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Abstract: An important stage in the process of discovering new drugs is when candidate molecules
are tested of their efficacy. It is reported that testing drug efficacy empirically costs billions of dollars
in the drug discovery pipeline. As a mechanism of expediting this process, researchers have resorted
to using computational methods to predict the action of molecules in silico. Here, we present a
way of predicting the therapeutic-use class of drugs from chemical structures only using graph
convolutional networks. In comparison with existing methods which use fingerprints or images
as training samples, our approach has yielded better results in all metrics under consideration. In
particular, validation accuracy increased from 83–88% to 86–90% for single label tasks. Similarly,
the model achieved an accuracy of over 88% on new test data. Finally, our multi-label classification
model made new predictions which indicated that some of the drugs could have other therapeutic
uses other than those indicated in the dataset. We performed a literature-based evaluation of these
predictions and found evidence that validates them. This renders the model a potential tool to be
used in search of drugs that are candidates for repurposing.

Keywords: medical subheading; drug function; drug repurposing; graph convolutional networks

1. Introduction

Computational approaches are being widely explored in their use towards drug
discovery, a process which has often been costly and time consuming [1–3]. One way to
circumvent the arduous drug discovery process is to explore whether existing drugs could
be used to treat other conditions other than those originally intended. This is known as
drug repurposing. Drug repurposing reduces the cost to find new treatments for diseases,
cuts short on time to do so, and has lower risk [3,4]. By using computational methods
to identify the functions of drug compounds from chemical structures only, the drug
repositioning and drug discovery process is accelerated further. This is the essence of
this work.

Early work involving in silico methods in drug therapeutic-use class prediction strove
to predict transcriptional response with functional properties of drugs [5–7]. The work
presented in [8] attempted this by classifying drugs into therapeutic-use classes with deep
neural networks solely based on transcriptional profiles. The limitation with these methods
is that they require compounds to have associated transcriptomic measurements which
may not be available. More recently, it was shown in [9] that chemical structures alone
are effective predictors of therapeutic-use classes. In this work, the authors presented two
methods. The first one involved training convolutional neural networks (CNN) using chem-
ical images that represent the drugs. The images, which capture the drugs’ spatial chemical
structure, were obtained using the open-source cheminformatics software RDKit [10]. This
method was named IMG + CNN. The other method used Morgan fingerprints (MFPs) [11]
to train random forests (RFs) [12] classifiers. This was called MFP + RF.
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This work demonstrates the use of graph convolution networks in conjunction with
graph representation of molecules based on their chemical structure to predict therapeutic-
use classes. We chose to use graph-based representation of molecules because, by their very
nature, drug molecules are graphs in which atoms are nodes and bonds correspond to edges.
In addition, graph-based methods have provided good results in related areas such as
predicting polypharmacy side effects [13], identifying drug repurposing opportunities [14],
and in various areas of a molecular machine learning benchmark [15]. Although this
work confirms that chemical structures alone are effective Medical SubHeading (MeSH)
predictors, ostensibly it accentuates that, for this task, graph-based features and models
are more effective than both images used together with CNN and molecular fingerprints
used in conjunction with random forests. Our hypothesis is based on the fact that models
trained on chemical images alone will not capture information beyond that provided in
chemical images’ spatial structures. This was first observed in [16] where the authors
noted that deep learning models’ performance improved by simply augmenting the same
models with just three additional chemical properties which indicates that images alone
might be incapable of capturing important chemical features. However, it is vital to note
that the optimal way to represent chemical compounds to yield the best results using
deep learning is still undetermined. Our more important contribution, however, is that
our models make accurate predictions on test data and provide means for repurposing
existing drugs. Here is how. We trained and validated our models on data, presented
in [9], that were downloaded on 2 October 2018 and then tested them on new data that we
downloaded from PubChem [17] on 28 January 2021. Only drugs that were not included
in the initial dataset constituted the test set. Finally, our multi-label classification model
has made new drug class predictions that were not available in test data but some of them
have now been confirmed in literature. These confirmed predictions support the fact that
the model is making meaningful predictions, thus making it an acceptable tool used for
drug repurposing.

2. Materials and Methods
2.1. Overview of Our Approach

We have formulated the task to predict the MeSH class to which a drug belongs as a
graph classification problem. More specifically, we have considered two main cases. Firstly,
a case where each drug belongs to a single MeSH class only. This has been framed as a
single label classification task. For this task, each drug has a single label in the entire dataset.
In another case, a drug may belong to one or more MeSH classes. This has been framed as
a multi-label classification task. The single label classification task is further subdivided
into three task subgroups—3, 5, and 12. In the three-task subgroup, only drug compounds
belonging to the central nervous system, antineoplastic, and cardiovascular MeSH classes
were considered. In the five-task subgroup, gastrointestinal and anti-infective agents were
included. Finally, in the 12-task subgroup, drugs belonging to all 12 MeSH classes were
considered. A full list of the MeSH classes under consideration is provided in Table 1. The
setup of these task subgroups is in line with what was conducted in [9] so that we can
provide a comparison in performance of the models that is as fair as possible.
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Table 1. Summary of the distribution of 6995 training samples and 1698 test samples. The test samples
consisted of drug compounds that were not present in the training samples. The classification tasks
to which drug compounds belonging to each MeSH class were subjected is provided under ‘Task
Subgroups’. The 3-task subgroup means drug compounds belonging to the first three MeSH classes
presented in the table were used in the single label classification task. Similarly, drugs belonging to
the first five MeSH classes were used in the five-task subgroup single label classification task. In
addition, all drugs were used in the 12-task subgroup single label classification. The integer values
appearing under ‘Label’ are used to represent each MeSH class during modeling for single label tasks.

