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Abstract

Background

Revision endoscopic sinus surgery (ESS) is often considered for chronic rhinosinusitis

(CRS) if maximal conservative treatment and baseline ESS prove insufficient. Emerging

research outlines the risk factors of revision ESS. However, accurately predicting revision

ESS at the individual level remains uncertain. This study aims to examine the prediction

accuracy of revision ESS and to identify the effects of risk factors at the individual level.

Methods

We collected demographic and clinical variables from the electronic health records of 767

surgical CRS patients�16 years of age. Revision ESS was performed on 111 (14.5%)

patients. The prediction accuracy of revision ESS was examined by training and validating

different machine learning models, while the effects of variables were analysed using the

Shapley values and partial dependence plots.

Results

The logistic regression, gradient boosting and random forest classifiers performed similarly

in predicting revision ESS. Area under the receiving operating characteristic curve

(AUROC) values were 0.744, 0.741 and 0.730, respectively, using data collected from the

baseline visit until six months after baseline ESS. The length of time during which data were

collected improved the prediction performance. For data collection times of 0, 3, 6 and 12

months after baseline ESS, AUROC values for the logistic regression were 0.682, 0.715,

0.744 and 0.784, respectively. The number of visits before or after baseline ESS, the num-

ber of days from the baseline visit to the baseline ESS, patient age, CRS with nasal polyps

(CRSwNP), asthma, non-steroidal anti-inflammatory drug exacerbated respiratory disease

and immunodeficiency or suspicion of it all associated with revision ESS. Patient age and

number of visits before baseline ESS carried non-linear effects for predictions.
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Conclusions

Intelligent data analysis identified important predictors of revision ESS at the individual

level, such as the frequency of clinical visits, patient age, Type 2 high diseases and immuno-

deficiency or a suspicion of it.

Introduction

Chronic rhinosinusitis (CRS) is a symptomatic inflammatory disease of the nasal and parana-

sal mucosa lasting more than 12 weeks [1]. With a prevalence of about 11%, CRS diminishes

patient quality of life and productivity and increases healthcare costs [1]. The main phenotypes

are CRS with nasal polyps (CRSwNP) and without (CRSsNP) [1–3]. The majority of CRS cases

occurring in Western countries are characterised by Type 2 high inflammation with elevated

levels of eosinophils, interleukin-4 (IL-4), IL-5 and IL-13 [1]. Nonsteroidal anti-inflammatory

drug (NSAID) exacerbated respiratory disease is a Type 2 high chronic inflammatory syn-

drome with a partially unknown pathobiology associated with CRSwNP and asthma and with

an increased morbidity [4–6].

Endoscopic sinus surgery (ESS) represents a cost-effective treatment [7] if conservative

therapy (such as intranasal corticosteroids and nasal saline irrigation) is insufficient [1]. The

success rates for initial ESS range from 76% to 98% [8, 9]. The early identification of CRS

recurrence risk following ESS is cost-effective [10, 11], helping to correctly target treatment

[12] and prevent permanent tissue changes [1].

A substantial number of studies have identified the risk factors of revision ESS [13–21], in

studies varying according to sample size (n = 66 [21] vs. n = 61 000 [15]), data collection meth-

ods (large retrospective database [15] vs. prospective questionnaires [14]) or geographic loca-

tion (USA [15], Australia [22] and Finland [13]). Commonly recognised risk factors include

nasal polyps, asthma, allergy, non-steroidal anti-inflammatory drug (NSAID) exacerbated

respiratory disease (NERD) and a previous ESS. In a meta-analysis [19], the strongest predic-

tors of revision ESS were allergic fungal rhinosinusitis, NERD, asthma, prior polypectomy and

operations prior to 2008. However, no prior research has analysed the prediction accuracy of

revision ESS at the individual level or for variables with a nonlinear association. In this study,

we examined the accuracy of the personalised prediction of revision ESS, and attempted to

identify the effects of important predictor variables via modern machine-learning algorithms

and methods.

Materials and methods

Patients

This study consisted of rhinitis or rhinosinusitis patients presenting at the Department of

Otorhinolaryngology at the Hospital District of Helsinki and Uusimaa (HUS), Finland. The

HUS ethics committee approved the study protocol (nro 31/13/03/00/2015), thereby preclud-

ing the need to obtain written informed consent from patients for this retrospective follow-up

study.

The inclusion criteria for the initial patient population (n = 5080) was an ICD-10 diagnosis

of J30, J31, J32, J33 or J01 registered during outpatient visits in 2005, 2007, 2009, 2011 or 2013.

Longitudinal data for a random patient sample were collected from the electronic health rec-

ords (EHRs), such that the sample size was the same for each sampling year and each month of
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the sampling year. The last data collection day for follow-up was 31 September 2019. CRS was

defined as diagnostic codes J33 and/or J32. ESS was defined based on the surgical codes

(Table A in S1 File). In total, we excluded 27 CRS patients <16 years of age. The baseline visit

was defined as the first clinic visit, and baseline ESS was defined as the first ESS identified in

EHRs at the specific sampling time. Revision ESS was defined as an ESS performed following

the baseline ESS during the follow-up period.

A total of 111 of 767 (14.5%) CRS patients underwent revision ESS (mean±stdev) 30.3±31.0

months following the baseline ESS (Fig 1a and Table 1). Among revised patients, 88 underwent

one revision ESS and 23 patients underwent two or more revisions (Fig 1b).

Variables

Table 2 summarises the patient characteristics that were analysed both from the structured

EHR data (visits, procedure codes and patient diagnoses) and free clinical texts (diagnoses and

comorbidities). Comorbidity-related variables were obtained from the ICD-10 codes (Table B

in S1 File) and using validated keyword-based information extraction from free clinical texts

(see S2 File). For asthma, we used ICD-10 code J45, doctor-diagnosed lung function test–con-

firmed asthma. A NERD diagnosis was obtained from EHR text and was based on a typical his-

tory of airway symptoms following the ingestion of NSAID with/without challenge test

confirmation of NERD.

