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Atypical sensory processing described in autism spectrum disorders (ASDs)

frequently cascade into behavioral alterations: isolation, aggression, indifference,

anxious/depressed states, or attention problems. Predictive machine learning models

might refine the statistical explorations of the associations between them by finding out

how these dimensions are related. This study investigates whether behavior problems

can be predicted using sensory processing abilities. Participants were 72 children and

adolescents (21 females) diagnosed with ASD, aged between 6 and 14 years (M = 7.83

years; SD = 2.80 years). Parents of the participants were invited to answer the Sensory

Profile 2 (SP2) and the Child Behavior Checklist (CBCL) questionnaires. A collection of

26 supervised machine learning regression models of different families was developed

to predict the CBCL outcomes using the SP2 scores. The most reliable predictions were

for the following outcomes: total problems (using the items in the SP2 touch scale as

inputs), anxiety/depression (using avoiding quadrant), social problems (registration), and

externalizing scales, revealing interesting relations between CBCL outcomes and SP2

scales. The prediction reliability on the remaining outcomes was “moderate to good”

except somatic complaints and rule-breaking, where it was “bad to moderate.” Linear

and ridge regression achieved the best prediction for a single outcome and globally,

respectively, and gradient boosting machine achieved the best prediction in three

outcomes. Results highlight the utility of several machine learning models in studying

the predictive value of sensory processing impairments (with an early onset) on specific

behavior alterations, providing evidences of relationship between sensory processing

impairments and behavior problems in ASD.
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INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental
condition with a consistently high prevalence worldwide
(Chiarotti and Venerosi, 2020) that poses a serious burden
to the society and affected families. An early diagnosis of
ASD is crucial for implementing interventional approaches on
individuals with this disorder (Cidav et al., 2017). Multiple
risk factors contribute to the ASD phenotype, including
genetic, biological, psychosocial, and environmental contributors
(Parenti et al., 2021; Deb and Bateup, 2022). This disorder is
characterized by impairments in different areas of development,
including deficits in social interactions and communication,
by restricted/repetitive behaviors, and by sensory-perceptual
alterations, which were added as an ASD diagnostic criterion
(American Psychiatric Association, 2013). Impairments in
sensory processing are described as unusual interests in sensory
aspects of the environment (e.g., visual, auditory, or tactile
stimuli) to which individuals with ASD frequently display
atypical responses (Tseng et al., 2011; American Psychiatric
Association, 2013). These responses can be organized and
classified as hyper-reactivity (tendency to respond at lower
intensity thresholds quicker and more intensely or longer)
or hypo-reactivity (tendency to respond with “indifference,”
unawareness, or slowly) to sensory input (Tavassoli et al., 2016)
that seems to be underpinned by specific neurophysiological
markers (see Marco et al., 2011 for a detailed review). Atypical
processing patterns have been observed in ASD across all sensory
modalities, including visual, auditory, olfactory, proprioceptive,
somatosensory, or interoceptive stimulation, and multisensory
integration, regardless of age and symptoms severity in children
and adolescent (Ben-Sasson et al., 2009). Sensory alterations have
an early onset and are one of the first signs of ASD, as early as
observed in the first months of life (Iarocci andMcDonald, 2006).
In consequence, these alterations can impact behavior and social
functioning of children and adolescents and may be at the root of
social deficits during development (Thye et al., 2018).

Indeed, altered sensory responsivity in ASD cascades
into social and behavioral impairments (Thye et al., 2018).
The relationship between hypo-responsiveness and hyper-
responsiveness to sensory stimuli and maladaptive behavior
has been documented, with atypical processing of stimuli
being correlated with social, cognitive, and communicative
impairments (Kojovic et al., 2019), and the presence of
repetitive and restricted interests and behaviors (Foss-Feig
et al., 2012). Sensory abnormalities were also linked to
isolation, reactivity to change, disinterest and indifference,
self-aggression, irritability, or emotional lability (Gonthier
et al., 2016). Additionally, altered sensory processing has
been related to anxiety (Uljarević et al., 2016) and depressive
(Bitsika et al., 2016) states in children and adolescents
with ASD, with a great impact on their adaptive behaviors
(Tomcheck and Dunn, 2007; Lane et al., 2010; Zachor and
Curatolo, 2014). One of the earliest and most common sensory
alterations described in ASD is related to abnormalities in
tactile processing, for example, food texture (Mikkelsen et al.,
2018).

