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Abstract: The diagnostic and prognostic value of miRNAs in cutaneous melanoma (CM) has been
broadly studied and supported by advanced bioinformatics tools. From early studies using miRNA
arrays with several limitations, to the recent NGS-derived miRNA expression profiles, an accurate
diagnostic panel of a comprehensive pre-specified set of miRNAs that could aid timely identification
of specific cancer stages is still elusive, mainly because of the heterogeneity of the approaches and
the samples. Herein, we summarize the existing studies that report several miRNAs as important
diagnostic and prognostic biomarkers in CM. Using publicly available NGS data, we analyzed the
correlation of specific miRNA expression profiles with the expression signatures of known gene
targets. Combining network analytics with machine learning, we developed specific non-linear
classification models that could successfully predict CM recurrence and metastasis, based on two
newly identified miRNA signatures. Subsequent unbiased analyses and independent test sets
(i.e., a dataset not used for training, as a validation cohort) using our prediction models resulted
in 73.85% and 82.09% accuracy in predicting CM recurrence and metastasis, respectively. Overall,
our approach combines detailed analysis of miRNA profiles with heuristic optimization and machine
learning, which facilitates dimensionality reduction and optimization of the prediction models.
Our approach provides an improved prediction strategy that could serve as an auxiliary tool towards
precision treatment.

Keywords: miRNAs; gene targets; cutaneous melanoma; artificial intelligence; metastasis; recurrence;
NGS analysis; precision medicine

1. Introduction

Cutaneous malignant melanoma (CM) is the most dangerous, heterogeneous and
with a strong propensity to metastasize, skin cancer. Until today, the American Joint
Committee on Cancer (AJCC) staging is the dominant synthetical index to CM prognosis
and has been recently revised to its eighth edition, which improves staging, prognosis,
and risk stratification [1]. Notably, staging is not the only prognosis determinant of CM,
since survival outcomes and response to treatment can vary among patients even within
the same stage due to its heterogeneity [2]. CM accounts for more than 75% of skin
cancer deaths overall, with a 5-year survival rate of 23% in patients with late stage of
the disease [3]. When detected at an early stage (stages I and II), prognosis is favorable;
however, the survival rates for CM patients at stage III are rather ambiguous and at stage IV
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(metastatic) are poor. This heterogeneity is driven by environmental, genomic, epigenomic
and transcriptomic factors and early CM detection is considered crucial for the reduction
of the mortality rates [4]. Over the past two decades, our knowledge on CM has improved
substantially. However, despite the intensive efforts to enhance targeted and immune
therapy efficacy and the discovery of putative predictive biomarkers, the mechanisms of
resistance and sensitivity remain poorly understood [5].

Precision medicine approaches exploring-omics data have emerged to identify diag-
nostic and prognostic biomarkers, which can lead to early disease detection, the better
understanding of the underlying biological mechanisms and the application of individu-
alized treatment protocols to patients with CM. Towards this goal, several studies have
provided information using or combining genomics, transcriptomics and epigenomics
analyses [6–8]. Based on the genomic context, four subtypes of CM have been identified:
mutant BRAF, mutant RAS, mutant NF1 and triple WT (wild-type) based on the negativity
of these mutant genes [6]. The transcriptomics analyses on the other hand support the
existence of a non-overlapping classification consisting of four major subclasses: high-
immune, normal-like, melanocyte inducing transcription factor (MITF)-high pigmentation
and MITF-low proliferative [7]. The high-immune subtype has elevated expression of
immune genes, the normal-like of genes expressed in surrounding normal cells, the MITF-
high pigmentation subtype expresses cell-cycle genes and the MITF-low proliferative has
high expression of cell-cycle and melanocyte differentiation genes. Finally, the aberrant
methylation pattern of CpG islands of genes was investigated, along with histone mod-
ifications and expression levels of mRNAs and non-coding RNAs to demonstrate that
17 mRNAs and the miRNA hsa-mir-205 can distinguish primary and metastatic tumors
better than methylation features [8]. Recently, a melanoblast specific signature of 43 genes
was described to contribute to metastatic competence and to predict survival, in genetically
engineered mouse models [9].

Through the advancement of sequencing methodologies, noncoding RNAs (ncRNAs)
have emerged as among the most promising biomarkers for monitoring CM progression
and recurrence, with miRNAs being the most well-studied class. Since their discovery,
specific miRNAs have been recognized as dependable markers that help monitor cancer
progression or regression. In CM, several different and highly conserved miRNAs exist
which have been correlated with essential developmental processes and serve as diagnostic
or prognostic markers, either alone or in combination with other types of biomarkers,
based on their ability to target at the same time more than one mRNAs, as means of post-
transcriptional gene expression regulation [10]. The enrichment of public databases like
TCGA (The Cancer Genome Atlas) hosting sequencing data on CM (TCGA-SKCM project)
provides a platform which can be exploited not only to address the role of specific miRNA
expression patterns in correlation to different cancer stages or response to current therapies,
but also to provide the basis for development and improvement of elaborate bioinformatics
diagnostic tools [6]. However, tools that are based on only one specific class of biomarkers or
only one-omics methodology have limitations and do not adequately support the diagnosis
or prognosis of complex cancer types such as CM which, in turn, relies on a complex
network of genes and regulatory ncRNAs. Therefore, multi-omics integrated analyses is a
must for the identification of more accurate and specific CM prognostic biomarkers. Such
approaches could include combinations of data on driver mutations, copy number variation,
methylation patterns, and mRNA expression profiles, whereas integration of epigenomic
and genomic data could identify prognostic CM—associated molecular subtypes [11,12].
Immune related aspects of CM have been also widely studied and have led to the generation
of prognostic gene signatures consisting of 239, 25, 7 and 6 genes [13–17]. Moreover, a sex
bias with improved survival of female CM patients has been observed, possibly due to
specific mutations identified on X-linked epigenetic regulators [18,19]. Of note, studies
on metastatic CM generated a metastasis-associated prognostic signature of 121 genes
and moreover, mRNA, miRNA and methylation data extracted from TCGA were used
as the basis to distinguish metastatic melanoma from primary tumors. Therefore, multi-
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dimensional analyses which examine multiple-omics profiles on the same samples are
necessary to assess not only a better staging of CM but also to understand the persisting
resistance to current therapies and recurrence of the disease [11].