MeSH Class Label Training Samples Test Samples * Task Subgroups

Central Nervous System 0 1139 176 (0.13) 3, 5, 12
Antineoplastic 1 1177 347 (0.23) 3, 5, 12
Cardiovascular 2 788 152 (0.16) 3, 5, 12
Gastrointestinal 3 258 46 (0.15) 5, 12
Anti-infective 4 2398 776 (0.24) 5, 12

Reproductive Control 5 148 33 (0.18) 12
Lipid Regulating 6 164 21 (0.11) 12

Hematologic 7 267 47 (0.15) 12
Respiratory System † 8 101 8 (0.07) 12
Anti-inflammatory 9 373 64 (0.15) 12

Urological 10 26 10 (0.28) 12
Dermatological 11 115 18 (0.14) 12

* The value in parentheses represents the proportion of the test drug compounds over the total number of drug
compounds in that MeSH class, i.e., x

x+y where x is the number of drugs in the test set and y is the number of

drugs in the training set. † Respiratory system agents presented the least proportion of drugs used in the test set,
about 7% only.

2.2. Data Preparation and Processing
2.2.1. Acquiring Data

Drug therapeutic use classes can be found in the Medical Subject Headings (MeSH)
thesaurus which is a controlled and hierarchically organized vocabulary produced by the
National Library of Medicine. The PubChem substance and compound databases [17]
website contains data classifying drugs into several MeSH classes. Data for training and
validation purposes were obtained from the work presented in [9]. They downloaded this
data from PubChem on 2 October 2018. We obtained the processed version of this data
from their GitHub repository https://github.com/jgmeyerucsd/drug-class on 21 January
2021. There was a total of 6995 drug molecules that belonged to one MeSH class only.
These were used for the single label classification tasks. A summary of the distribution
of these is provided in the Training Samples column in Table 1. Another set containing
8336 drug molecules that belonged to one or more MeSH classes formed the set used for
the multi-label classification task. The data for the test set was obtained directly from
PubChem. To download the data, we followed the path: Browse data > Chemicals and
Drugs Category > Chemical Actions and Uses > Pharmacologic Actions > Therapeutic
Uses. We downloaded this set on 28 January 2021. Only drugs belonging to the 12 MeSH
classes that appear in Table 1 were considered. The majority of the drug compounds in
the new set were duplicates of those available in the training set. All such duplicates were
removed from the new set. The remaining drug compounds comprised the test set. In the
test set, a total of 1698 belonged to one MeSH class only. These were used to test the models
trained for single label classification tasks. A summary of the distribution of this set is
presented in the Test Samples column in Table 1. The value that is provided in parentheses
in that column represents the proportion of the test drug compounds over the total number
of drug compounds in that MeSH class, i.e., x

x+y where x is the number of drugs in the
test set and y is the number of drugs in the training set. Note that, for the majority of the
MeSH classes, the test set represented a significant proportion of drugs on which to test
the model. The respiratory system agents group presented the least proportion of new
drugs—about 7% only. On the other hand, there were 4610 drug compounds that belonged

https://github.com/jgmeyerucsd/drug-class
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to at least one MeSH class. These were used to test the model trained for the multi-label
classification task.

2.2.2. Converting SMILES into Graphs

Each of the drug molecule’s SMILES string was converted into an RDKit [10] molecule
object. RDKit’s salt remover was then employed to remove salts, hence avoiding the mis-
take of keeping multiple versions of drug molecules that only differ because of the attached
salts. From the resulting molecule object, we extracted the following information for each
atom: atomic number, chirality, degree, formal charge, number of attached hydrogen atoms,
number of radical electrons, kind of hybridization, whether it is aromatic, and whether
the atom is in a ring. For bonds, we obtained the type, stereo, and whether a bond is
conjugated or not. This information was then used to create a graph in which the nodes
were atoms and the edges were the bonds. The node and edge features were, respectively,
the atom and bond information described earlier. This way of encoding node and edge
features is similar to that deployed in PyTorch Geometric, PyG [18], DeepChem [19], and
GraphDTA [20]. PyG was used to create and save graph data objects. All graphs with
fewer than two nodes were removed from the dataset as it would be difficult to use edge
information from graphs with single nodes. Figure 1 shows a flow chart for this process.

Start
Get

SMILES

Convert
to mol

(RDKit)

Remove
salts

(RDKit)

Create
graph data

object

≥ 2
nodes?

Save
graph data

object

Stop

Skip it

yes

no

Figure 1. A flow chart showing how drug molecules were converted into and saved as graph data objects using RDKit [10]
and PyG [18]. SMILES string representing drugs are converted into molecules using RDKit. Then salts are removed. The
features from the atoms and bonds of the molecule are used to create a graph using PyG. This is then saved as a sample in
the dataset.

2.3. Graph Convolution Networks

There are many learning methods on graphs, and libraries such as PyG [18] provide
over 50 implementations of convolutional layers used in learning on graphs. Choice about
which layers to use for a particular task is critical. In our case, we would ideally want to use
a model that captures the information about the structure of the molecule’s graph and also
have the capability to take higher-order graph structures at multiple scales into account.
Such higher-order information has been shown to be useful in graph classification and
regression tasks [15]. With that in mind, we decided to use the GraphConv layers provided
in PyG that are an implementation of the higher-order graph neural networks put forward
in [15]. GraphConv layers satisfy both of our requirements. Now consider the theory about
GraphConv layers.