Tactile contact is considered a precursor for the development
of social and communication abilities, and impaired touch
processing has been linked to emotional and social distress
early in life, as it imposes limits on environmental learning
opportunities (Mikkelsen et al., 2018). Moreover, evidence
suggests that increased difficulties in touch processing are
associated with behavioral impairments (e.g., difficulties in
inhibitory control) in children and adolescents with ASD (Puts
et al., 2014; Piccardi et al., 2021). In addition, altered touch
processing was related to increased social and communication
deficits (Foss-Feig et al., 2012; Miguel et al., 2017), to non-
verbal communication impairments and repetitive behaviors
(Foss-Feig et al., 2012), as well as anxious/depressed states
and repetitive/obsessive behavior (Fernández-Prieto et al.,
2021). Therefore, it is important to further clarify the
relationship between sensory processing and behavior in children
and adolescents with ASD, by exploring to what extent
sensory processing is predictive of behavioral outcomes in
this population. The Sensory Profile 2—SP2 (Dunn, 2014)—
and the Child Behavior Checklist—CBCL (Achenbach and
Rescorla, 2001)—are two widely used tools to measure sensory
and behavioral competencies, respectively. These questionnaires
provide standardized measures of child’s development and offer
guidance for future clinical interventions. In addition, the scores
of SP2 and CBCL subscales are correlated (Miguel et al.,
2017). New tools—like machine learning (ML) techniques—
can offer novel insights into how sensory processing and
behavior—measured by these questionnaires—are associated.
Some works in the literature showed the interest of using ML
in the study of ASD to analyze continuous/dimensional or
categorical/qualitative variation between and within individuals
(Lombardo et al., 2019). In addition, ML can offer improved
diagnostic timing, precision, and quality, allowing clinicians
to provide more robust diagnosis and intervention programs
(Thabtah, 2019), as well as providing evidence on possible altered
processes (e.g., reactivity to sensorial stimuli) for implementing
early personalized care therapies and/or strategies. The ML
models provide satisfactory solutions to medical and non-
medical applications due to its ability to extract information and
make predictions (Briscoe and Marín, 2020).

This study aims to use a wide collection of supervised
ML algorithms (multiple linear regression, support vector
machines, gradient boosting machine, and regression tree-
based ensembles such as cubist and random forest, among
others) to investigate how sensory processing predicts behavioral
problems in ASD. With these algorithms, we sought to
examine how SP2 quadrant scores (seeking, avoiding, sensitivity,
and registration) and touch processing (given the evidence
suggesting that tactile impairments are related to the onset of
ASD, and being the most common sensory alteration in this
population) are predictive of CBCL subscales: anxious/depressed,
withdrawn/depressed, somatic complaints, social problems,
thought problems, attention problems, rule-breaking behavior,
aggressive behavior, and the two empirically derived internalizing
and externalizing broadband scales. It is expected that hyper-
responsive and hypo-responsive sensory experiences assessed
using the SP2, i.e., items corresponding to seeking and avoiding
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TABLE 1 | List of the six item sets used as inputs by the machine learning

regressors (touch, total, and the four quadrants from the SP2 questionnaire), with

the number of items and the items included in each set.

Item set No. items Items in SP2 questionnaire

Touch 11 16–26

Seeking 19 14, 21, 22, 25, 27, 28, 30, 31, 32, 41, 48,

49, 50, 51, 55, 56, 60, 82, 83

Avoiding 20 1, 2, 5, 15, 18, 58, 59, 61, 63, 64, 65, 66,

67, 68, 70, 71, 72, 74, 75, 81

Sensitivity 19 3, 4, 6, 7, 9, 13, 16, 19, 20, 44, 45, 46,

47, 52, 69, 73, 77, 78, 84

Registration 22 8, 12, 23, 24, 26, 33, 34, 35, 36, 37, 38,

39, 40, 53, 54, 57, 62, 76, 79, 80, 85, 86

Total 86 1–86

CBCL outcome

S1 Anxious/depressed S7 Rule-Breaking behavior

S2 Withdrawn/depressed S8 Aggressive behavior

S3 Somatic complaints Internal Internalizing problems

S4 Social problems External Externalizing problems

S5 Thought problems Total Total problems

S6 Attention problems

The lower part lists the 11 scales from the CBCL questionnaire (outcomes) to be predicted

by the regressors.