Fig 1. Histograms of (a) time to revision ESS and (b) the number of revision ESS surgeries. ESS, endoscopic sinus surgery.

https://doi.org/10.1371/journal.pone.0267146.g001

Table 1. Average follow-up time and number of ESS surgeries among patients with and without revision ESS.

Patients Number of patients Follow-up-time, Avg. (SD) Number of ESS operations, Avg. (SD)

All 767 74.2 (42.9) 1.19 (0.54)

No revision 656 81.6 (40.2) 1.0 (0.0)

Yes revision 111 30.3 (31.0) 2.32 (0.74)

ESS = Endoscopic sinus surgery, Avg. = Average, SD = Standard deviation.

https://doi.org/10.1371/journal.pone.0267146.t001
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Machine learning algorithms

In this study, we conducted four analyses: univariate model, machine learning classifier com-

parison, the effect of the data collection time and model interpretability analyses. The univari-

ate models examined the prediction accuracy of individual variables using univariate logistic

regression classifiers. Machine learning classifier comparison examined the predictive perfor-

mance of three classifiers: random forest, logistic regression and gradient boosting. The ran-

dom forest and gradient boosting classifiers were chosen for the machine learning classifier

comparison since they are widely used with a demonstrated good performance [23]. Logistic

regression was chosen because it is simple and still performs relatively well [24]. It remains

important to determine if simpler algorithms perform comparably well. To understand the

effect of the time of data collection time, the performance of the classifier was calculated when

the variable collection time was from the baseline visit to the baseline ESS or to 3, 6 or 12

months following baseline ESS. Fig 2 illustrates the timeline of the data collection for the mod-

els 0, 3, 6 and 12 months, respectively. For example, the model for 3 months was trained and

Table 2. Characteristics of patients without and with the revision ESS. P values calculated using the Fisher’s exact or Mann-Whitney U test.

Variable NO revision YES revision P value

Gender female, n (%) 382 (58.23%) 66 (59.46%) 0.836

Asthma, n (%) 230 (35.06%) 67 (60.36%) <.001��

Allergy, n (%) 228 (34.76%) 56 (50.45%) 0.002�

Chronic respiratory diseases, n (%) 182 (27.74%) 43 (38.74%) 0.024�

Mental disorders, n (%) 79 (12.04%) 15 (13.51%) 0.64

Memory disorders, n (%) 13 (1.98%) 3 (2.7%) 0.716

Cancer, n (%) 66 (10.06%) 16 (14.41%) 0.183

Cardiovascular disease, n (%) 215 (32.77%) 47 (42.34%) 0.052

Obesity, n (%) 57 (8.69%) 8 (7.21%) 0.714

Diabetes, n (%) 63 (9.6%) 13 (11.71%) 0.493

Musculoskeletal diseases, n (%) 255 (38.87%) 50 (45.05%) 0.249

NERD, n (%) 55 (8.38%) 22 (19.82%) <.001��

Immunodeficiency, n (%) 3 (0.46%) 2 (1.8%) 0.155

Immunodeficiency or its suspicion, n (%) 17 (2.59%) 13 (11.71%) <.001��

Obstr sleep apnea, n (%) 56 (8.54%) 14 (12.61%) 0.21

Mouth breathing, n (%) 35 (5.34%) 11 (9.91%) 0.08

Gastroesophageal reflux, n (%) 41 (6.25%) 11 (9.91%) 0.156

CRSwNP, n (%) 204 (31.1%) 60 (54.05%) <.001��

Age, baseline ESS, Avg. (SD) 45.61 (15.83) 48.52 (13.9) 0.028�

ASA value, Avg. (SD) 1.68 (0.63) 1.8 (0.64) 0.035�

Time from the baseline visit to the baseline ESS (days), Avg. (SD) 565.77 (824.33) 483.2 (766.65) 0.014�

Number of visits from the baseline to the baseline ESS, Avg. (SD) 4.31 (4.86) 4.97 (7.7) 0.239

Visit frequency between the baseline visit to the baseline ESS, Avg. (SD) 8.24 (19.05) 10.57 (19.02) 0.001�

Number of visits before the baseline ESS (0–12 months), Avg. (SD) 2.85 (2.51) 3.06 (3.31) 0.343

Number of visits before the baseline ESS (0–6 months), Avg. (SD) 2.07 (1.96) 2.43 (2.45) 0.186

Number of visits from the baseline ESS to 3 months postoperatively, Avg. (SD) 1.45 (1.24) 2.33 (1.98) <.001��

Number of visits from the baseline ESS to 6 months postoperatively, Avg. (SD) 1.89 (1.81) 3.94 (3.68) <.001��

Number of visits from the baseline ESS to 12 months postoperatively, Avg. (SD) 2.38 (2.53) 6.3 (5.55) <.001��

ESS = Endoscopic sinus surgery, NERD = Patient-reported non-steroidal anti-inflammatory drug -exacerbated respiratory disease, CRSwNP = Chronic rhinosinusitis

with nasal polyps, Avg. = Average, SD = Standard deviation.

https://doi.org/10.1371/journal.pone.0267146.t002
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validated using patient data collected from patient EHRs between patients’ baseline visits and

3 months following baseline ESS. The logistic regression classifier was selected for the analysis

of the data collection time period because it is simple and because the machine learning classi-

fier study demonstrated that its performance was higher or similar to other classifiers.

However, the logistic regression classifier is linear and thus not able to model possible non-

monotonic relationships between predictors and outcomes. The random forest and gradient

boosting classifiers can model complex, non-monotonous relationships, but are so-called

black box models or uninterpretable classifiers. The relationships between inputs and outputs

are difficult to understand directly from the parameters or the structure of the trained model.

For the model interpretability analysis, we chose to use gradient boosting classifiers. The

model interpretability analysis was calculated using Shapley values (SHAP) and partial depen-

dence plots (PDPs) [25, 26], and were analysed for their importance and the possible nonmo-

notonic effects of the variables.

Model training

Fig 3 shows the data flows for training and testing the classifiers. Original data were first

divided into two distinct data folds: the training fold (70% of the data) and the test fold (30%

of the data). We used the training fold to select the variables and hyperparameters and to train

the final models. The test fold relied on an external dataset which we used to measure the per-

formance of the final models. During splitting, folds were stratified to preserve the proportion

of patients in both target classes (no revision vs. revision).