We can describe a graph G as a pair (V, E) where V is a finite set of nodes and
E ⊆ {{u, v} ⊆ V | u 6= v} is a set of the edges. Usually these sets are denoted V(G) and
E(G), respectively. Similarly, the neighborhood of v in V(G) is denoted N(v). Often the
set-based version of k-WL (from Weisfeiler–Leman algorithms) is used due to limited GPU
memory. In that case, for a given k, k-element subsets [V(G)]k over V(G) are considered,
resulting in the neighborhood N(s) = {t ∈ [V(G)]k| | s∩ t |= k− 1}where s = {s1, . . . , sk}.
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For a labeled graph (G, l), in each k-GNN layer t ≥ 0, the feature vector f (t)k (s) for each
k-set s in [V(G)]k is computed by

f (t)k (s) = σ
(

f (t−1)
k (s).W(t)

1 + ∑
u∈NL(s)

f (t−1)
k (u).W(t)

2

)
(1)

where W(t)
1 and W(t)

2 are parametric matrices, σ represents a non-linear function. Moreover,
NL(s) is the local neighborhood and consists of all t ∈ N(s), such that (v, w) ∈ E(G) for
the unique v ∈ s \ t and the the unique w ∈ t \ s [15].

Figure 2 shows the architecture of our basic model. As illustrated in that figure,
SMILES (Simplified Molecular Input Line Entry System) [21] strings representing drugs are
converted into molecular graphs. These graphs are then fed to the model to learn a latent
representation vector for each drug in the graph convolution network block. In that block,
each GCN layer subblock comprises a GraphConv layer, a Rectified Linear Unit (ReLU)
activation function, and a GraphNorm layer, respectively. The latent vector, chosen to be of
length 1024 after some experimentation, is subsequently pushed through the classification
layers to predict the class to which a drug belongs. We used the log softmax activation
at the output of FC layer 2 and applied the negative log likelihood loss for classification
in the single label tasks. In the multi-label classification tasks, the log softmax layer was
not included and a multi-label soft margin loss was applied. All these activation and loss
functions are implemented in PyTorch [22].

C
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4

FC1 D1 FC2

Drug functions

Urological
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Anti-Infective
Antineoplastic
Cardiovascular

Gastrointestinal
Lipid Regulating
Anti-In�ammatory
Respiratory System
Reproductive Control
Central Nervous System

Dermatological

S
M
IL
E
S

Molecular graph
Graph Convolutional Network Classi�cation Layers

GCN Layers

Global Max Pooling

Dropout

Dense Layers

Figure 2. This figure depicts the architecture of the model used. The SMILES string representing each molecule is converted
into a molecular graph. Then the graph convolution network learns a graph-based embedding for that molecule. This is
then passed to the subsequent fully connected (dense) layers for classification. FC2 has 3, 5, or 12 outputs commensurate
with the classification task.

Best parameters for the models were obtained by using the Optuna [23] hyperparam-
eter optimization library. These parameters were then used in building PyTorch models.
Table 2 provides information about important hyperparameter settings we used in our
models.

Table 2. Hyperparameters for models used in our experiments.

Setting for Model for Each of the Task Subgroups

Hyperparameter 3 5 12 m

Learning rate 0.0005 0.0005 0.0005 0.0005
Batch size 256 256 512 512
Optimizer Adam Adam Adam Adam

GCN layers 3 3 3 3
Dense layers 2 2 2 2

Dropout 0.4 0.4 0.25 0.25
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2.4. Training Details

For single label tasks, 5-fold stratified cross validation was used, whereas for the
multi-label classification task, data was split into five folds based on pairwise co-occurrence
using the iterative class splitter from the skmultilearn [24] package. The exact folds used
in [9] cross validating IMG + CNN and MFP + RF models were also employed in this
experiment.

MeSH classes were assigned weights to take into account the effects of the imbalanced
nature of the data during training. For a given MeSH class i, the normalized weight wi
assigned to each MeSH class was defined as

wi =

(
ci

N

∑
k=1

1
ck

)−1

(2)

where ci and ck are the total number of drugs belonging to MeSH classes i and k, respectively,
and N is the number of MeSH classes considered for that task subgroup (3, 5, or 12). The
vector containing these weights for each task subgroup was then provided to the PyTorch
loss function as an argument.

2.5. Performance Evaluation Metrics

The performance for each of the models was assessed using several statistical metrics.
For single label classification, tasks metrics such as accuracy, balanced accuracy (BAC)—
which helps to circumvent the problem of inflated performance estimates on imbalanced
datasets such as the one used here—Matthew’s correlation coefficient (MCC), Area Under
the Receiver Operating Characteristic Curve (AUROC), and average precision (AP) were
employed. These are defined mathematically as

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

BAC =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(4)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

Average precision (AP) is dependent on precision, PRE, and recall, REC, where

PRE =
TP

TP + FP

REC =
TP

TP + FN
and TP, true positive, denotes the number of drug compounds that are correctly predicted
to belong to each MeSH class; TN, true negative, represents the number of drugs that are
correctly predicted not to belong to each MeSH class; FP, false positive, is the number
representing those drugs that are incorrectly predicted to belong to each MeSH class but
do not actually belong to that class; and FN, false negative, is the number of drugs that
belong to one MeSH class but have been incorrectly predicted to belong to other classes. If
PREn and RECn represent the precision and recall at the nth threshold, we can obtain the
average precision by

AP = ∑
n
(RECn − RECn−1)PREn (6)

For the multi-label classification task subgroup, we employed accuracy, AUROC, and
AP, as in the single label tasks, in addition to the Fbeta score (Fβ). The Fbeta score is an
abstraction of the F-measure where the balance of precision and recall in the calculation of
the harmonic mean is controlled by a coefficient called β.
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Fβ =
(1 + β2)PRE× REC

β2 × PRE + REC
(7)

where P is precision and R is recall, defined previously.