quadrants, as well as touch processing, can be used to
predict ASD behavioral problems, namely, anxious/depressed,
withdrawn/depressed, rule-breaking behavior and aggressive
behavior, as well as in internalizing and externalizing domains.

MATERIALS AND METHODS

Participants
Participants were 72 children and adolescents (21 females),
aged between 6 and 14 years (mean = 7.83 years; SD
= 2.80 years), diagnosed with ASD following the criteria
established by the Diagnostic and Statistical Manual of Mental
Disorders in its revised fourth version (DSM-IV-TR) or
fifth version (DSM-5). Participants were part of a larger
research project studying the association between phenotype
and genotype characteristics in ASD. Qualified clinicians
who were part of the research team confirmed the ASD
diagnosis for research purposes, using the Autism Diagnostic
Interview Revised, ADI-R (Rutter et al., 2006) and the Autism
Diagnostic Observation Schedule, ADOS (Lord et al., 2008), both
described in Sections Autism Diagnostic Interview Revised and
Autism Diagnostic Observation Schedule−2, respectively, of the
Supplementary Material. All parents who agreed to voluntarily
participate gave the written informed consent, obtained in
accordance with the Declaration of Helsinki.

Dataset Description
The Sections Sensory Profile−2 and Child Behavior Checklist
of the Supplementary Material describe the SP2 (Dunn, 2014)
and CBCL (Achenbach and Rescorla, 2001) questionnaires in

detail, respectively. The six sets of items from SP2—touch
processing, the four quadrants (seeking, avoiding, sensitivity,
and registration) and the total SP2 score (all the items)—
were used as inputs of the ML models for predicting the
following 11 outcomes of the CBCL questionnaire (scale
scores): withdrawn/depressed (S1), somatic complaints (S2),
anxious/depressed (S3), social problems (S4), thought problems
(S5), attention problems (S6), rule-breaking behavior (S7),
aggressive behavior (S8), internalizing problems (internal),
externalizing problems (external), and total problems (total).
Raw scores for each scale were converted to standardized T-
scores based on Spanish standards (Unitat d’Epidemiologia i
de Diagnòstic en Psicopatologia del Desenvolupament, 2016),
bounded between 0 and 100, considering age and sex of
participants (6–11 and 12–18 years, separately). Table 1 depicts
the list of items included in each set. Each ML model predicts
one of the 11 outcomes in CBCL using one of the six input sets in
SP2, giving a total of 6·11 = 66 datasets. The influence of gender
(denoted as G) was also investigated, as recent evidence (Osório
et al., 2021) revealed that ASD females are more likely to be
distressed by environmental stimuli, such as noise, and havemore
difficulties with movement coordination and postural control.
Therefore, each set was analyzed with and without gender, thus
obtaining 66·2 = 132 datasets. Supplementary Figure 1 draws
the boxplots that represent the distributions of values for the 11
outcomes. Although each outcome is a score on a scale from 1
to 100, the values are above 30–40 for all the outcomes and, in
several cases, they do not reach 100. For each CBCL outcome,
a value below 60 corresponds to a normative behavior, values
between 60 and 70 correspond to preclinical behavior (i.e., near
to require clinical treatment), and values above 70 correspond to
a clinical diagnosis.