Herein, we provide a comprehensive review on the role of specific miRNAs that
contribute to the deregulation of gene expression in CM. In a next step, the value of specific
miRNA signatures with possible role on recurrence and metastasis were examined in corre-
lation to specific gene signatures that are currently known to play role in CM. After analysis
of the TCGA-derived CM-related miRNASeq data with a statistical, bioinformatics and
network analytics approach, we observed two distinct miRNA signatures, one strongly as-
sociated with metastasis and one strongly associated with recurrence. Incorporation of the
TCGA mRNA transcriptomics profiles and analysis of the miRNAs’ putative targets gave
us a better insight into the roles of the miRNAs of the two signatures. The resulted miRNA
signatures were further analyzed with a multi-objective optimization ensemble classifica-
tion method that was trained to predict CM recurrence and metastasis [20]. The trained
classification models exhibited 5-fold cross validation accuracy of 91.51% and 97.39%,
for predicting the recurrent and metastasis samples, respectively. Subsequent unbiased
analysis on an external test set, using the trained classification models, revealed an accuracy
of 73.85% and 82.09% in melanoma recurrence and metastasis prediction, respectively.
Finally, the integration of TCGA clinical data in the miRNA signature of recurrent CM
increased the predictive accuracy from 73.85% to 85.38%.

Collectively, the current analysis underlines the importance of rationalized integration
of data from multiple sources which could provide novel and accurate means to prognosis
of CM progression, recurrence and metastasis that could also apply for virtually any type of
cancer. In addition, it highlights the importance of machine learning classification models
for precision medicine approaches, and the opportunity to identify elusive, so far, important
new biomarkers.

2. Datasets and miRNA Signatures from CM Patients

Several studies have established miRNAs as important diagnostic, prognostic and
therapeutic markers in almost all known cancer types, including CM and other skin
cancers [21]. The regulatory role of miRNAs includes modulation of gene expression in
melanocytes, regarding specific immune response, apoptosis, cell cycle regulation and
proliferation and cell invasion [22]. The oncogenic or tumor-suppressing role of specific
miRNAs in the deregulation of melanocytes and the progression of CM is achieved through
targeting of specific gene transcripts (mRNAs), which are involved in specific signaling
pathways and cellular responses [23,24]. For example, several miRNAs which were found
deregulated in CM can affect important signaling pathways that play role in resistance
to known BRAF and MEK inhibitors [25]. In addition, subsets of deregulated miRNAs
have been listed as potential biomarkers in response to treatments, as has become evident
by the identification of circulating miRNAs to monitor tumor behavior [26–30]. Finally,
microarray-based studies have suggested specific miRNA; however, these studies do not
include recent miRNASeq data deriving from cohorts of patients with CM.

A thorough search in public repositories like Gene Expression Omnibus, TCGA and
dbGaP for miRNASeq data deriving exclusively from CM biopsies resulted in 10 available
datasets (Table 1). The TCGA-SKCM project includes various information (simple nu-
cleotide variation, copy number variation, transcriptome profiling, biospecimen, sequenc-
ing reads, DNA methylation and clinical phenotypes) from 470 patients and miRNA-Seq
data from 448 patients [6]. Additional GEO datasets deriving from studies on circulating
miRNAs clearly demonstrated the utility of circulating cell-free microRNAs (cfmiRs) as
potential blood biomarkers for stage III and IV CM patients and compared plasma of
metastatic patients (some of whom with melanoma brain metastasis; MBM) before and dur-
ing immune checkpoint blockade (ICB) therapy with normal healthy donor samples [31,32].
In addition, miRNA expression data from plasma and extracellular vesicles (GSE143231)
were analyzed from patients with stage IV AJCC metastatic CM and compared to healthy
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donors [33]. In addition to the above few other studies that compared CM lymph node
metastases with Merkel cell carcinoma (MCC; GSE53600) or FFPE samples to matched
fresh frozen samples and a metastatic CM pair of matched samples (GSE45740) are also
available [34,35]. Finally, two data sets compare primary CM biopsies with matched normal
skin and common nevi (GSE36236; phs001550.v2.p1) [36,37].

Table 1. Data origin and sample description of the available miRNA-Seq datasets.

miRNASeq
Dataset Melanoma Samples Control Samples Other Diseases

Samples Biomaterial

TCGA-SKCM [6] 448 melanoma patients - - Tissue

GSE157370
[31]

47 stage III and IV melanoma
patients (pre-treatment
samples) and 111 CII

post-treatment samples from
the same patients

73 healthy donors - Plasma

GSE150956
[32]

36 + 24 pre-operative MBM
patients’ plasma samples

48 Normal
(cancer-free) donor

plasma and
serum plasma

49 other cancer types that
had brain metastasis

and glioblastomas
Plasma

24 MBM tissues - - Tissue
20 pre-and post-treatment

plasma and 14 urine samples
collected from metastatic

melanoma patients
receiving CII

8 Normal
(cancer-free)

urine samples
- plasma and urine

GSE143231
[33]

10 metastatic melanoma AJCC
stage IV patients five HDs - plasma and EVs

GSE53600
[34]