2.6. Model and Representation Comparisons

Comparison of the models’ performance on cross validation and test data using
the metrics provided in Section 2.5 was performed as follows. The mean and standard
deviation for each metric across the five folds was recorded, and these are presented in
the tables of results. However, for the confusion matrices, performance of all models
was compared on one representative validation fold—the fifth fold. Furthermore, figures
showing distributions of the data after modeling, and predicted networks of drugs, are
those obtained using the model trained on this representative fold.

For each task subgroup, we sought a way of showing the distribution of the drug
compounds for that task, before and after modeling. Node and edge features of each graph
representing a drug compound are high-dimensional tensors. As such, they cannot be
directly plotted onto a two-dimensional (2D) space. To reduce the dimensions of the data
to 2D, Uniform Manifold Approximation and Projection (UMAP) [25] was used. Each plot
of data distribution before modeling was obtained by passing it through a dummy GCN
model with weights initialized to all ones. The output was then fed to UMAP to obtain a
2D vector for each drug. On the other hand, the distribution of the data after modeling
was obtained by passing each drug compound through the model for that particular task
subgroup and using the latent vector attained at hidden layer FC1, shown in Figure 2. This
latent vector was then fed to UMAP to obtain a 2D vector for each drug. All plots related
to UMAP plotted using Seaborn statistical data visualization tool [26].

For the multi-label classification task, we employed networks of relationships in the
analysis of results. Networks are ubiquitous and can quickly provide information about
the nature and degree of interactions between items and enable inferences about the reason
for those interactions [27]. Inherently, the multi-label classification task renders itself easy
to analysis using networks. All figures showing network relationships were drawn using
NetworkX [28] and Pyvis [29].

3. Results

In this section, we present results of our models for all the four tasks and compare our
models with those rendered in [9]. We first consider results of our single label classification
models on cross validation in Section 3.1. Then we present results of our single label
classification models, but this time on test data, in Section 3.2. Thereafter, we consider
results of our multi-label classification model in comparison with previous models in
Section 3.3. Lastly, we consider drug repurposing opportunities as predicted by our models
in Section 3.4.

3.1. Single Label Classification Results for Cross Validation

Table 3 provides a summary of validation and test results for the three single label
tasks. If we consider the results on cross validation from that table, it is observed that the
average metrics of our GCN based models are higher compared with the other models—
IMG + CNN and MFP + RF. GCN based models outperformed the other models in all
categories and in all metrics considered, except on average precision score for the three-task
subgroup. The good results obtained from GCN models could be attributed to the fact that
the information about the molecules’ bonds and atoms is well captured and learned in
graph-based methods than perhaps from images or fingerprints as accentuated in [15].
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Table 3. Evaluation metrics showing results of the models’ performance on 3-, 5-, and 12-task subgroups. We first compare
IMG + CNN and MFP + RF with our GCN model on cross validation. This information is provided in the columns IMG +
CNN Val, MFP + RF Val, and GCN Val respectively. In the GCN Test column, we provide results of our GCN model on
test data.

Task Subgroup Metric IMG + CNN Val MFP + RF Val GCN Val GCN Test

3 Accuracy 0.884± 0.0108 0.882± 0.0142 0.9003± 0.0068 0.8806± 0.0099
BAC 0.879± 0.0143 0.870± 0.0162 0.8958± 0.0076 0.8790± 0.0107
MCC 0.823± 0.0168 0.822± 0.0217 0.8479± 0.0099 0.8122± 0.0154

AUROC 0.970± 0.0063 0.978± 0.00382 0.9804± 0.0029 0.9634± 0.0019
AP 0.950± 0.0108 0.978± 0.00382 0.9674± 0.0050 0.9372± 0.0053

5 Accuracy 0.863± 0.0104 0.871± 0.0070 0.8861± 0.0059 0.8835± 0.0028
BAC 0.828± 0.0167 0.822± 0.0183 0.8478± 0.0093 0.8329± 0.0103
MCC 0.811± 0.0140 0.821± 0.00969 0.8411± 0.0081 0.8220± 0.0047

AUROC 0.972± 0.0046 0.981± 0.00284 0.9820± 0.0020 0.9624± 0.0035
AP 0.933± 0.0093 0.950± 0.00582 0.9534± 0.0042 0.9092± 0.0084

12 Accuracy 0.834± 0.0084 0.838± 0.00677 0.8627± 0.0085 0.8676± 0.0035
BAC 0.735± 0.0258 0.719± 0.02480 0.7734± 0.0333 0.7988± 0.0066
MCC 0.793± 0.0105 0.797± 0.00831 0.8290± 0.0108 0.8173± 0.0047

AUROC 0.969± 0.0026 0.977± 0.00227 0.9836± 0.0026 0.9695± 0.0014
AP 0.900± 0.0073 0.918± 0.00392 0.9269± 0.0088 0.8760± 0.0041

BAC is balanced accuracy; AP is average precision; MCC is Matthew’s correlation coefficient; AUCROC is Area under ROC curve.