Machine Learning
The description of the ML regression models used to predict
the CBCL outcomes automatically using the SP2 scores is
detailed in Section Machine Learning Techniques of the
Supplementary Material, whose Supplementary Tables 1, 2 list
the details of these models, grouped by families. The family of
linear and regularized regressors include simple linear regression
(Chambers, 1992), namely, lm, lreg, lmreg, and pylm1; stochastic
gradient descent (sgd); least absolute shrinkage and selection
operator regression (lasso) and elasticnet (enet). Kernel and
support vector regressors include kernel ridge regression (krr);
ε-support vector regression (Chang and Lin, 2011) with radial
basis function (RBF), svr and pysvr, and linear (lsvr) kernels;
and Gaussian process regression (Rasmussen and Williams,
2006), named gpr. We also used the regression tree (named
tree) and the M5 model tree (Cohen, 1995), named m5,
implemented by the Weka library (Frank et al., 2016). The
ensemble family includes bagging (Breiman, 1996); adaboost
(Drucker, 1997); gradient boosting machine (Ridgeway, 1999),
named gbm and pygbm; boosting of regression trees (Wang,
2011), named bstTree; cubist (Quinlan, 1992); random forest

1We used several implementations of linear regression because they achieved

different results.
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(Breiman, 2001), named rf and pyrf; extremely randomized
regression trees (extraTrees); and voting committee (vote). We
also used the multilayer perceptron neural network (pymlp).
The models were selected due to their high performance in our
exhaustive comparison (Fernández-Delgado et al., 2019), being
implemented in the Python programming language with the
Scikit-learn module (Pedregosa et al., 2011), in the R statistical
and computing language (The R Team, 2022), and in the Octave
(Eaton et al., 2022) and MATLAB (Mathworks, 2021) scientific
programming languages.

Experimental Methodology
The classical K-fold cross-validation methodology, which splits
the available dataset in training and test sets, is normally
used to test the performance of ML models. The performance
measurements commonly used in regression problems are the
Pearson correlation coefficient (R), root mean squared error
(RMSE), mean absolute error (MAE), and weighted absolute
percentage error (WAPE), defined in Section Performance
Measurements of the Supplementary Material. The reduced
number (N = 72) of participants might lead to poorly significant
training set and unreliable predictions using the K-fold cross
validation with K = 4, 5, or 10. To avoid this drawback, we
used leave-one-out cross validation, that is, a particular case of
K-fold for K = N. In the i-th trial, with i = 1... N, the i-th
participant is left for testing, and the remaining N-1 participants
are used to select adequate hyper-parameter values that achieve
good performance (hyper-parameter tuning). The regressor is
trained on a subset of the N-1 participants (training set) using
a given combination of hyper-parameter values. The remaining
participants (validation set) evaluate the regressor performance
using that combination of values. In order to avoid biasing
caused by splitting, the N-1 participants are sorted by increasing
outcome value and participants with odd (even) index are
assigned to the training (validation) set. Thus, each set roughly
contains 50% of the N-1 participants with outcome values
distributed across the whole range. The training/validation cycle
is repeated for the different combinations of hyper-parameter
values, and the combination with the lowest RMSE on the
validation set is selected. Finally, the regressor is trained with
both sets (training and validation, summing upN-1 participants),
using the selected combination of hyper-parameter values, and
tested on the i-th participant, which was devoted to testing. The
tuning/testing process is repeated for each trial i = 1,. . . , N, and
the performance, measured by R, RMSE, MAE, and WAPE, is
calculated over theN trials. The same process is executed for each
model and CBCL outcome.

To measure the validity of the prediction to perform a
diagnosis, each CBCL outcome is thresholded (see Section
Dataset Description) and labeled as normative (preclinical or
clinical) with values below (above) 60. The usual performance
measurements are accuracy (ACC), sensitivity (Se), and
specificity (Sp), defined in Section Performance Measurements
of the Supplementary Material. This classification problem is
not intended to replace the original prediction of the continuous
CBCL outcome, but to estimate the impact of unreliable

predictions on a final diagnostic (normative vs. preclinical
and clinical).