The data flow shown in Fig 3a was used to compare the machine learning classifiers and for

the analysis of the data collection time period. Here, we summarise the steps in the process,

which included variable selection (step 1), searching for model hyperparameters (step 2),

model training (step 3) and performance evaluation (step 4). The data flow in Fig 3b provides

the univariate model and the model interpretability analyses. Specifically, we proceeded by

searching for model hyperparameters (step 2), model training (step 3) and performance evalu-

ation (step 4). One primary difference between the data flows presented is that Fig 3a uses the

k-fold cross-validation for variable selection (SFS, sequential forward selection). Data flow of

Fig 3b relies on predefined variables for training models.

Fig 2. Data collection for the analysis of the effect of the data collection time period. The classifiers’ performance was

calculated based on when the data were collected from the timeline of the baseline visit to the baseline ESS or to 3, 6 or 12

months following the baseline ESS. The baseline visit represents the initial clinic visit, and baseline ESS represents the first ESS

identified in EHRs. Revision ESS represents the ESS performed following baseline ESS during the follow-up time period. The

models were trained to predict the revision ESS. ESS, endoscopic sinus surgery; EHR, electronic health record.

https://doi.org/10.1371/journal.pone.0267146.g002
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Sequential forward variable selection

The data flow in Fig 3a contains the method of sequential forward variable selection (SFS, step

1) [27]. SFS begins with an empty set, and adds one variable at a time from the original variable

set Sall (Table 2) for classifier F(�) by maximising the performance measure. We used the area

under the receiver operating characteristic (AUROC) curve as the performance metric.

Because our data are unbalanced, we used class weight balanced loss functions. The output of

the SFS was 15 most important variables Sk,sel for classifier F(�). The (average) importance of

each variable a was measured using the following rank metric:

¸RðaÞ ¼
1

10

X10

k¼1

ð#F � rðk; aÞ þ 1Þ ð1Þ

where r(k, a) is the rank of variable a based on the data set k and #F is the size of the largest

subset resulting from SFS [28–30]. In this study, #F = 15. A higher R(a) (rank score) indicates

that variable a is more important according to SFS, because it was selected in the smaller size

variable subsets. That is, the variable has a higher predictive capability according to SFS,

whereby its revision ESS prediction ability is high. The optimal hyperparameters for classifier

F(�) with variables Sm,sel were identified using the grid-search method (step 2). The hyperpara-

meter values for different classifiers and the summary statistics for the selected hyperparameter

values appear in S5 File. Following the identification of the optimal hyperparameters for classi-

fier F(�) using variables Sm,sel, the model was trained (step 3) and the performance was calcu-

lated using dataset Xtest (step 4).

Fig 3. Data flows for the prediction model learning pipelines. Variable selection (step 1), search for hyperparameters (step 2), model training (step 3) and performance

evaluation (step 4). Data flow (a) is used to compare machine learning classifiers and the effect of data collection time period analyses. Data flow (b) is used for the

univariate model and model interpretability analyses.

https://doi.org/10.1371/journal.pone.0267146.g003
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Performance analysis

We used the following standard performance metrics: AUROC, the area under the precision

recall curve (AUPRC), precision, sensitivity, specificity and the F1 score. AUROC is the mostly

used evaluation metric for measuring the performance of any classification model. An

AUROC of 0.5 indicates no discrimination above chance, while an AUROC of 1.0 indicates a

perfect classification. A rough guide for the classification ability of a model is AUROC = 0.9–

1.0 indicates an excellent performance, AUROC = 0.8–0.9 indicates a good performance,

AUROC = 0.7–0.8 indicates a fair performance and AUROC = 0.6–0.7 indicates a poor perfor-

mance [31, 32]. AUPRC is often used evaluation metric for imbalanced data sets. The baseline

(discrimination above change) of AUPRC is equal to the fraction of positives. The baseline

AUPRC of our study is 0.145, indicating that 14.5% of the patients underwent revision ESS.

The baseline values for the AUROC and AUPRC metrics were confirmed for our data by train-

ing and testing the models using randomised label data (Table A in S3 File).

Precision refers to the number of true positive results divided by the number of all positive

results, including those not identified correctly. In this study, precision refers specifically to

the ability of a model to identify only revision patients. Sensitivity, by comparison, indicates

the number of true positive results divided by the number of all samples that should have been

identified as positive. In this study, then, sensitivity refers specifically to the ability of the

model to identify all of the revision patients. Specificity is the number of true negative results

divided by the number of all samples that should have been identified as negative. In this

study, specificity specifically refers to the ability of the model to identify all patients not need-

ing revision. Finally, the F1 score represents the harmonic mean between the precision and

sensitivity. Precision, sensitivity, specificity and F1 score are calculated using the following

equations:

Precision ¼
TP

TP þ FP
ð2Þ

Sensitivity ¼
TP

TP þ FN
ð3Þ

Specificity ¼
TN

TN þ FP
ð4Þ

F1 � score ¼
Precision � Sensitivity
Precisionþ Sensitivity ð5Þ

where TP is the number of true positives predicted by the classifier, FP is the number of false

positives, FN is the number of false negatives and TN is the number of true negatives.

Software

We used seven Python packages—sklearn [33], xgboost [34], mlxtend [35], numpy [36], pandas
[37], shap [25, 38] and pdpbox [39]—to implement the classifiers and compute the perfor-

mance values and model interpretations. SFS was computed using the ‘SequentialFeatureSelec-

tor’ function in the mlxtend package. The classifiers of random forest, logistic regression and

gradient boosting were implemented using functions from the sklearn.linear_model, sklearn.

ensemble and xgboost packages. The grid search for the hyperparameters was conducted using

the ‘GridSearchCV’ function in the sklearn.model_selection package. We computed the Shapley

values using the ‘TreeExplainer’ function in the shap package. Partial dependency plots
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(PDPs) were created using the ‘pdp_isolate’ function in the pdpbox package. The packages of

numpy and pandas were used for data reading and processing.