1 melanoma lymph
node metastases 1 normal skin

6 MCC lymph node
metastases, SCC and

BCC primary
cutaneous lesions

Frozen tissue

GSE45740
[35] 1 metastatic melanoma

7 breast invasive ductal
carcinoma, renal clear
cell carcinoma, lung

adenocarcinoma, prostate
adenocarcinoma and

sarcoma of thigh

paired FFPE
and fresh

frozen samples

GSE36236
[36]

19 primary cutaneous
melanomas biopsies/excisions

matched normal skin
and common nevi - FFPE tissue

phs001550.v2.p1
[37] 8 melanomas 7 intact adjacent

benign nevi -
FFPE

microdissected
regions

Based on the accumulated sequencing data, recent efforts focused on the generation
of miRNA signatures with the contribution of artificial intelligence (AI) tools to improve
the prediction of metastasis, overall survival or recurrence of patients with CM and/or
other cancer types. More specifically, an 11-miRNA signature was reported to discern
primary melanoma from common nevi using formalin-fixed paraffin-embedded (FFPE)
samples and microarray or miRNASeq experiments [38]. A similar study (GSE62370) re-
sulted in 29 differentially expressed miRNAs (6 upregulated and 23 down-regulated) which
provided a 4-miRNA signature with potential prognostic value [39]. Interestingly, an AI
approach applied on miRNA ratios rather than the expression profiles of miRNASeq data
from micro-dissected FFPE CM developed a model of 6 miRNAs that were either depleted
or enriched. When combined with clinical features, this model achieved distinction of pri-
mary melanomas from common nevi with 81% sensitivity and 88% specificity [37]. Finally,
analysis of the data available from TCGA provided 4 miRNAs that showed potential value
to distinct metastatic from primary CM, whereas an attempt to specifically predict brain
metastases resulted in a different 4-miRNA signature [40,41].

Predicting the overall CM patient survival is also of vital importance and can be
clinically used for optimal treatment management. Several studies attempted to correlate
specific miRNA expression profiles with the overall survival of CM patients, albeit with
different outcomes (summarized in Table 2). Of note, among the miRNAs reported in the
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different signatures, only miR-155, miR-142-5p, miR-205, miR-203, miR-21-5p, miR-211,
miR-125b, miR-150 and miR-16 are part of more than one signatures. Among those, miR-155
is known to inhibit proliferation, invasion, and migration of melanoma cells, while targets
of miR-205 are involved in metastasis and survival of CM [42,43]. In addition, miR-142-5p is
altered after UV radiation of the skin and miR-203 is significantly decreased in CM tissues,
is associated with prognosis and has been shown to suppress metastasis in vivo [44–46].
Moreover, miR-21-5p is a well-studied oncomir reported to be overexpressed in several
types of cancer and has been associated with promotion of cell cycle progression in CM [47].
Finally, miR-211 has been shown to contribute to BRAF inhibitor resistance in melanoma,
while miR-125b and miR-150 act as tumor suppressors [48–50].

Table 2. CM miRNA signatures as biomarkers of survival.

miRNA Signature Significance Datasets Samples Reference
miR-31-5p, miR-21-5p, miR-211-5p,

miR-125a-5p, miR-125b-5p and
miR-100-5p (miRNA ratios)

FFPE
phs001550.v2.p1

(miRNASeq)

41 nevi and
41 melanomas [37]

miR-155-5p, miR-9-5p, miR-142-5p,
miR-19a-3p, miR-134-5p, miR-301a-3p,
miR-205-5p, miR-203a-3p, miR-27b-3p,

miR-218-5p, and miR-23b-3p

FFPE
(microarray)

5 cutaneous nevi and
27 primary melanomas [38]

miR-142-5p, miR-550a, miR-1826,
and miR-1201

distinction of
melanomas from nevi

GSE62370
(microarray)

9 congenital nevi and
92 primary melanomas [39]

miR-205, miR-203, miR-200a-c,
and miR-141

distinction of
metastatic from

primary melanomas
TCGA

(miRNASeq)
97 primary and 350

metastatic melanomas [40]

miR-150-5p, miR-15b-5p, miR-16-5p,
and miR-374b-3p

prediction of
brain metastases

IMCG GSE62372
(microarray)

256 primary
melanomas [41]

miR-125b, miR-200c and miR-205
prediction of

overall survival

FF (RT-qPCR) 65 primary and 67
metastatic melanomas [51]

miR-202, miR-206, miR-3681, miR-122
and miR-1246

TCGA
(miRNASeq) 448 melanomas [52]

miR-16, miR-211, miR-4487, miR-4706,
miR-4731, miR-509-3p and miR-509-5p

FFPE
(RT-qPCR) 86 melanomas [53]

miR-497, miR-145, miR-342-5p,
miR-150, miR-155 and miR-455-5p

prediction of
post-recurrence

survival

FFPE
(microarray) 59 melanomas [54]

miR-25, miR-204, miR-211, miR-510
and miR-513c

prognostic biomarker
in cutaneous
melanoma

GSE35579
(microarray)

11 benign nevi and
41 melanomas [55]

miR-10b FF (microarray)
20 non-metastasizing
and 20 metastasizing
primary melanomas

[56]

miR-338, let-7, miR-365, miR-191,
miR-193b-3p and miR-193a-3p

FF, GSE19387
(microarray)

32 samples from
regional lymph node

metastases
[57]

miR-150-5p, miR-142-3p
and miR-142-5p FF (microarray) 84 samples from lymph

node metastases [58]

miR-21-5p, miR-424-5p and let-7b
associated with

invasive and
aggressive phenotype

FF, GSE36236
(miRNASeq)

12 normal skin,
13 common nevi,

17 dysplastic nevi,
45 melanomas in situ

and 80 primary
cutaneous melanomas

[59]

FFPE: Formalin-Fixed Paraffin-Embedded; FF: Fresh Frozen; IMCG: Interdisciplinary Melanoma Cooperative
Group; RT-qPCR: reverse transcription quantitative Real time PCR.