From the results shown in the confusion matrices of Figure 3, we can see that our
models yield good results on cross validation. In the three-task subgroup (Figure 3a),
antineoplastic agents were predicted more accurately (92%) followed by central nervous
system agents (91%) and then cardiovascular agents at 87%. Cardiovascular agents were
the least well predicted, probably because they were the smallest set in this task with only
788 compounds compared with 1177 for antineoplastic and 1139 for central nervous system
agents. The disparity in the numbers can further be observed in Figure 4. In that figure,
Figure 4a shows the distribution of the data that was used for validation. It can be seen that,
for the most part, the drugs in each class are evenly distributed, but the data are imbalanced
among the three classes. There are many more antineoplastic and central nervous system
agents as there are cardiovascular agents. Similar disparities will become more apparent in
the 5- and 12-task subgroups. However, it is important to note that, after passing this data
into our model, the model clearly classifies the drugs into three classes with an accuracy of
over 90%, as shown in Table 3 (under the GCN Val column). The good performance of the
model is further evidenced in Figure 4b, where we can see drugs belonging to each of the
three MeSH classes clustered closer together as determined by the model.
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(a) (b)

(c)

Figure 3. Confusion matrices showing performance of the GCN models on the fifth fold of the validation data for the single
label tasks. In (a), results for the 3-task subgroup; in (b), results for the 5-task subgroup; and in (c), results for the 12-task
subgroup. Each matrix shows the proportion of each predicted class, on the x-axis, for molecules in each true class on the
y-axis.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Distribution of the fifth fold cross validation data used in the 3, 5, and 12 single label classification task subgroups
shown on (a,c,e), respectively. On the other hand, (b,d,f) show the distribution of the same data after passing them through
our trained GCN models for 3-, 5-, and 12-task subgroups, respectively. The latter group of subfigures show that drugs
belonging to one MeSH class appear closer to each other in the 2D UMAP space (which is not the case in the earlier group
of subfigures). This shows that the models are able to classify the drugs into the 3, 5, and 12 MeSH classes as intended.
These subfigures were plotted using Seaborn [26] after we reduced the dimensions of the drugs to two using UMAP [25].
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In the five-task subgroup, whose results are summarized in the confusion matrix of
Figure 3b, anti-infective agents were predicted more accurately (93%). A total of 2398
compounds belonging to this group were used for cross validation (Table 1). In contrast,
there was a total of 258 drug compounds belonging to the gastrointestinal group for this
task. Gastrointestinal agents were the least well predicted, with an accuracy of 73%. As with
the three-task subgroup, central nervous system agents and antineoplastic agents, which
are relatively equal in numbers, yielded similar accuracies of 88 and 87%, respectively.
Moreover, as in the three-task subgroup, the cardiovascular group achieved an accuracy of
81% which is lower than that of either the CNS or antineoplastic groups. Again, there are
some disparities in the numbers of drugs belonging to each class that have been used for
this task, as observed in Figure 4. In that figure, the distribution of the data that were used
for validation is presented in Figure 4c. As before, despite the data being imbalanced, the
model clearly classifies the drugs into the five MeSH classes, with an accuracy of over 88%,
as shown in Table 3 (under the GCN Val column). The good performance of the model is
further evidenced in Figure 4d, where it is clear to see drugs belonging to each of the five
MeSH classes distributed closer to each other after modeling.

Much like in the five-task subgroup, results of the 12-task subgroup presented in
Figure 3c indicate that the 2398 anti-infective agents were predicted more accurately (93%).
In contrast, the set of 26 urological agents only yielded an accuracy of 50%, presumably
because they were very few. Perhaps the most difficult group to predict was the dermato-
logical agents. With a total number of 115 compounds belonging to this group, only 50%
of those used for validation in the fifth fold were correctly predicted. In addition, 21%
(≈5) of drugs used for validation in the fifth fold were wrongly predicted as belonging
to anti-infective agents. Reminiscent of the previous two task subgroups, the disparity in
the numbers of drugs belonging to each class are more prominent in the 12-task subgroup,
evident in Figure 4e,f where Figure 4e shows the distribution of the data. It can be seen
that, for the most part, the drugs in each class are evenly distributed and the data is highly
imbalanced. As noted earlier, urological agents are much less compared with the other
classes. However, it is important to note that, after passing this data into our model, the
model is able to classify the drugs into the 12 MeSH classes with an accuracy of over 86%,
as shown in Table 3 under the GCN Val column. The good performance of the model is
further evidenced in Figure 4f, where we can see 12 clusters representing the 12 MeSH
classes emerging after modeling.

3.2. Single Label Classification Results on Test Data

This section provides results showing the performance of our single label classification
models on the test dataset.

From the results shown in the confusion matrices of Figure 5, we can see that our
models yield good results on the test data as well. Results of the three-task subgroup, which
are presented in Figure 5a, indicate that central nervous system agents were predicted
more correctly (93%) than the other two classes. Akin to the cross validation results,
cardiovascular agents were the least well predicted (85%). Overall, the performance of
the model on test data is comparable to that obtained from cross validation in this task
subgroup. As an example, the test accuracy for this task is about 88%, as shown in Table 3
(under the GCN Test column), compared to a validation accuracy of 90% (under the GCN
Val column).

