sulfocarbamoyl toxins, GTX5 and C1+2. As decarbamoylated toxins
resulting from hydrolysis of GTX5 and C1+2 are different, using a potentiometric sensor selective to
one of them can impart selectivity to the assay. We opted for developing an assay targeting GTX5 with
potentiometric detection of its hydrolysis product, dcSTX, as will be discussed below. GTX5 is one of
the main PSTs detected on the Portuguese coast, which may account for up to 50 mol.% of total PSTs in
bivalves [35].

3.2. Effect of Experimental Conditions on Enzymatic Activity

Effect of experimental conditions such as temperature, and a buffer composition, concentration and
pH on carbamoylase activity was investigated using GTX5 as substrate. Maximum rate of enzymatic
reaction was observed at 25 ◦C as shown in Figure 4.
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Figure 4. Effect of the temperature on carbamoylase activity. GTX5 was used as a substrate.

Data about the influence of buffer concentration on enzymatic activity is indispensable for both
the optimization of the enzymatic assay conditions and sensor selection. Therefore, pH levels that are
relevant for the selection of the sensor as detector in the assay and composition and concentration of
the buffer that are relevant for the functioning of the sensor were assessed. Detection of the enzymatic
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reaction products can target either decarbamoylated toxin, dcSTX, or ammonia ions formed after
cleavage of the sulfocarbamoyl moiety of GTX5 [52]. One of the options of ammonia detection is
amperometric, which requires pH of ca. 9 [53]. According to the literature, optimal pH for carbamoylase
and sulfocarbamoylase is 7 [42,43]. Thus, it was tested if enzyme activity at pH 9 is much lower at
pH 9 compared to optimal pH 7. For detection at pH 7, potentiometric detection using one of sensors
sensitive to PSTs that was reported earlier can be used [50]. Though this sensor has high selectivity
towards PSTs in the presence of sodium with selectivity coefficient logKA/B = −2.9, large difference
in the concentrations between toxin and sodium in the buffer mean that this selectivity may not be
sufficient and sodium ions may affect sensor response. Thus, with the aim to avoid interference of
the sodium on the sensor response, possibility to use a buffer with the pH 7 but without sodium,
such as i.e., Tris, or decrease as much as possible concentration of phosphate buffer to decrease Na
concentration, was evaluated.

Comparison of the enzymatic activity in different buffers is shown in the Figure 5. Use of Tris
buffer resulted in lower enzymatic activity compared to phosphate buffer with the same pH and
concentration (50 mmolL−1 and pH 7). Likewise, low enzymatic activity was observed in borate buffer
with pH 9. While no difference in activity was observed in Tris buffer with different concentrations,
the decrease of phosphate buffer concentration to 1 mmolL−1 brought an increase of the enzyme
activity. However, below 1 mmolL−1 the enzyme activity sharply decreased. Thus, maximum activity
of carbamoylase was observed in 1 mmolL−1 phosphate buffer with pH 7 at 25 ◦C.
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3.3. Enzymatic Assay with Potentiometric Detection

A potentiometric sensor suitable as detector for carbamoylase assay for GTX5 determination
should have high selectivity to the reaction product, dcSTX, in the presence of substrate, GTX5,
or vice versa, and high selectivity in the presence of the buffer components such as sodium. Based on
previous studies, potentiometric sensor with PVC/DBF/KTPB/octadecyl 4-formylbenzoate membrane
was selected [50]. This sensor displayed a super-Nernstian response to STX and dcSTX with the slope
of 69 ± 3 mV/pX, and the detection limit of 0.65 and 0.9 µmolL−1, respectively, in 1 mmolL−1 Tris buffer
solution. This sensor also displayed high selectivity towards STX in the presence of Na + and K +

with logKsel −2.9 and −3.1, respectively, which should allow toxin detection in 1 mmolL−1 phosphate
buffer. The sensor possessed slightly higher selectivity to dcSTX in the presence of STX, with logKsel of
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0.16. However, given that STX is typically absent in the PST profile produced by G. catentum blooms,
it would not interfere with dcSTX detection.