RESULTS

Table 2 summarizes the best correlation R achieved by some
regressors for each CBCL outcome (in columns) and the set of
SP2 items (input, in rows) with and without gender. Each R
value is the correlation between the true CBCL outcome values
and the values predicted by the regressor for this outcome over
the N patients, according to the abovementioned leave-one-out
approach. These R values are not the correlations between CBCL
outcomes and SP2 items. Table 3 reports the best correlation R,
and its corresponding RMSE, MAE, and WAPE values (in %),
achieved by the best regressor for each outcome with and without
gender (G), alongside the set of SP2 items that provided the best
R. The last three rows of Table 3 report the accuracy, sensitivity,
and specificity classification.

According to the Colton criteria in Section Performance
Measurements of the Supplementary Material, the prediction
(Table 2) for externalization domain (external outcome, R =

0.98) is considered “very good to excellent” (labeled VGE
in the table), while the prediction of anxious/depressed (S1)
and social problems (S4), with R = 0.72, is “moderate to
good” (MTG) but close to “very good to excellent.” The
prediction of withdrawn/depressed (S2), thought problems (S5),
attention problems (S6), aggressive behavior (S8), internalizing
and total problems is also “moderate to good” (MTG). Finally,
the predictions of somatic complaints (S3) and rule-breaking
(S7) behaviors are “bad to moderate” (BTM), and therefore
fairly unreliable.

The avoiding quadrant is the most reliable in
anxious/depressed (S1), aggressive behavior (S8), and
internalizing problems as shown in Table 2. The registration
quadrant best predicts withdrawn/depressed (S2), social
problems (S4), and internalizing (same R as avoiding). Touch
processing best predicts thought problems (S5), rule-breaking
(S7, with low R = 0.44), and total problems. The seeking
quadrant achieves low R = 0.44 in somatic complaints (S3) and
R = 0.51 in attention problems (S6), so it is not very related
to any of the problems. The sensitivity quadrant never gets
the best reliability in prediction. The influence of gender on
the prediction is marginal, with very small differences (about
0.02) in the best R for each outcome with and without gender,
although this influence might be implicit on the remaining items
of the questionnaire.

Table 3 lists the best R results, extracted from Table 2,
alongside their corresponding RMSE, MAE, and WAPE values,
best SP2 quadrant and regressor, and accuracy, sensitivity, and
specificity of normative vs. preclinical and clinical classification.
The MAE is below 10 for all the CBCL outcomes, except
withdrawn/depressed (S2) and thought problems (S5), so the
uncertainty prediction value for most outcomes is below 20.
The outcome values range approximately between 35 and
100 (see Supplementary Figure 1), so these MAE values are
comparatively small. The WAPE is very low in externalizing
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TABLE 2 | The best R for each outcome over the scales is in bold, labeled by performance levels as: BTM (bad to moderate), MTG (moderate to good), and VGE (very

good to excellent).

CBCL outcome

Item set S1 S2 S3 S4 S5 S6 S7 S8 Internal External Total

Touch 0.54 0.3 0.21 0.68 0.57

MTG

0.5 0.44

BTM

0.47 0.49 0.4 0.67

MTG

Seeking 0.11 0.04 0.44

BTM

0.34 0.39 0.51

MTG

0.29 0.48 0.16 0.42 0.34

Avoiding 0.72

MTG

0.57 0.28 0.49 0.26 0.23 0.39 0.55

MTG

0.63

MTG

0.54 0.56

Sensitivity 0.43 0.36 0.2 0.51 0.41 0.4 0.35 0.36 0.43 0.37 0.47

Registration 0.69 0.58

MTG

0.35 0.72

MTG

0.38 0.43 0.32 0.48 0.63

MTG

0.42 0.58

Total 0.68 0.41 0.36 0.63 0.51 0.43 0.3 0.5 0.61 0.98

VGE

0.57

Best correlation (R) between true and predicted value for each CBCL outcome (in columns) and for each SP2 scale (touch, seeking, avoiding, sensitivity, registration, and total, in rows).

TABLE 3 | Correlation (R), RMSE, MAE, WAPE (in %), and input set that achieved the best performance for each CBCL outcome.