Figure 6a shows the distribution of the data that was used for testing in the three-task
subgroup. It is observed that the drugs in each class are fairly evenly distributed on both
axes without any conspicuous outliers, but there are many more antineoplastic agents (342)
as there are cardiovascular (152) and central nervous system (176) agents. After passing
this data into our model, the model classifies the drugs into the three MeSH classes and the
majority of these appear closer to each other in the 2D space, as shown in Figure 6b.
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(a) (b)

(c)

Figure 5. Confusion matrices showing performance of the GCN models on the test data for the single label tasks. In (a),
results for the 3-task subgroup; in (b), results for the 5-task subgroup; and in (c), results for the 12-task subgroup. Each
matrix shows the proportion of each predicted class, on the x-axis, for molecules in each true class on the y-axis.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Distribution of the test data used in the 3, 5, and 12 single label classification task subgroups shown on (a,c,e),
respectively. On the other hand, (b,d,f) show the distribution of the same data after passing it through our trained GCN
models for 3-, 5-, and 12-task subgroups, respectively. The latter group of subfigures show that drugs belonging to one
MeSH class appear closer to each other in the 2D UMAP space (which is not the case in the earlier group of subfigures).
This shows that the models are able to classify the drugs into the 3, 5, and 12 MeSH classes as intended. These subfigures
were plotted using Seaborn [26] after we reduced the dimensions of the drugs to two using UMAP [25].
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Performance results on test data for the 5-task subgroup are analogous with those
obtained from cross validation. From Table 3, under the GCN Val and GCN Test columns,
the accuracy in both cases is about 88%. Moreover, checking on the confusion matrices
of Figures 3b and 5b, it is observed that 88% of CNS agents were correctly predicted in
both cases, cardiovascular agents achieved 81 and 82%, respectively, whereas anti-infective
agents registered 93 and 95%. Antineoplastic agents achieved 87 and 80%, in that order,
while gastrointestinal agents recorded 73 and 70%.

Figure 6c reveals that the distribution of the data used for testing was evenly dispersed,
but there were big disparities in the number of drugs among the classes. In particular,
there were about 776 anti-infective agents in contrast to 46 gastrointestinal agents. This
disparity is also well depicted in Figure 6d, which shows five noticeable MeSH classes in
which drugs belonging to each class appear closer to each other after the model correctly
classified the majority of the drugs into their respective classes.

In the 12-task subgroup, the respiratory system agents class was perfectly predicted
at 100%, as shown in the confusion matrix of Figure 5c. This was also the smallest group
in the test data with just eight drug compounds. The urological agents were the overall
smallest dataset, with 10 drugs in the test set and 26 drug compounds used in cross
validation (Table 1). However, the model correctly predicted 90% of the test drugs in this
class (Figure 5c).

The overall accuracy on test data for this task is comparable to that obtained from
cross validation. From Table 3, the accuracy in either case is about 86%. Figure 6e shows
the distribution of the data that was used for testing. It is clear that there are many more
anti-infective agents (776) than the other classes. However, the drug compounds are fairly
evenly distributed along both axes. Results of distribution of the same data after passing it
through our model are provided in Figure 6f, where the majority of drugs belonging to
each MeSH class are in close proximity in the 2D space as evidence of the model’s ability to
classify them into the 12 MeSH classes.

3.3. Multi-Label Classification Results on Validation and Test Data

In this section, we explore the capacity of the model to predict whether a drug belongs
to more therapeutic-use classes. This provides us with an opportunity to learn from the
undetermined predictions that these models make so that we can act accordingly in case
some drugs could be fit for repurposing.

A total of 8336 molecules were present in one or more MeSH classes compared with
6995 molecules which belonged to a single MeSH therapeutic-use class only. This represents
an average of 1.2 MeSH class labels for each molecule. On the other hand, the test dataset
contained 4610 drug molecules belonging to one or more MeSH classes and 1698 molecules
which belonged to one MeSH class only, representing an average of 2.7 MeSH class labels
for each molecule.

Metrics’ results for multi-label classification on validation and test data are presented
in Table 4. Here, too, our model performs better than IMG + CNN. In particular, the Fβ

score, which was around 64% when using IMG + CNN, rose to over 79% when our GCN
base model was used.

These good results are also reflected in the connectivity diagrams shown in Figure 7. In
these diagrams, a single edge represents a drug that belongs to the two classes to which that
edge is attached. Thicker edges represent more drugs on that edge and, conversely, thinner
edges represent fewer drugs that belong to the two connected classes. No connection
between nodes means that there are no drugs that belong to both concerned nodes. The
width, w, of each edge was computed using w = 1

2 log2(N + 1) where N is the number
of co-occurrences of nodes on each edge. The network of Figure 7a represents the true
connections as dictated by the true class labels while the one in Figure 7b shows a network
of predictions by our model. In total, there are 4610 edges in each of the networks. A
total of 4210 edges are exactly the same while 400 edges appear in one network but not
the other. This shows that our model has made a majority of the predictions accurately
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which is in line with the results in Table 4. The edges that appear in Figure 7a, but not
in Figure 7b, have been thought of as those the model has failed to learn, whereas those
that appear in Figure 7b only have been considered to be areas where the model may have
learnt something new and we need to verify if that is the case. This is also one area where
drug candidates for repurposing could be found.

Table 4. Results of multi-label classification for the 8336 molecules with an average of 1.2 classes
assigned to each molecule for validation and 4610 molecules with an average of 2.7 classes assigned
to each molecule for testing. We first compare the previous IMG + CNN to our GCN model on cross
validation. This information is provided in the columns IMG + CNN Val and GCN Val, respectively.
In addition, in the GCN Test column, we provide results of our GCN model on test data. For the Fβ

score, β = 2 was used, as in previous methods. Notice that this favors recall over precision according
to Equation (7).