It is obvious that none of the existing reports can be used unambiguously as reference
for clinical use, since they conclude on different miRNAs and this inconsistency can be
attributed to a number of factors. Most of the studies rely on microarray experiments or
even RT-qPCR for the discovery of a miRNA signature, thus profiling the expression of
few prespecified miRNAs and possibly excluding from the signature other potential key
miRNAs. In the same line, the selection of the profiled miRNAs is biased towards well-
annotated miRNAs and miRNAs previously reported in the literature. More importantly,
most studies rely solely on the differential expression analysis of the profiled miRNAs,
which results to the generation of signatures with large numbers of miRNAs. To select key
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miRNAs among the ones differentially expressed, some studies select those with known role
in CM, again excluding possibly discriminative miRNAs. Other studies select miRNAs by
computing the correlation of each single miRNA to the target outcome, without considering
their systemic and synergistic roles. To address these limitations, few studies employed
machine learning tools for the discovery of signatures and the generation of classification
models. However, traditional machine learning algorithms do not perform well with
datasets from few samples and many miRNAs, which is a common case in miRNASeq
data. The large number of miRNA profiles combined with the non-optimized choice of
machine learning algorithm parameters can lead to overfitting and lack of generalization,
i.e., the model learns to perfectly discriminate samples already provided for its training,
but fails to classify new unknown samples. Therefore, external test data sets could be useful
to assess the performance of machine learning models in a less biased way, an approach
which is missing from most studies. In addition, most studies have been limited by the
small number of samples either from specific miRNA datasets or from FF/FFPE samples.
This limitation, combined with the differences in the analytical methodologies used, results
in this variation and diversity of results and suggests that a more collaborative approach is
required, using large datasets obtained from public databases such as TCGA.

3. Transcriptomics and Gene Signatures from CM Patients

The use of NGS for transcriptomics analysis and several elaborate bioinformatics
tools have correlated the expression of several genes with CM progression and metastasis
(presented in detail in Table 3). Specifically, two distinct gene signatures were generated
using data from GEO datasets for the prognosis of CM, while the use of the TCGA dataset
resulted in gene signatures to predict metastasis and overall survival [60–63]. Both datasets
produced a 4-gene model (ADAMDEC1, GNLY, HSPA13, TRIM29) that is strongly cor-
related with survival prediction [64]. Similarly, co-expression analyses using publicly
available RNA-seq data (GSE98394) and immuno-histochemistry from the Human Protein
Atlas revealed 3 genes (STK26, KCNT2, CASP12) with potential value as predictors for
accurate diagnosis and prognosis of CM [65]. Moreover, expression analysis of specific
candidate genes from fresh frozen samples revealed a 9-gene signature (KRT9, KBTBD10,
DCD, ECRG2, PIP, SCGB1D2, SCGB2A2, COL6A6, HES6), which could predict the clinical
outcome [66]. Analysis of microarray expression data identified a signature of 28 genes
(Table 3) for metastasis risk, while analysis of three chip datasets from the GEO database
revealed 8 genes (DSG3, DSC3, PKP1, EVPL, IVL, FLG, SPRR1A, SPRR1B) with significant
predictive value for metastatic transformation of CM [67,68]. A diverse signature of 6 genes
(ALDH1A1, HSP90AB1, KIT, KRT16, SPRR3, TMEM45B) to predict metastasis was identi-
fied using publicly available transcriptomics data from biopsies of CM patients, using an
AI approach and scanning a genome-wide protein-protein interaction network, followed
by shortlisting of the most influential and most differentially expressed genes. The gene
signature showed 87% classification accuracy and was further validated on an independent
transcriptomic data set and highlighted the importance of AI tools for a more accurate
prediction approach [69]. In addition, analysis of samples from the Leeds Melanoma Cohort
(LMC) reported association of high JUN and AXL expression with poor prognosis and
response to immunotherapy [70]. Finally, additional studies using either publicly available
datasets or tissue samples, also reported gene signatures that could potentially predict
clinical outcome or distinguish between metastatic and primary CM [71–74].
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Table 3. Gene signatures as putative prognostic biomarkers in CM.

Gene Signature Significance Datasets Samples Reference

BAX, CALM1, CALM3, FN1, PRKCA, RB1, VEGFA, IGF1 GSE3189, GSE4570
and GSE4587

28 nevi and 58
melanoma samples [60]

CXCR4, IL7R, PIK3CG

prognostic biomarker in
cutaneous melanoma GSE65904 214 melanoma samples [61]

IGF2BP1, PTMA, MYC, MITF
elevated levels

in more
aggressive phenotypes

mouse model [75]

KRT9, KBTBD10, DCD, ECRG2, PIP, SCGB1D2,
SCGB2A2, COL6A6, HES6 FF 135 melanomas [66]

RHBDL3, GPR64, ANKRD30A, PRKCD

prediction of
clinical outcome

TCGA, GSE22138,
GSE54467, GSE65904

and
E-MTAB-4725

102 melanomas + 565
samples

(for confirmation)
[71]

DSG3, DSC3, PKP1, EVPL, IVL, FLG, SPRR1A, SPRR1B distinction of
metastatic from

primary melanomas

GSE46517, GSE15605,
GSE8401

109 primary and 136
metastatic skin

melanomas
[68]

ALDH1A1, HSP90AB1, KIT, KRT16, SPRR3, TMEM45B GSE15605, GSE7553,
LMC and TCGA

20 normal samples,
867 primary and 419

metastatic melanomas
[69]