Results

The CRS patient population which underwent baseline ESS (n = 767), included 448 (58%)

females, ranging in age from 16 to 90 years. Table 2 summarises the patient characteristics and

the proportion who did and did not undergo revision ESS. The following comorbidities signif-

icantly associated with patients who underwent revision ESS during follow-up: doctor-diag-

nosed lung function test-confirmed asthma, CRSwNP, allergies, chronic respiratory disease,

EHR text-based NERD and immunodeficiency or a suspicion of immunodeficiency. The fol-

lowing continuous variables significantly associated with revision ESS: an older age, a shorter

time from the baseline visit to baseline ESS, a higher frequency of visits between the baseline

visit and baseline ESS and a higher number of visits from the baseline ESS to 3 months postop-

eratively, 6 months postoperatively and 12 months postoperatively, respectively.

Univariate analyses

Table 3 presents the results of the univariate logistic regression models to predict revision ESS

following baseline ESS. Results represent the average of 10 reformulations from the training

and test folds (Fig 3b). Among continuous variables, the highest AUROC values were for the

number of visits 12, 6, and 3 months following baseline ESS (AUROC = 0.77, 0.70, 0.66, respec-

tively). The next highest AUROC values were for the time between the baseline visit and base-

line ESS (AUROC = 0.59) and for the frequency of visits between the baseline visit and baseline

ESS (AUROC = 0.58). Among categorical variables, the highest AUROC values were for

asthma (AUROC = 0.65), CRSwNP (AUROC = 0.64), immunodeficiency or a suspicion of it

(AUROC = 0.61), allergies (AUROC = 0.60), chronic respiratory diseases (AUROC = 0.59) and

NERD (AUROC = 0.59). We also found that the odds ratios (ORs) for continuous variables all

exceeded 1.0 with one exception, indicating that a higher number of visits and greater fre-

quency of visits and a shorter time between baseline visit and baseline ESS increased the proba-

bility of a revision ESS.

Machine learning classifier comparison

The plots in Fig 4 show the AUROC values for the classifiers of random forest, logistic regres-

sion and gradient boosting as a function of the number of variables. We applied the SFS

method to select variables collected from the baseline visit until six months after the baseline

ESS. Results are reported as the averages from 10 reformulations from the training and test

folds (see Fig 3a). The AUROC values first increased rapidly and then reached a plateau as a

function of the number of variables. For the logistic regression classifier, the highest average

AUROC (0.744) was achieved using six variables. For the gradient boosting classifier, the high-

est AUROC (0.741) was with eight variables. For the random forest classifier, the highest

AUROC (0.737) was with 11 variables. The AUPRC values for the same number of variables

were 0.354, 0.348 and 0.378, respectively. The baseline AUROC and AUPRC values (presenting

discrimination above chance) calculated using the random classifier were 0.499, 0.472 0.489

and 0.149, 0.151 0.149 (Table A in S3 File). The performance of the ensemble model in which

the logistic regression, random forest and gradient boosting classifiers were combined was

comparable with the performance of each individual classifier (Table A in S4 File). Tables 4

and 5 summarise the AUROC, AUPRC, sensitivity and specificity values as a function of the

number of variables.
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Table 6 presents the variables selected using SFS in order of the rank scores calculated using

Eq 1. When using any of the three classifiers, the following variables resulted in high rank

scores, indicating their importance as predictors of revision ESS: the number of visits six

months after baseline ESS, CRSwNP, asthma and NERD. In addition, the frequency of visits

from the baseline visit to baseline ESS and the number of visits before the baseline ESS

emerged as important predictors.

Effect of the data collection time

The effect of the length of time for data collection on the model’s ability to predict the risk of

revision ESS was evaluated using the logistic regression classifier. Fig 5 presents the AUROC

Table 3. Odds ratios (ORs) and performance values (AUROC, sensitivity, specificity and F1 score) for predicting a revision ESS using different variables in univari-

ate logistic regression models.

Variable OR (95% CI) AUROC (95% CI) Sensitivity (Avg) Specificity (Avg) F1 score (Avg)

Number of visits from the baseline ESS to 12 months

postoperatively

112.62 (105.62–

120.09)

0.77 (0.76–0.78) 0.58 0.80 0.43

Number of visits from the baseline ESS to 6 months

postoperatively

38.3 (36.03–40.71) 0.7 (0.69–0.7) 0.55 0.72 0.34

Number of visits from the baseline ESS to 3 months

postoperatively

10.18 (9.58–10.81) 0.66 (0.65–0.66) 0.54 0.65 0.30

Asthma 2.51 (2.44–2.59) 0.65 (0.64–0.66) 0.60 0.65 0.32

CRSwNP 2.61 (2.54–2.68) 0.64 (0.63–0.65) 0.56 0.64 0.31

Immunodeficiency or its suspicion 3.46 (3.32–3.62) 0.61 (0.6–0.61) 0.50 0.63 0.28

Allergy 1.81 (1.76–1.86) 0.6 (0.59–0.61) 0.55 0.58 0.27

Chronic respiratory diseases 1.49 (1.45–1.53) 0.59 (0.58–0.6) 0.57 0.57 0.27

NERD 2.4 (2.33–2.48) 0.59 (0.58–0.6) 0.45 0.63 0.26

Obstr sleep apnea 1.37 (1.32–1.43) 0.58 (0.57–0.59) 0.55 0.55 0.26

Visit frequency between the baseline visit to the baseline ESS 1.43 (1.32–1.55) 0.58 (0.57–0.58) 0.56 0.55 0.26

Time from the baseline visit to the baseline ESS (days) 0.43 (0.4–0.46) 0.58 (0.57–0.58) 0.55 0.57 0.27