Task Subgroup Metric IMG + CNN Val GCN Val GCN Test

m Accuracy ∗ 0.9540± 0.00133 0.9695± 0.0023 0.9752± 0.0064
( multi-label) Fβ 0.6350± 0.01680 0.7971± 0.0212 0.8665± 0.0460

AUROC 0.9380± 0.00353 0.9580± 0.0046 0.9733± 0.0039
AP 0.8370± 0.00953 0.8805± 0.0070 0.9306± 0.0052

Fβ is Fbeta score; AUCROC is Area under ROC curve; AP is average precision; ∗ Class score thresholds set to 0.5;
Weighted average was used for AUROC and AP.

(a) (b)

Figure 7. Networks of multi-label classification on the test dataset. The connections as given by true
class labels are shown in (a) while those predicted by the model are shown in (b). In each of these
subfigures, the thicker the edge the higher the frequency of co-occurrence of nodes. There are seven
edge types that appear in the network of predictions that do not appear in the network of true class
labels. These are urological–dermatological, antineoplastic–dermatological, respiratory–urological,
anti-inflammatory–dermatological, anti-infective–dermatological, cardiovascular–dermatological,
and respiratory–dermatological. Such new edge types show the obvious misclassifications made by
the model. Other misclassifications are more subtle and can be seen by the widths of the edges. We
have provided the list of edge counts for that case in the Supplementary Material. Networks in this
figure were drawn using NetworkX [28].

3.4. Drug Repurposing Opportunities

While it is paramount to make sure the model classifies the drugs accurately, it is
also important to pay particular attention to cases where the model makes some misclas-
sifications. In general, we tend to consider such misclassifications as an indication that
the model has not learnt enough about the data. However, in some cases, it could be an
indication that the model has learnt something new about the data. Such cases require that
we verify the model’s results using alternative approaches. In this situation, we are going
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to check the literature for evidence of the predictions that the model has made but do not
tally with those given in the dataset.

Figure 8 shows a small network of the drugs that were misclassified but have evidence
in literature backing those predictions to be true. This information is also provided in
Table 5 where citations to literature that provides the evidence have been made.

Table 5. This table contains a list of the predicted drug compounds that have been validated by
information in the literature. The ‘True MeSH Class’ column provides the list of MeSH classes to
which the drug compound belongs, as given in the PubChem data. On the other hand, the ‘Predicted
MeSH Class’ column provides the list of MeSH classes our model predicted for each drug compound.
The literature that concurs with these predictions is provided in the ‘Evidence of Prediction’ column.

Compound True MeSH Class Predicted MeSH Class Evidence of Prediction

Ginsenoside Rb2 antineoplastic anti-infective [30–33]
lipid regulating CNS

Balofloxacin anti-infective urological [34]
antineoplastic antineoplastic

Dipyridamole cardiovascular antineoplastic [35–37]
hematologic lipid regulating

Hypericin anti-infective anti-infective [38–40]
antineoplastic antineoplastic

CNS urological

Lacosamide cardiovascular antineoplastic [41–43]
CNS CNS

Otilonium bromide cardiovascular anti-infective [44]
gastrointestinal urological

Palmitoylethanolamide anti-infective anti-infective [45,46]
anti-inflammatory cardiovascular

CNS urological

Peppermint oil CNS anti-infective [47,48]
gastrointestinal cardiovascular

Tirofiban cardiovascular CNS [49–51]
hematologic antineoplastic

For example, ginsenoside Rb2 was given as an antineoplastic and a lipid regulating
agent. However, the model predicted that it was an anti-infective and a CNS agent.
This compound, also known as ginsenoside C, is a ginsenoside found in Panax ginseng.
It is indicted on the Chemical Entities of Biological Interest (ChEBI) [31] website, stub
CHEBI:77152, that the compound has a role as an antiviral agent which confirms that it is
an anti-infective agent. As regards the compound being a CNS agent, it was reported in [32]
that ginsenoside Rb2 greatly activated Cu,Zn-superoxide dismutase gene (SOD1) through
transcription factor AP2 binding sites. SOD1 is one of the major antioxidant enzymes and
its presence significantly delayed the onset of signs of motor impairment and prolonged the
survival of mice suffering from Amyotrophic Lateral Sclerosis (ALS). ALS is a progressive
neurodegenerative disease characterized by degeneration of motoneurons in the spinal
anterior horn.
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Figure 8. A network of misclassified drugs. The MeSH classes are presented as circular nodes
whereas drugs are shown in rectangular boxes. Each drug is connected to two or more MeSH classes
to which it has been predicted to belong. An edge linking a drug node and a MeSH class node
inherits the color of the MeSH class node. Thus, drug nodes have different colors for edges attached
to them whilst MeSH class nodes have the same color to all their edges. This network was drawn
using Pyvis [29].

Similarly, Balofloxacin was given as an antineoplastic and anti-infective agent. The
model predicted that it is also a urological agent. In [34], Balofloxacin was found to
be effective in 78.9 and 82.4% of patients with complicated urinary tract infection (UTI)
assessed by the physician’s evaluations and Japanese UTI criteria, respectively.

Dipyridamole (DIP) was given as a cardiovascular and hematological agent. In a
reverse screening approach to identify potential anti-cancer (antineoplastic) targets of DIP,
it was noted in [35] that DIP can increase the anti-cancer drug (5-fluorouracil, methotrexate,
piperidine, vincristine) concentration in cancer cells and hence enhance the efficacy of
treatment of cancer. This is in line with the model’s prediction of DIP being a potential
antineoplastic agent. Furthermore, there are reported (in vitro and in vivo) results in [36]
which demonstrate that the suppression of HMGCS1 (3-hydroxy-3-methylglutaryl-CoA
synthase 1) by siRNA and dipyridamole enhances the antitumor properties of trametinib
in colon cancer cells. The work presented in [37] reported that DIP inhibits lipogenic gene
expression by retaining SCAP-SREBP in the endoplasmic reticulum. This is consistent with
both predictions about DIP being a prospective antineoplastic and lipid regulating agent.