ABCC3, CAPS2, CCR6, CDCA8, CLU, DPF1, PTK2B,
SATB1, SYNE1

TCGA, GSE19234, and
GSE22153

556 cutaneous
melanomas [62]

STK26, KCNT2, CASP12 GSE98394
27 common required
nevi and 51 primary

melanomas
[65]

BAP1b, MGP, SPP1, CXCL14, CLCA2, S100A8, BTG1,
SAP130, ARG1, KRT6B, GJA1, ID2, EIF1B, S100A9,

CRABP2, KRT14, ROBO1, RBM23, TACSTD2, DSC1,
SPRR1B, TRIM29, AQP3, TYRP1, PPL, LTA4H, CST6

FFPE 268 melanoma
samples [67]

A2M, DUSP6, HLA-B, SERPINE2, SLC26A2 GSE115978 31 melanoma samples [72]
CDKN2A, CDKN2B, ZBTB16/PLZF, CDKN1A, TYR,

ARNT2, MDM2, GPR143, RAB38, ANGPT2, MGAT5,
POU4F1, SIX1

prognostic biomarker
in metastatic
melanoma

GSE149884 murine melanoma cell
lines [76]

SERPINH1, HOXC10, MYH10, EPHB2, SRPX2, CGREF1,
DDR2, P4HA2, IGSF10, OSM, ADORA3, RECK,

KDELR3, TMEM8, SMARCA1, JAZF1, FKBP7, ZFP449,
TRIQK, REN1, IGF2BP2, GRB10, DPYSL4, CMBL,

PDE3B, DAB2, PPP1R9A, QPRT, PEG10, NID1, EFNB3,
COLGALT2, DBN1, C1QTNF3, CDC7, MDK, GULP1,

HOXD13, EYA4, DEPDC1A, CRABP2, ATP10B, TTYH1,
SLITRK2, ELOVL2, STK32B prediction of

overall survival

GSE140193, GSE25164 genetically engineered
mouse model [9]

IL15, CCL8, CLIC2, SAMD9L, TLR2, HLA.DQB1,
IGHV1-18, RARRES3, GBP4, APOBEC3G TCGA 470 melanomas [63]

ADAMDEC1, GNLY, HSPA13, TRIM29 GSE7553, GSE46517,
and GSE15605

17 normal skin and
202 melanomas [64]

IQCE, RFX6, GPAA1, BAHCC1, CLEC2B, AGAP2 TCGA, GSE19234 and
GES65094 485 melanomas [73]

CCR9, CNR2, DIRAS2, ESRP2, FAM83C, KCNT2,
USH1G TCGA 103 primary and 368

metastatic melanomas [74]

AKR1C3, BMP1, CRTAC1, ECEL1, ERC2, FAM110C,
FUT9, GABRA2, GAP43, GREM1, HECW1, KLHL1,

KRT12, LHFPL4, NEFL, NEFM, NETO1, NKX2-2, NSG2,
OCIAD2, OTOP1, PDE3B, PTPRN2, PTPRT, SIGLEC15,
SLC13A5, SLC9A2, SLITRK6, SNAP91, STON2, TAC1,
VAT1L, WNT5A, ALX1, BRD7, DTD1, GRSF1, HCN1,

LTA4H, OXCT1, PATJ, PLXNC1, SSBP4, TELO2,
TMEM177

prediction of clinical
response to ICB GSE144946 genetically engineered

mouse model [77]

JUN, AXL

prediction of poor
prognosis and

response to
immunotherapy

LMC 687 primary
melanomas [70]

FFPE: Formalin-Fixed Paraffin-Embedded; FF: Fresh Frozen; LMC: Leeds Melanoma Cohort; ICB: immune
checkpoint blockade.

Most recently, studies using CM mouse models have led to the generation of similar
gene signatures with potential use as prognostic tools for CM progression, recurrence,
and metastasis. In more aggressive melanomas, a set of 4 upregulated genes (IGF2BP1,
PTMA, MYC, MITF) was identified and a prognostic signature of 13 genes for metastatic
CM was reported (CDKN2A, CDKN2B, ZBTB16/PLZF, CDKN1A, TYR, ARNT2, MDM2,
GPR143, RAB38, ANGPT2, MGAT5, POU4F1, SIX1) [75,76]. In addition, the use of geneti-
cally engineered mouse models created a 43-gene signature that predicts patient survival
and the clinical outcome of immune checkpoint inhibitors [9,77]. This set of genes is
melanoblast-specific, and their expression may contribute to metastatic competence. More
specifically, four different melanoma cell lines with different levels of sensitivity to immune
checkpoint blockade (ICB) treatment were isolated and subsequent transcriptomics analysis
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revealed that the differentiation status of melanoma cells may determine the ICB benefit.
Notably, the four mouse models were each found to correspond to a human CM phenotype
(undifferentiated, neural crest-like, transitory, melanocytic) [77].

Genes reported in more than one signature include SPRR1B, KCNT2, CRABP2, TRIM29,
LTA4H and PDE3B. Similarly with the miRNA signatures mentioned above, most research
groups were limited to datasets of a few genes and followed different methodologies in an
attempt to generate gene-specific signatures, leading to significant variations between gene
clusters, suggesting that a more collective approach is needed.