Age, baseline ESS 2.12 (1.99–2.25) 0.58 (0.57–0.58) 0.54 0.55 0.26

Mouth breathing 1.59 (1.51–1.68) 0.58 (0.57–0.59) 0.56 0.56 0.27

Immunodeficiency 1.53 (1.42–1.66) 0.58 (0.57–0.58) 0.56 0.55 0.27

Cardiovascular disease 1.33 (1.29–1.37) 0.58 (0.57–0.59) 0.52 0.56 0.26

Gastroesophageal reflux 1.4 (1.34–1.46) 0.57 (0.56–0.58) 0.53 0.55 0.26

Cancer 1.18 (1.14–1.23) 0.57 (0.56–0.58) 0.53 0.55 0.26

Gender female 0.99 (0.97–1.02) 0.57 (0.56–0.57) 0.55 0.55 0.26

Musculoskeletal diseases 1.14 (1.11–1.18) 0.57 (0.56–0.57) 0.52 0.54 0.24

ASA value 1.43 (1.38–1.49) 0.57 (0.56–0.58) 0.54 0.55 0.26

Diabetes 1.05 (1.01–1.09) 0.57 (0.56–0.58) 0.55 0.54 0.26

Number of visits from the baseline to the baseline ESS 1.1 (1.03–1.17) 0.57 (0.56–0.58) 0.55 0.55 0.26

Obesity 0.72 (0.68–0.77) 0.57 (0.56–0.58) 0.55 0.55 0.26

Number of visits before the baseline ESS (0–12 months) 1.01 (0.94–1.09) 0.57 (0.56–0.58) 0.55 0.55 0.26

Number of visits before the baseline ESS (0–6 months) 1.73 (1.6–1.87) 0.57 (0.57–0.58) 0.53 0.56 0.26

Mental disorders 0.92 (0.89–0.96) 0.57 (0.56–0.57) 0.53 0.55 0.26

Memory disorders 1.06 (0.98–1.15) 0.57 (0.56–0.58) 0.55 0.54 0.26

ESS = Endoscopic sinus surgery, OR = Odds ratio, 95% CI = 95% Confidence interval, AUROC = Area under the receiver operating characteristics curve, Avg. =

Average, F1-score = Harmonic mean between precision and sensitivity, CRSwNP = Chronic rhinosinusitis with nasal polyps, NERD = Non-steroidal anti-inflammatory

drug –exacerbated respiratory disease, ASA-value = American Society of Anesthesiology score (= a metric to determine if someone is healthy enough to tolerate surgery

and anesthesia).

https://doi.org/10.1371/journal.pone.0267146.t003
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values when the data collection time period was from the baseline visit to the baseline ESS or

until 3, 6 or 12 months after baseline ESS. Table 7 summarises the AUROC, AUPRC, sensitiv-

ity, specificity and F1 score values. The highest performance (AUROC = 0.784) was, as

expected, found in the model that included a 12-month follow-up period, because more infor-

mation was available in that model compared with models using 3- or 6-month follow-up peri-

ods or no follow-up period at all. The sensitivity for the 12-month model reached 0.61,

Fig 4. AUROC values as a function of the number of variables used to predict revision ESS. We used three models

and the classifiers in these models were logistic regression, gradient boosting and random forest for predicting revision

ESS. AUROC, area under the receiver operating characteristics curve; ESS, endoscopic sinus surgery.

https://doi.org/10.1371/journal.pone.0267146.g004

Table 4. AUROC and AUPRC values as a function of the number of variables for predicting revision ESS. We selected variables using the sequential forward selection

(SFS) method. Three models were used and the classifiers in these models were the logistic regression (LR), gradient boosting (GB) and random forest (RF) for predicting

revision ESS. Table 4 (AUROC values) is related to Fig 4.

Number of variables AUROC LR AUROC GB AUROC RF AUPRC LR AUPRC GB AUPRC RF

1 0.652 0.628 0.606 0.327 0.322 0.317

2 0.726 0.703 0.683 0.332 0.345 0.326

3 0.738 0.722 0.656 0.341 0.341 0.298

4 0.740 0.723 0.678 0.350 0.356 0.312

5 0.735 0.727 0.701 0.347 0.368 0.318

6 0.744 0.731 0.719 0.354 0.360 0.319

7 0.739 0.730 0.722 0.347 0.352 0.339

8 0.730 0.741 0.723 0.344 0.378 0.334

9 0.731 0.724 0.732 0.343 0.351 0.352

10 0.730 0.731 0.727 0.343 0.365 0.339

11 0.733 0.726 0.737 0.345 0.351 0.348

12 0.734 0.724 0.733 0.338 0.360 0.349

13 0.727 0.737 0.720 0.331 0.366 0.347

14 0.726 0.722 0.729 0.334 0.349 0.342

15 0.730 0.725 0.736 0.336 0.343 0.337

AUROC = Area under the receiver operating characteristics curve, AUPRC = Area under the precision recall curve, ESS = Endoscopic sinus surgery.

https://doi.org/10.1371/journal.pone.0267146.t004
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indicating that the model identified 61% of patients needing revision ESS. The specificity for

the 12-month model reached 0.79, indicating that 79% of patients classified as negative did not

need revision ESS.

Interpretability analysis

For the model interpretability analysis, we trained the gradient boosting classifier using the

variables collected from the baseline visit until 6 months following baseline ESS employing the

data flow from Fig 3b. Fig 6 illustrates the variables sorted based on the highest sum from the

absolute Shapley values across all patients. The distributions of the data points on the plots

show the impact of each variable on the classifier output. We found that a high number of vis-

its after baseline ESS and a short time interval between the baseline visit and baseline ESS both

increased the revision ESS risk. In addition, CRSwNP, asthma and allergies increased the revi-

sion ESS risk. The Shapley values revealed that patient age and the frequency of clinical visits

from baseline visit to baseline ESS (that is, the time period from the baseline visit to the base-

line ESS and the number of visits before baseline ESS) affected the revision ESS risk in a non-

monotonic manner. That is, the red values (the higher than the average values) of these

variables are dispersed on both sides of the scale.

Fig 7 shows the PDPs for the ten variables with the highest Shapley values. The PDP plot for

the number of visits 6 months following baseline ESS revealed a wide risk score range, from a

value of 0.1 for patients with less than two visits following baseline ESS up to a value of about

0.26 for patients with more than seven visits (Fig 7b). Similarly, if the patient had two or more

postoperative visits within 3 months, the risk score for revision ESS increased (Fig 7g). The

plot for the time between the baseline visit and baseline ESS revealed a sharp drop in the risk

score after about 100 days (Fig 7f). When the time between the baseline visit and ESS was less

than 100 days, the risk score was about 0.15. When the time increase to>500 days, the risk

score decreased to<0.13. The PDP curve for age was nonmonotonic and the risk scores varied

Table 5. Sensitivity and specificity values as a function of the number of variables for predicting revision ESS. We selected variables using the sequential forward selec-

tion (SFS) method. Three models were used and the classifiers in these models were the logistic regression (LR), gradient boosting (GB) and random forest (RF) for pre-

dicting revision ESS.