Outcome S1 S2 S3 S4 S5 S6 S7 S8 Internal External Total

R 0.72 0.58 0.44 0.72 0.57 0.51 0.44 0.55 0.63 0.98 0.67

RMSE 8.56 16.30 10.05 9.93 21.98 8.67 9.46 12.05 9.89 2.32 9.16

MAE 6.39 12.44 7.71 8.05 18.15 6.6 7.42 9.12 7.79 1.07 7.07

WAPE (%) 11.9 18.93 14.22 11.9 25.8 10.1 13.6 15.95 13.18 1.86 11.20

Input set Avoid Reg+G Seek Reg Touch Seek+G Touch+G Avoid+G Avoid Total Touch

Regressor adaboost pymlp pygbm pygbm lreg pyrf extraTrees tree ridge lm pygbm

Acc (%) 87.5 70.8 79.2 66.7 70.8 77.8 77.8 73.6 79.2 97.2 73.6

Se (%) 56.2 77.5 41.2 82.9 68 87.7 35.7 54.2 78.6 100 78.4

Sp (%) 81.8 72.1 58.3 66.7 87.2 84.7 41.7 61.9 71 92.3 72.5

Besides, accuracy, sensitivity, and specificity (in %) and best regressor for the classification into normative range vs. pre-clinical and clinical.

problems (1.86%) and below 14% for most scales except
withdrawn/depressed (S2), somatic complains (S3), thought
problems (S5), and aggressive behavior (S8).

The pygbm (gradient boosting machine) is the regressor that
achieves the best R in more (three) CBCL outcomes: somatic
complains (S3), with low R, social problems (S4) and total,
with higher R. Linear regression achieves the best R in thought
(S5, regressor lreg), internalizing (ridge), and externalizing
problems (lm, with high R). Regression trees and ensembles
provide the best prediction for anxious/depressed (S1, adaboost);
attention problems (S6, pyrf); rule-breaking (S7, extraTrees); and
aggressive behavior (S8, tree). Neural network is the best for
withdrawn/depressed behavior (S2, pymlp).

Regarding classification into normative vs. preclinical and
clinical (last three rows of Table 3), accuracy is almost perfect
(97.2%) in externalizing with linear regression, lm. Except social
problems (S4), the accuracy is above 70% in all the outcomes,
with values close to or above 80% for anxious/depressed (S1),
somatic complains (S3), attention problems (S6), rule-breaking
(S7), and internalizing. Overcoming sensitivity outcomes was
80% in social (S4) and attention (S6) problems, and 100% in
externalizing, being close to or above 70% in the remaining
CBCL scales except anxious/depressed (S1), somatic complains
(S3), rule-breaking (S7), and aggressive behavior (S8). Specificity
values were 80% in anxious/depressed (S1), thought (S5), and

attention (S6) problems, and 92.3% in externalizing, being close
to or above 70% for withdrawn/depressed (S2), social problems
(S4), and internalizing and total problems. The lowest specificity
values are achieved in somatic complaints (S3), rule-breaking
(S7), and aggressive behavior (S8), which are globally the worst-
performing CBCL outcomes.

Figure 1 plots the observed (horizontal axis) and predicted
(vertical) values for externalizing (Figure 1A) and social
problems (S4, Figure 1B) for all participants with the best
regressor (lm and pygbm, respectively), and the best SP2 input set
(total and registration, respectively). Figure 1A depicts the high
coincidence between both values, with WAPE below 2%, while
Figure 1B shows lower coincidence values, with WAPE around
12%, although the predicted values somehow raise with the true
values, providing R= 0.72 (qualified as “moderate to good”). The
CBCL values (blue squares) depicted on the right (left) of the red
vertical line at 60 are participants who scored in the preclinical
and clinical (in the normative) range. Likewise, the squares above
(below) the horizontal red line at 60 are participants who are
the best regressors predicted in the preclinical and clinical (in
the normative) range. All the squares on the upper right and
lower left areas defined by the horizontal and vertical red lines
at 60 are predicted as the right class label, and only values on
the upper-left and lower-right quadrants are predicted as the
wrong class label. Thus, the number of classification errors is very
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FIGURE 1 | (A) Scatterplot of the true values and values predicted by lm (linear regression) for the externalization domain. (B) Scatterplot of the true values and values

predicted by pygbm for social problems (S4). The R, MAE, and WAPE values are reported in the title.

low in panel A (externalization domain), with no false negatives
(dots in the lower right quadrant, 100% sensitivity) and just two
false positives (upper left quadrant). In panel B, the number
of dots in the upper left and lower right quadrants is higher,
but much lower than in lower left and upper right quadrants
(patients well-classified), with an accuracy of 66.7%, so the impact
of unreliability in prediction (R = 0.72) over classification is low
for this outcome.