Firstly, the response of the selected sensor to dcSTX, C1+2 and GTX5 under the optimal
experimental conditions for enzymatic assay, i.e., using 1 mmolL−1 phosphate buffer as background,
was evaluated. Sensor response to dcSTX was lower in 1 mmolL−1 phosphate buffer compared to the
Tris buffer with the same concentration presenting a slope of the electrode function that decreased from
69 to 47 ± 1 mV/pX (Figure 6a). The sensor displayed no response to either GTX5 or C1+2 in phosphate
buffer (data not shown), and therefore can be used for quantification of dcSTX in the presence of both
GTX5 and sodium, meaning it can be used as a detector in enzymatic assays for GTX5 determination.
If dcSTX is present in the sample, it can be determined using the same sensor prior to enzymatic assay.
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Figure 6. Sensor responses in the solutions of dcSTX (a) and in the solutions of dcSTX formed during
enzymatic hydrolysis of GTX5 (b) prepared in 1 mmolL−1 phosphate buffer. Parameters of the sensor
response in dcSTX solutions and enzymatic assay were calculated in the concentration ranges from 0.52
to 6.24 µmolL−1 (a) and from 0.43 to 3.34 µmolL−1 (b), respectively, are shown in the insets: S—slope of
the electrode function with standard deviation and E◦—standard potential.

The enzymatic assay was run in solutions with GTX5 concentrations ranging from 0.43 to
3.34 µmolL−1, which were measured using the potentiometric sensor after incubation. Response of the
sensor to GTX5 concentration in the assay was found to be 49 mV/pX (Figure 6b). The slope obtained
in the assay was not statistically different (p = 0.05) from the one obtained for dcSTX alone, confirming
the possibility to determine GTX5 through the quantification of the product of its enzymatic hydrolysis.
Standard potential of the sensor differed being higher in the case of the assay. This deviation can be
related to the presence of the enzyme or other compounds in the enzyme solution added to the assay.

In order to be applicable to PSTs determination, the detection limit of the developed sensor needs
to be below legal regulatory limits. The regulatory limit for PSTs is 800 µg of STX equivalents per
kg of bivalve meat, where STX equivalents are calculated using toxicity equivalence factors for each
toxin. Concentration of GTX5 corresponding to the regulatory limit is 2.7 µmolL−1 in bivalve extracts
prepared according to the official method [50]. GTX5 accounts for approximately 20–40% of PSTs
molar fraction detected in bivalves during toxicity episodes, which correspond to the toxin levels of
0.54–1.35 µmolL−1 in bivalve extract. As the developed assay allows quantification of GTX5 in the
concentration range between 0.43 and 3.34 µmolL−1, it can be employed as a screening tool for this
toxin in bivalve extracts. The main limitations of this enzymatic assay for practical applications are
laborious procedure of enzyme extraction and purification, and relatively long assay time. In the future
work assay time can be decreased by assessing intermediate incubation times and increasing enzyme
concentration. However, no currently available method is very fast. For example, commercially
available ELISA assay requires 3.5 h of incubation in total and involves several manipulations.
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4. Conclusions

An enzymatic assay for the detection of one of the dominant PSTs in bivalves during G. catenatum
blooms on the Portuguese coast, GTX5, was developed using PST transforming enzyme carbamoylase
and a potentiometric chemical sensor. Carbamoylase was extracted from the crystalline style of the
surf clam S. solida and found to hydrolyze carbamate (STX) and N-sulfocarbamoyl toxins (GTX5,
C1+2) with similar specificity. Mechanism of the enzymatic reaction consisting in the cleavage of the
carbamoyl or sulfocarbamoyl moiety of the toxin producing decarbamoylated PSTs, dcSTX in the
case of STX and GTX5, and dcGTX2+3 in the case of C1+2. Optimization of the buffer concentration
and composition with the aim to maximize enzymatic activity and avoid interference of the buffer
constituents with the sensor response was carried out. Maximum enzymatic activity of carbamoylase
was observed at 25 ◦C in 1 mmolL−1 phosphate buffer. Selectivity of the enzymatic assay to GTX5
was ensured by using potentiometric sensor selective to the product of GTX5 enzymatic hydrolysis,
dcSTX. Enzymatic assay allows determination of GTX5 toxin in the concentration range from 0.43 to
3.34 µmolL−1, which corresponds to the levels of GTX5 observed in the extracts of bivalves with PST
toxicity close to the regulatory limit.
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