4. AI-Based miRNA Signatures for Prediction of Melanoma Recurrence and Metastasis

To gain insight into the contribution of miRNAs reported so far in melanoma re-
currence and metastasis, we analyzed data from the TCGA-SKCM project, which is the
largest collection of integrated biological and clinical data from 470 melanoma patients.
miRNA-Seq data are available for 448 patients [6]. For 4 of the patients, data from two
biological samples have been deposited, resulting in a total of 452 samples. Information
on tumor recurrence is available for 438 samples, among which 328 samples are from a
recurrent tumor and 110 are not. Combined analysis of differential expression profiles
and comparison of co-expression networks of miRNAs (see supplementary methods for
details) revealed a 7-miRNA signature (miR-155, miR-205, miR-376b, miR-1226, miR-1306,
miR-3652, miR-3917) associated with CM recurrence (Table 4). Differential expression
analysis alone, even when a strict cutoff was used (adjusted p value 0.05), resulted in
203 deregulated miRNAs. Comparison of the two miRNA co-expression networks resulted
in 31 miRNAs with altered co-expression patterns. The 7 signature miRNAs are those
that are both statistically significant, differentially expressed in the two recurrence condi-
tions and significantly altered when comparing the miRNA co-expression network of the
recurrent samples with that of the non-recurrent samples (see Supplementary Materials
for details).

Table 4. Roles of miRNAs in recurrence signature. Log2 fold change and adjusted p-value refer to the
comparison of recurrent against non-recurrent CM samples.

miRNA log2 Fold
Change Adjusted p Value Role in the Literature

mir-155 0.441282 0.046899 Associated with tumor prognosis. Its inhibition causes retarded glucose
metabolism and thus, reduces in vivo tumor growth [78,79].

mir-205 −3.69183 1.03 × 10−14 Is a tumor suppressor miRNA in breast cancer which inhibits cell
proliferation and anchorage independent growth as well as cell invasion [79].

mir-376b 1.057248 0.002396 Controls autophagy by directly regulating intracellular levels of two key
autophagy proteins, ATG4C and BECN1 [80].

mir-1226 0.393576 0.010158
Regulates MUC1 and thus, dendritic cells resting which in turn play an
important role in STS recurrence [81]. Targets expression of the mucin 1

oncoprotein and induces cell death [82].

mir-1306 0.254205 0.027816 Promotes apoptosis of granulosa cells (GCs) as well as attenuates the
TGF-β/SMAD signaling pathway targeting and impairing TGFBR2 [83].

mir-3652 0.549545 0.002342 N/A

mir-3917 0.388593 0.020348 Has been recognized as biomarker and used for the construction of a
stomach adenocarcinoma (STAD) prognostic signature [84].

Subsequent analysis led to the identification of characteristic miRNAs in tumor metas-
tasis. Among the 452 samples, 353 originated from metastatic tumors and 97 from primary
tumors. The same analysis steps (see Supplementary Materials for details) led to a signature
of 8 miRNAs (miR-186, miR-671, miR-760, miR-944, miR-1976, miR-3610, miR-3615, miR-
6842) associated with metastasis which, with few exceptions, have been previously reported
with important biological roles in melanoma and other cancer types (Table 5). Our analysis
showed that 200 miRNAs were deregulated in metastatic samples compared to primary
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tumors and 24 miRNAs had altered co-expression patterns when the miRNA co-expression
network of metastatic samples was compared with that of primary tumor samples.

Table 5. Roles of miRNAs in metastasis signature. Log2 fold change and adjusted p-value refer to the
comparison of metastatic against primary CM samples.

miRNA log2 Fold
Change Adjusted p Value Role in the Literature

mir-186 0.290805 0.000389 Regulates TGFβ by suppressing SMAD6-7 in colorectal cancer and inhibits cell
proliferation in melanoma [85,86].

mir-671 −0.24244 0.027927
miR-671-5p reduces NSCLC (squamous carcinoma) metastasis [87].
Its upregulation slows down proliferation and metastasis of A375

melanoma cells [88].

mir-760 0.503684 0.012509 It has been found downregulated in several cancers that can act both as tumor
suppressor and as oncomir [89].

mir-944 −3.41097 8.62 × 10−37

Suppresses EMT in colorectal cancer [90]. It has been reported as downregulated
in hepatocellular carcinoma (HCC) and suppresses the malignancy of HCC by
deactivating PI3K [91]. Its overexpression is correlated with poor prognosis in

cervical cancer [92].

mir-1976 0.444564 0.000327
It has been identified as tumor suppressor in NSCLC [93]. Its downregulation has

been correlated with worse overall survival in triple-negative breast cancer
(TNBC) from TCGA [94].

mir-3610 0.339103 0.049814 It has been associated with sumoylation, a molecular signature in head and
neck cancer [95].

mir-3615 0.245396 0.036379 Its upregulation is correlated with high TNM stage and high proliferation
in HCC [96].

mir-6842 0.450524 0.003272 N/A

4.1. Specific miRNAs Expression Patterns Regulate Melanoma Related Genes

In a next step, the analysis was enriched by incorporating TCGA RNASeq data from
the same samples to identify genes that negatively correlated with the miRNA patterns
using the Spearman correlation method with Rho < −0.25. Subsequent target prediction
analysis between the signature miRNAs and negatively correlated mRNAs resulted in two
sets of putative miRNA gene targets (see Supplementary Materials for details). Functional
analysis revealed statistically significant (p-value < 0.05) gene ontology enrichment in terms
such as melanoma and melanogenesis. Furthermore, these genes are involved in several
important biological processes and molecular functions, such as transcriptional regulation
and signaling, a finding that provides the basis for further experimental validation.