Number of variables Sensitivity LR Sensitivity GB Sensitivity RF Specificity LR Specificity GB Specificity RF

1 0.455 0.306 0.370 0.795 0.914 0.825

2 0.621 0.330 0.542 0.693 0.921 0.696

3 0.609 0.373 0.527 0.745 0.919 0.686

4 0.621 0.427 0.518 0.759 0.887 0.745

5 0.636 0.400 0.485 0.752 0.907 0.781

6 0.618 0.427 0.485 0.752 0.884 0.794

7 0.618 0.352 0.485 0.756 0.915 0.817

8 0.615 0.418 0.458 0.757 0.899 0.826

9 0.618 0.391 0.512 0.753 0.896 0.796

10 0.621 0.394 0.479 0.750 0.905 0.826

11 0.615 0.364 0.455 0.757 0.917 0.820

12 0.579 0.433 0.442 0.760 0.886 0.832

13 0.567 0.355 0.476 0.765 0.914 0.818

14 0.567 0.367 0.445 0.763 0.912 0.822

15 0.573 0.373 0.461 0.764 0.896 0.835

ESS = endoscopic sinus surgery.

https://doi.org/10.1371/journal.pone.0267146.t005
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from 0.1 for patients aged 16 to 30 years to about 0.14 for patients aged 70 to 90 years (Fig 7e).

The risk score was 0.16 for patients aged 30 to 65 years. Furthermore, the number of visits

between the baseline visit and baseline ESS was nonmonotonic. Patients with 10 to 25 visits

between the baseline visit and baseline ESS exhibited a smaller risk for revision ESS than

patients with fewer than 10 visits or for patients with more than 25 visits (Fig 7j).

We also detected a moderate correlation between the number of days from the baseline

visit to the baseline ESS and the number of visits (p< 0.001, correlation coefficient r = 0.51

from the Pearson’s linear correlation test). Yet, the correlation was weak between the number

Table 6. The top ten variables in prediction capacity of revision ESS. Three models were used and the classifiers of

the three models were the logistic regression, gradient boosting and random forest for predicting revision ESS. We

used the sequential forward selection (SFS) method to select the top performing variables. In each SFS run, the best var-

iable was awarded 15 points, the next best variable 14 points and so on. Ten runs were performed using each of the

three classifiers. The rank score represents the sum of points (range, 0–150 points).

Classifier Variables Rank score

Logistic regression Number of visits from the baseline ESS to 6 months postoperatively 148

CRSwNP 112

Asthma 111

Immunodeficiency or its suspicion 87

NERD 63

Number of visits before the baseline ESS (0–12 months) 55

Visit frequency between the baseline visit to the baseline ESS 52

Age, baseline ESS 49

Gastroesophageal reflux 46

Number of visits from the baseline ESS to 3 months postoperatively 41

Gradient boosting Number of visits from the baseline ESS to 6 months postoperatively 149

CRSwNP 134

Asthma 100

Memory disorders 98

Obesity 80

Number of visits before the baseline ESS (0–12 months) 78

NERD 58

Immunodeficiency or its suspicion 52

Mental disorders 47

Immunodeficiency 37

Random forest Number of visits from the baseline ESS to 6 months postoperatively 148

Asthma 122

CRSwNP 90

Visit frequency between the baseline visit to the baseline ESS 72

Age, baseline ESS 70

Immunodeficiency or its suspicion 68

Diabetes 68

Memory disorders 63

Cancer 55

NERD 53

AUROC = Area under the receiver operating characteristics curve, ESS = Endoscopic sinus surgery,

CRSwNP = Chronic rhinosinusitis with nasal polyps, NERD = Non-steroidal anti-inflammatory drug –exacerbated

respiratory disease.

https://doi.org/10.1371/journal.pone.0267146.t006
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of days from the baseline visit to the baseline ESS and the following variables: age (r = 0.14),

CRSwNP (r = 0.06), asthma (r = 0.19) and immunodeficiency (r = −0.00).

Discussion

This study aimed to identify individual-level risk factors associated with revision ESS among

CRS patients through the use of machine-learning algorithms. Personalised risk assessment is

a process whereby an individual’s level of risk is calculated using multiple predictors [40]. Per-

sonalised risk communication represents a process through which the results of an individual’s

risk assessment are tailored to their preferences and for specific uses [40]. In part, we identified

previously unpublished important predictors of revision ESS, such as a high number of visits

before and after baseline ESS as well as a short time interval between the baseline visit and

baseline ESS. Our data also demonstrated that demographic variables such as age, Type 2 high

diseases (CRSwNP, asthma and NERD) and immunodeficiency or a suspicion of it were

important predictors of revision ESS at the individual level. These findings agree with previous

Fig 5. Receiver operating characteristics curves (ROC) to predict revision ESS. We used the logistic regression

classifier in the four models, which used four different data collection time periods. The data collection time periods (0,

3, 6 or 12 months) indicate the times during which data were collected after baseline ESS. ESS, endoscopic sinus

surgery.

https://doi.org/10.1371/journal.pone.0267146.g005

Table 7. Average performance values using all of the variables to predict revision ESS by using different data collection time periods in the logistic regression mod-

els. The data collection time periods (0, 3, 6 or 12 months) indicate the time during which data were collected after baseline ESS. See also Fig 5.