Likewise, hypericin was given as an anti-infective, antineoplastic, and CNS agent.
The model predicted that it is also urological. Reports in [38–40] indicate that it has been
used in urological medicine as a photo diagnostic to detect non-muscle-invasive bladder
cancer lesions.

Lacosamide was given as a cardiovascular and a CNS agent. The model predicted that
it is also antineoplastic. This was confirmed in [41], where results of in vitro antineoplastic
effects of brivaracetam and lacosamide on human glioma cells were reported. It was further
reported in [42,43] that lacosamide, when added to any baseline anti-epileptic drug, is
effective in obtaining a high seizure reduction and seizure freedom, regardless of the tumor
activity and response to antineoplastic therapies.
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Further, otilonium bromide was provided as a cardiovascular and a gastrointestinal
agent. However, the model predicted that it is an anti-infective and a urological agent.
Recent results presented in [44] indicate the drug could be a new antimicrobial agent to
treat Staphylococcus aureus infections more safely and efficiently. Information about it being
urological has not been found yet.

Palmitoylethanolamide (PEA) was given as an anti-infective, an anti-inflammatory,
and a CNS agent. The model predicted it as also being a cardiovascular agent. It was
reported in [45] that PEA evokes potent anti-inflammatory effects in cultured macrophages
which translates under in vivo conditions into a strong atheroprotective effect. In addition,
based on the clinical studies for testing PEA to treat pain and inflammation that were
going on at the time, PEA was thought to be an interesting novel therapeutic drug for
patients with cardiovascular disease. Similarly, research results reported in [46] indicate
that PEA combined to polydatin protects against cardio and vasculotoxicity of doxorubicin
by promoting an anti-inflammatory phenotype, representing a new therapeutic approach
to resolve doxorubicin-induced cardiotoxicity and inflammation. We have not yet found
information that confirms whether PEA could be a urological agent.

Peppermint oil was given as a CNS and a gastrointestinal agent. Results from the work
presented in [47] indicated the strong antibacterial and antioxidant activities of peppermint
oil. This is in line with the model’s prediction that the compound is a potential anti-infective
agent. In a recent study [48], it was shown that aromatherapy with peppermint essential
oils can improve the sleep quality of cardiac patients and was recommended for cardiac
patients as a non-pharmacological intervention. This agrees with the model’s prediction of
it being a cardiovascular agent.

Finally, tirofiban was given as a cardiovascular and a hematologic agent. The model
predicted it as a CNS and an antineoplastic agent. Tirofiban has been reported to constrain
tumor cell invasive potential in HSC-3 human tongue squamous cell line [49,50]. It has
also been reported that low-dose tirofiban treatment improves neurological deterioration
outcome after intravenous thrombolysis [51]. This is in line with the model’s second
prediction that this compound could also be a CNS agent.

4. Discussion

We have demonstrated here that going a step further to scrutinize the predictions
the models make is one of the key facets that might lead to finding more drugs that are
candidates for repurposing. This process can also be improved by enhancing the inter-
pretability of deep learning models in such a way that we can learn directly about the
substructures (atoms and bonds) within the drug’s molecular structure that contribute
more to the model’s prediction about that drug. Knowledge about such substructures could
also help in the design of new drugs. Currently, the Captum [52] library for model inter-
pretability built on PyTorch can help in that aspect. Consider also that, in this experiment,
we only looked at drugs that belong to twelve MeSH classes. On the PubChem website
there are over twenty MeSH classes and, as such, models built to classify drugs for all those
MeSH classes would be more helpful. In addition, APIs or web tools for easy access to
such models would be a very welcome development. Notice also that we did not check the
misclassifications for single label tasks. The rationale behind not checking those is that we
used 6995 drug molecules for training single label classification models and 8336 molecules
for training the multi-label classification model, and so the multi-label model learned to
generalize better and hence could be trusted more because it was trained on more samples.
Moreover, all drugs that were used in training the single label classification task were also
part of the 8336 drugs used in the multi-label classification. However, it is ideal to check
the misclassifications made by both models. The use of both single label and multi-label
classification models in this manner could potentially act as a quick way to narrow down
on candidates for repurposing. For example, if drug A is misclassified by both models
as belonging to MeSH class X then that drug should be prioritized when checking the
literature.
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5. Conclusions

In this work, we have presented a method for predicting therapeutic-use classes of
drugs from the features of their molecular graphs which are dependent on their corre-
sponding chemical structures. We have demonstrated that our approach performs better
than existing methods that also used chemical-derived features but did not contain graph-
related information of the drug compounds. The great improvement demonstrated by
our approach underscores the importance of incorporating graph information in artificial
intelligence models that are applied to chemical structures which are graph in nature. More
importantly, we have demonstrated that our model has the capability to make accurate
predictions on unseen data. We achieved this by testing our model on data that appeared
on a later date than the data on which it was trained. We have further presented results
of new predictions that indicate repurposing opportunities, some of which have been
confirmed by evidence in literature.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13111906/s1, Figure S1. A bar plot showing the number of drugs count on each
edge type. These numbers form the weights of the networks of Figure 7 in the manuscript. The exact
numbers are provided in Table S1 of this supplementary file. Table S1. Table showing the number of
true and predicted drugs that belong to each edge type. Each edge type connects two MeSH classes
to which the given and predicted number of drugs belong.
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