The putative target genes with the most negative correlation to recurrence were PTK7,
ZBTB7A, AGO2, C7, FAM168B, UCK2, ZNF426, PUM1, CMTM4, CTBP2, TOMM20, LRP6,
KBTBD6, LYSMD1, GPM6B, ADNP, MAP4K4, ZNF512B, TCF7L2, PGAP1 (Figure 1A, red
circles). Similarly, the putative target genes with the most negative correlation to metastasis
were RNF44, CDK20, HDAC5, IGSF11, KCNJ13, KCTD15, KIF13A, LDB1, LRP6, PLXNB1,
RBMS2, RNF144A, SOCS7, SOX4, TTC28, TTPA, UTP25, ZKSCAN8, ZNF264, ZNF713
(Figure 1B, red circles). Genes which are common targets of the two miRNA signatures
include ANKRD50, BPTF, CAMSAP2, CLCN3, CREBBP, FARP1, GAB2, IGF1R, IGSF11,
LRP6, MAU2, MBTD1, NECTIN1, PIP4K2B, PRKCE, PUM1, RFTN2, SLC39A10, TEAD1,
TRIM13, UCK2, YAP1, ZBTB7A, ZNF250, ZNF512B, ZNF609, ZNF618, ZNF704 which,
after gene ontology analysis, are enriched in adherence junction, transcription initiation
from RNA polymerase II promoter, signal transducer activity and hippo signaling.
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Interestingly, the analysis performed indicated several miRNAs that can target signa-
ture genes with a contribution to metastatic potential and could indicate patient survival.
In particular, several genes, including PATJ, FUT9, GABRA2, PDE3B and LTA4H were
among the putative targets of miR-155, miR-186, miR-205, miR-376b, miR-944, miR-1226,
miR-1306, miR-3615, miR-3652 and miR-6842 (Figure 2). Most importantly, these genes are
members of a previously reported gene signature, which is derived from four immuno-
suppressed melanoma mouse models and represents major molecular and phenotypic
subtypes of human CM [77]. In addition, several of these genes such as FUT9 and PDE3B
have been correlated to cell adhesion and angiogenesis, GABRA2 has been associated with
the probability of survival in colorectal cancer and PATJ is a regulator of epithelial cell
microtubule elongation and cell migration.
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4.2. Contribution of AI in the Prediction of Melanoma Recurrence and Metastasis

Based on the preceding, a multi-objective ensemble optimization method was used
and recurrence and metastasis prediction models were generated using the values of
the signature miRNAs reads per million (RPM) as input (see Supplementary Materials
for details) [20]. The applied method is based on the hybrid combination of heuristic
optimization and nonlinear machine learning classification methods [97]. Specifically,
it is an ensemble dimensionality reduction technique employing a heuristic optimization
algorithm to (a) identify the optimal feature subset to be used as input to the classifiers, (b)
to select the most appropriate classifier among support vector machines (SVM) and random
forests and (c) to select the optimal parameters for the classifier, namely C and gamma of
SVM and number of trees for random forests. This approach allows both an unbiased and an
optimized selection of the classification method and its parameters. To handle the multiple
objectives of maximization of predictive performance, minimization of selected features and
simplicity of the classification model, we deployed a multi-objective Pareto-based approach
to reveal all the non-dominated solutions of the above-stated optimization goals [20].
These solutions were then combined in an ensemble manner to predict tumor recurrence
and metastasis. This ensemble approach allows combining more than one classification
model to optimize prediction performance. For recurrence, the cross-validation accuracy
achieved was 91.51% with 92.65% specificity and 91.29% sensitivity. Machine learning
algorithms can learn linear and non-linear patterns from the data provided to them for their
training. Thus, testing the performance of a classification model with the training data,
or even with a cross-validation strategy favors the performance of the classifier. A common
practice to evaluate a classifier more rigorously is to calculate the predictive performance on
samples not previously seen by the algorithm. The respective metrics in the external test set
(i.e., samples not seen before by the algorithm) were 73.85% accuracy with 79.09% specificity
and 88.78% sensitivity. For metastasis, the cross-validation accuracy achieved was 97.39%
with 96.67% specificity and 98.38% sensitivity. The respective metrics in the external test
set were 88.78% accuracy with 82.40% specificity and 98.10% sensitivity (Table 6).
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Table 6. The signature miRNAs alone and combined with clinical data predict tumor recurrence and
metastasis. Cross validation results and results in previously unseen to the algorithm samples are
presented in terms of accuracy-ACC, specificity-SP, and sensitivity-SEN.

Metrics
Cross-Validation Unseen Test Samples

ACC SP SEN ACC SP SEN

recurrence signature 91.51% 92.65% 91.29% 73.85% 79.09% 88.78%
recurrence signature + clinical data 96.51% 97.13% 96.07% 85.38% 88.35% 92.86%

metastasis signature 97.39% 96.67% 98.38% 82.09% 82.40% 98.10%

To test whether incorporating clinical characteristics into the analysis would improve
the results of recurrence prediction, the inclusion of various demographic and staging
related AJCC characteristics was also tested. The best prediction model chose to include
the following features in the miRNA signature: sample type, AJCC T stage and AJCC stage.
As a result, we observed increased predictive performance to 96.51% accuracy, 96.67%
specificity and 98.38% sensitivity when using cross validation and 85.38% accuracy, 88.35%
specificity and 92.86% sensitivity in the external test set (Table 6). Thus, providing the
classifier with the relative expressions of the 7 signature miRNAs for a patient would
predict with an accuracy of 73.85% whether or not it is a recurrent tumor, and additionally
providing the classifier with the aforementioned three clinical features in addition would
predict recurrence with an accuracy of 82.09%.

5. Discussion

We report, herein, the diagnostic and prognostic potential of miRNAs as reliable
biomarkers in CM and discuss their functional correlation with previously reported gene
expression signatures. Incorporation of such signatures in clinical practice could assist
clinicians to take more informed decisions. However, different studies based on different
data, or even based on the same data but using different bioinformatics tools result in
inconsistency regarding specific signatures. Overcoming these limitations requires larger
patient cohorts, multi-omics data instead of single-omics, more elaborate bioinformatics
analysis and more sophisticated artificial intelligence tools.