Model AUROC (95% CI) AUPR (95% CI) Sensitivity (95% CI) Specificity (95% CI) F1-score (95% CI)

0 months 0.682 (0.648–0.716) 0.259 (0.231–0.287) 0.552 (0.48–0.623) 0.714 (0.677–0.751) 0.337 (0.307–0.367)

3 months 0.715 (0.681–0.749) 0.316 (0.271–0.361) 0.606 (0.538–0.675) 0.732 (0.702–0.763) 0.377 (0.345–0.409)

6 months 0.744 (0.707–0.781) 0.354 (0.303–0.404) 0.618 (0.561–0.675) 0.752 (0.73–0.773) 0.398 (0.367–0.429)

12 months 0.784 (0.756–0.813) 0.411 (0.352–0.471) 0.606 (0.547–0.665) 0.787 (0.762–0.813) 0.422 (0.379–0.464)

ESS = Endoscopic sinus surgery, 95% CI = 95% Confidence interval, AUROC = Area under the receiver operating characteristics curve, AUPRC = Area under the

precision recall curve, F1-score is the harmonic mean between precision and sensitivity.

https://doi.org/10.1371/journal.pone.0267146.t007
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observations at the population level [41]. In addition, our findings reinforce the importance of

diagnostics and the management of NERD, nasal polyps, asthma and other comorbidities in

preventing uncontrolled CRS.

In terms of clinical implications, our findings may prove relevant to patient counselling, fol-

lowing up on and planning treatment, such as that of biological therapy [12]. However, valida-

tion studies for these results remain necessary. Personalised risk communication has

previously proven effective in clinical decision-making, such as in COVID-19 diagnostics [42],

patient selection for cardiac resynchronisation therapy [43] and in organising follow-up for

patients receiving adjuvant endocrine therapy [44].

To our knowledge, machine learning models have not been previously used to predict revi-

sion ESS among CRS patients. Machine learning, however, has previously been used in aller-

gology and related research [45], including in the prediction of persistent early childhood

asthma [46], eosinophilic esophagitis [47], eosinophilic CRS [48] or osteomeatal complex

inflammation [49]. In addition, machine learning has found applications in predicting postop-

erative outcomes for degenerative cervical myelopathy [50], revision surgery following knee

replacement [51], prolonged opioid prescription following surgery for lumbar disc herniation

[52], blood transfusion following adult spinal deformity surgery [53], surgical infections [54]

and olfactory recovery after ESS [55]. None of these previous studies, however, have presented

models designed to predict revision ESS at the individual level. Revision ESS risk has previ-

ously been studied at the population level relying instead on traditional statistical models such

Fig 6. Shapley values (SHapley Additive exPlanations, SHAP) for the ten most important variables predicting revision ESS. The gradient boosting

algorithm was used as the classifier. The definition of the ten most important variables is based on the sum of the absolute Shapley values. The red points

indicate higher patient-specific variable values than the average value of the variable and, the blue points indicate lower patient-specific variable values than the

average value for the variable. A longer distance between a red and blue point indicates a better capacity of the variable to predict revision ESS. ESS, endoscopic

sinus surgery; CRSwNP, chronic rhinosinusitis with nasal polopys.

https://doi.org/10.1371/journal.pone.0267146.g006
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as Cox’s proportional hazard models [13, 15, 16] or logistic regression models [14, 15, 18, 20].

Such studies have assumed associations are linear and that an alpha error<5% indicates the

importance of a predictor.

We found that a greater number of visits, a higher frequency of visits and a shorter time

period between the baseline visit and baseline ESS all associated with revision ESS. This might

Fig 7. Partial dependence plots (PDP) for predicting revision ESS using the gradient boosting classifier of the ten variables with the highest SHAP values

(Shapley or SHapley Additive exPlanations). ESS, endoscopic sinus surgery; CRSwNP, chronic rhinosinusitis with nasal polyps. See also Fig 6.

https://doi.org/10.1371/journal.pone.0267146.g007
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reflect that patients with a high number of visits exhibit more uncontrolled CRS and thus may

ultimately undergo revision ESS. In other words, our findings suggest that an increasing num-

ber of visits before ESS might signal more severe disease, which affects not just the physician’s

and but also the patient’s decision regarding ESS at baseline as well as the revision ESS during

follow-up. These results indicate that patients who achieved control of disease following base-

line ESS did not require further follow-up visits through tertiary care centres and were unsub-

scribed from the hospital. Patients with ongoing problems, however, tend to visit the clinic

more frequently and exhibit a higher probability of ultimately undergoing revision ESS. We

found little evidence in the literature on the predictive potential of visits at the individual level.

A retrospective cohort study from the USA (n = 6985) revealed that the number of postopera-

tive outpatient visits associated with revision surgery for anterior cruciate ligament reconstruc-

tions [56], findings similar to ours, albeit different types of surgeries and at a population level.

Our findings indicate that patients with a higher frequency of visits at baseline exhibit a higher

risk only partially controlled by surgery might prove helpful when counselling patients.

Our study also showed that CRSwNP, asthma and NERD represent important predictors of

revision ESS at the individual level. In accordance with this, previous studies demonstrated at

the hospital population level that several factors associate with CRS recurrence and/or revision

ESS, including CRSwNP, asthma, allergic rhinitis, NERD, eosinophilia and smoking [1, 13, 57,

58]. CRSwNP patients with a comorbidity of asthma and/or NERD carry an increased risk for

recurrence and revision ESS, although these patients appear to benefit from an initial ESS [19,

41, 59–61]. This finding may reflect more severe disease, typically presenting with comorbidi-

ties for NERD, anosmia, Type 2 high eosinophilic inflammation and a higher likelihood of

polyp regrowth [5, 57, 62–70]. In SFS, immunodeficiency or a suspicion of it also emerged as

one of the top ten predictors in all three classifiers. Immunodeficiency increases the risk of

infectious exacerbations and uncontrolled CRS, thereby also increasing the risk of revision

ESS. This agrees with a previous study that demonstrated that at the hospital population level

immunodeficiency and granulomatosis with polyangiitis increase the revision ESS risk [71].

While the variable ‘suspicion of immunodeficiency’ is not the same as a diagnosed immunode-

ficiency, it might indirectly reflect a similar situation regarding poor CRS control, leaving a

physician to suspect a rare comorbidity or allowing consideration for the need of revision ESS.