With a special focus on CM recurrence and metastasis, we applied a comprehensive
data analysis approach to publicly available NGS data, integrating statistical, bioinformatics
and network analytics. We analyzed the largest available miRNA-Seq data cohort of
melanoma patients and identified one miRNA signature of recurrence and one miRNA
signature of metastasis. Integration of RNA-Seq data from samples from the same patients
allowed functional enrichment of these signatures. The targets of miRNA signatures are
related to melanoma, melanogenesis, transcriptional regulation and signal transduction.
In addition, miRNAs of these signatures are associated with response to several promising
immunotherapies. Of note, the identified miRNAs can potentially target signature genes
which, in turn, are involved in metastasis and could be used to predict patient survival.

The emerged 7 miRNAs signature related to recurrence (miR-155, miR-205, miR-376b,
miR-1226, miR-1306, miR-3652, miR-3917; Table 4) was previously reported to regulate
important biological processes and to drive cancer progression. Interestingly, miR-1226
targets expression of the mucin 1 oncoprotein (MUC1) and induces cell death [82]. Re-
cently, the potential mechanism of miR-1226-3p regulating MUC1 which, in turn, affects
resting of dendritic cells, was shown to play an important role in soft tissue sarcoma (STS)
recurrence [81,82]. On the other hand, miRNAs associated with prognosis and inhibition of
carcinogenesis, such as miR-155 and miR-205 were also identified. Interestingly, both miR-
NAs have been part of a 6 membered cluster of serum miRNAs that can detect metastatic
melanoma [98]. Stable inhibition of miR-155 has been correlated with retarded glucose
metabolism and reduced tumor growth in vivo, while ectopic expression of miR-205 sig-
nificantly inhibits cell proliferation and anchorage independent growth as well as cell
invasion [78,79]. Finally, the signature that we propose to predict CM recurrence includes



Int. J. Mol. Sci. 2022, 23, 1299 13 of 18

miR-376b, miR-1306 and miR-3917 which have been also proposed as biomarkers in several
cancers and were found to be correlated with apoptosis and autophagy [80,83,84].

On the other hand, a group of 8 miRNAs constitutes the proposed signature for
metastasis prediction (miR-186, miR-671, miR-760, miR-944, miR-1976, miR-3610, miR-3615,
miR-6842; Table 5). Among those, miR-186, miR-671, miR944 and miR-3610 are the most
well characterized. Of note, miR-186 regulates TGFβ by suppressing SMAD6-7 colorectal
and inhibits cell proliferation in melanoma and in the same line, upregulation of miR-671
slows down proliferation and metastasis of A375 melanoma cells [81,85]. miR-3610 has been
associated with sumoylation and it was recently also included in a molecular signature of
head and neck cancer [95]. Finally, miR-944 has been reported to be deregulated exhibiting
either tumor suppressive or oncogenic function in human malignancies [90–92].

Training classification models using these signatures allowed the prediction of melanoma
recurrence and metastasis with high accuracy (accuracy 91.51% and 97.39%, respectively,
with 5-fold cross validation). Testing our models in an external test set, i.e., completely
unseen patients’ samples for the trained models has an accuracy of 73.85% and 82.09% in
predicting melanoma recurrence and metastasis, respectively. In addition, the prediction
models that we produced have the potential to stratify patients, by identifying those who
are at risk for tumor recurrence and metastasis. The ability of the proposed hybrid dimen-
sionality reduction and classification technique to identify the optimal subset of clinical
features and combine them in an optimal and non-linear manner allowed the improvement
of the predictions. Moreover, the integration of additional clinical data in the recurrence
miRNA signature raised the predictive accuracy in the external test set from 73.85% to
85.38%. The combination of gene expression profiles with clinical data significantly im-
proves the predictive performance as has been previously highlighted by similar studies on
CM [99,100]. In our study, the observed improvement highlights the need for integration
of data from multiple sources, such as multi-omics, clinical and imaging data, to provide a
more comprehensive and accurate description of the biological processes underlying the
disease and lead to more informative biomarkers.

Several recent studies support the value of circulating miRNAs as potential biomarkers
of CM [28]. As such, the use of single cell data could contribute further to our understanding
of the clonality and heterogeneity of CM and could explain molecular events underlying
recurrence and metastasis [101]. The miRNA signatures reported herein include miRNAs
that were previously shown to participate in melanoma occurrence and progression, as well
as novel miRNAs. The strict filtering performed in the present study resulted in clusters
of miRNAs that are significantly correlated with metastasis and recurrence and are strong
predictors of these events, with an accuracy higher than 70%. All the above suggest
that their involvement in melanoma progression is significant and could help not only the
clinicians to better predict the prognosis of melanoma patients for more accurate therapeutic
approaches, but also the researchers to better understand the complex gene networks which
are deregulated in melanoma.

6. Conclusions

Recent efforts to perform transcriptomics profiling on large cohorts of CM patients
enable the better understanding of melanoma biology. Bioinformatics, heuristic optimiza-
tion, and machine learning classification models, when combined and applied to big data
provide unique opportunity to identify potentially useful miRNA signatures as biomarkers
from precision diagnosis and timely prognosis of metastasis or recurrence in response
to treatment. Several studies evaluating the prognostic significance of miRNAs in CM
recurrence and metastasis had inconsistent results, possibly attributed to methodological
variations. Different studies based on different data, or even based on the same data,
but with different analytics tools come up with different inconsistent signatures. Larger
cohorts of patients, multi-omics instead of single-omics data, better bioinformatics tools and
better AI tools are needed to overcome these limitations. However, even in this case, exper-
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imental low-throughput validation is required before such signatures can be incorporated
in clinical practice.
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