We also demonstrated that the length of time for EHR data collection increased the predic-

tive accuracy of the models. The time period for data collection from the baseline visit until 12

months following the baseline ESS carried the highest predictive accuracy in our models. The

time interval for data collection for the model serves to optimise the time required following

baseline ESS and model accuracy.

We validated the predictive accuracy using three classifiers. To do, we chose to use logistic

regression, gradient boosting and random forest classifiers since they possess different proper-

ties and generally have been used in predicting surgical outcomes [50, 72] or persistent asthma

[46]. The logistic regression classifier is linear and thus incapable of modelling possible non-

monotonic and nonlinear relationships between predictors and outcomes [73]. The random

forest and gradient boosting classifiers can model complex relationships, but they represent

so-called black box models, meaning that are uninterpretable classifiers, whereby the relation-

ships between inputs and results are difficult to directly interpret beyond the parameters or the

structure of the trained model [73]. Since the predictive accuracy of the variables was similar

across the three classifiers in our study, we used logistic regression primarily to validate the

variable collection time period. Overall, our findings indicate the importance of validating out-

come prediction using different classifiers and evaluating the effect of the data collection time

period, as suggested in previous studies [74, 75]. By evaluating different classifiers, we found

that a simple and interpretable logistic regression model may prove adequate for clinical
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application. However, if modelling requires nonlinear relationships, then random forest or

gradient boosting models can be used. Classification performance proved comparable across

all classifiers.

Revision ESS risk was previously studied at the population level using Cox’s proportional

hazard [13, 15, 16] or logistic regression [14, 15, 18, 20] models, which usually assume associa-

tions are linear and that an alpha error <5% indicates the importance of a predictor. Using

these assumptions, previous studies have demonstrated that a younger age associated with

revision ESS [13, 66]. We found that age actually affects revision ESS risk in a nonmonotonic

manner, thus indicating that machine learning improves the prediction potential of age in

revision ESS risk. Similarly, nonlinear approaches have significantly improved the prediction

of stroke risk [76].

Both our own and previous study groups have examined populations of CRSwNP [66] or

CRS [13] patients. In our study, we found that age actually affects revision ESS risk in a non-

monotonic manner. Thus logistic regression models appear less than ideal for examining the

impact of the individual patient’s age on revision ESS risk. By performing partial dependency

plot analyses, we showed that the revision ESS risk was highest for patients aged 30 to 70 years,

and medium high for patients older than 70 years, whereas the risk was lowest among patients

aged 16 to 30 years. Younger patients experience less CRSwNP or CRSwNP among such

patients often comprises antrochoanal polyps, which carry a smaller revision surgery risk [1].

Furthermore, the number of visits before baseline ESS carried nonlinear effects as predic-

tors in our study. Patients logging 10 to 25 clinical visits between the baseline visit and baseline

ESS exhibited a lower risk for revision ESS than patients with fewer than 10 or more than 25

clinic visits. Those patients visiting the clinic 10 to 25 times before baseline ESS may have

CRSsNP with acute recurrent exacerbations. However, this subgroup warrants further study in

order to confirm this assumption, since the number of subjects in our study was rather small.

We can speculate that some physicians may schedule more frequent follow-up visits even with

sufficient disease control. That said, consistent practices have been employed in our hospital,

the clinical visit frequencies are closely monitored and routine controls are not reserved. Thus

we argue that a visit frequency�2 per year reflects relatively poor disease control. Previous

studies found that CRSwNP patients with recurrent acute rhinosinusitis episodes benefit from

an initial ESS [1]. Previous studies on other conditions and on other predictors revealed a U-

shaped association between the predictor variable and outcome, including associations

between intraoperative net fluid balance and early atrial tachyarrhythmia recurrence [77] as

well as between body mass index and asthma in Japanese children [78]. These findings high-

light the importance of evaluating the linearity of associations to improve the personalised pre-

dictive value of them.

The strengths of this study include the random sample of hospital patients, the long follow-

up time period we captured and the discovery of nonlinear associations between certain vari-

ables and outcomes. In addition, the novelty of this study lies in the validation of models

employing several classifiers, which were also tested at the individual level.

We should also mention several limitations to our study, which include changes which

occurred in ESS and CRS care during the sampling time period. To minimise the impact of

any possible chronological or seasonal bias, we spread the sampling time over several baseline

years (2005, 2007, 2009, 2011 and 2013) and each month during the baseline year. Patients

with recurrence may have sought treatment elsewhere, although this potential bias was mini-

mal since over 90% of ESS are performed in public healthcare settings [79]. In this study, we

were authorised to extract data from a relatively small number of patients. However, this limi-

tation was addressed by using cross-validation methods. Unfortunately, we did not process

time series variables. Thus, recurrent neural network type models such as long short-term
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memory (LSTM) or bidirectional LSTM could not be used to predict revision ESS risk. EHR

data have been available in our hospital since 2005. We acknowledge that the baseline ESS

does not always indicate the first ESS. As such, we lacked data for possible earlier ESS, which

we have previously shown to affect the revision ESS risk on a population level [13]. Further-

more, data were lacking for some other important factors, such as postoperative treatment, val-

idated symptoms, endoscopic nasal polyp score, medication, the Lund Mackay score for sinus

computed tomography scans, smoking status, eosinophils and the extent of baseline ESS. Yet,

some of these variables, such as smoking [13] or total ethmoidectomy, have not emerged as

strong predictors of revision ESS compared with Type 2 high diseases [57] in our previous

studies. That said, we acknowledge that the inclusion of more variables and additional cases

would most likely improve our estimates. Therefore, before extrapolating our results to clinical

practice, replication studies in other populations and with additional variables are needed.

Conclusions

Our results indicate that Type 2-high conditions (CRSwNP, asthma and NERD), a high clinical

visit frequency, a short time interval between the baseline clinic visit and ESS and immunode-

ficiency or a suspicion of it increase the likelihood of revision ESS at the individual level. More-

over, age and the number of preoperative clinical visits predict a nonlinear revision ESS risk.

Although these findings require validation in other populations, our results reinforce the

importance of diagnostics and the management of NERD, CRSwNP, asthma and other comor-

bidities to prevent uncontrolled CRS, and carry relevancy for patient counselling specifically.
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