DISCUSSION

This study investigated how sensory processing alterations
predicted behavior problems in children and adolescents
with ASD using ML models. This technique offers a new
potential solution to classify ASD difficulties based on different
dimensions, e.g., behavior, genetics, and neuroimaging data,
among others (Georgescu et al., 2019). These artificial intelligence
tools can be an important and useful approach to further
explain how sensory processing abnormalities (one of the earliest
clinical alterations in ASD) are predictive of social, behavior, and
emotional problems in this population.

Overall, results revealed high correlation between some true
behavioral (CBCL) scales and the values predicted by the
regressors using some SP2 processing quadrants. The highest
correlation was observed for total problems, anxiety/depression,
social problems, and externalizing scales. The prediction was
more reliable using certain SP2 scales, revealing strong relations
with the predicted CBCL scales: CBCL externalizing problems
and SP2 total scale score; CBCL social problems and SP2
registration quadrant; CBCL anxiety/depressed and SP2 avoiding
quadrant; and CBCL total problems scale with SP2 touch
scale. With this prediction, early indicative signs of the overall
behavioral difficulties of children with an ASD diagnosis can
be obtained from their response to sensory stimuli. Thus,
these results can be extremely useful for clinical interventions.
Considering the predicted information, early signs of altered

sensory functioning would allow for incorporating personalized
and early sensory-based care therapies for children with an ASD
diagnosis, hence minimizing the affected areas of behavior, as
much as possible.

Results obtained by the MLmethods are consistent with other
findings, suggesting an association between sensory processing
and behavior problems in children and adolescents with ASD
(Iarocci and McDonald, 2006). Patterns of sensory processing
alterations, including touch processing, may imply difficulties in
response to environmental cues and missing opportunities to
learn from them, which is the foundation for the development
of more complex processes, such as emotional regulation,
and social interactions (Kojovic et al., 2019). These difficulties
have cascade effects in daily life activities in ASD, manifested
through a range of behavior problems such as hyperactivity,
impulsivity, stereotyped and repetitive behaviors, as well as
emotional and social distress (Thye et al., 2018). It may contribute
to the emergence of anxious and depressive states, as dealing
with sensory stimulation may be demanding for children and
adolescents with ASD (Fernández-Prieto et al., 2021).

The results contribute to the existing evidence highlighting the
detrimental impact of altered sensory processing on behavioral
outcomes in children and adolescents with ASD (Foss-Feig et al.,
2012; Uljarević et al., 2016; Miguel et al., 2017). These difficulties
interfere with their adaptive functioning (McLean et al.,
2014) and should be considered in interventional approaches
with this population. Early intervention programs focused on
addressing sensory difficulties may help prevent behavioral
problems, alleviate behavioral difficulties, and, consequently,
improve adaptive functioning of children and adolescents to
environmental situations.

This work offers multiple strengths, of which how ML
methods contribute to clarify the association between sensory
processing impairments and behavioral difficulties in children
and adolescents with ASD is highlighted, as these results
can provide important clues for sensory-related intervention
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approaches within this population. However, this study has some
limitations. First is the reduced number of participants. Future
studies should consider a larger sample to confirm the results. In
addition, it would be important to replicate this investigation in
ASD adult population to verify if similar outcomes are present.
Also, it would be important that future studies address severity
levels of ASD presentations, considering the high inter-individual
variability observed in this population. Another limitation of
this work refers to its cross-sectional design that does not
allow for determining causal associations between the variables.
Thus, future studies should consider assessing sensory processing
and behavioral outcomes in a longitudinal manner to clarify
the causal relationship between these dimensions. Also, future
investigations should integrate brain imaging techniques to
elucidate about the areas of the brain that pertain to sensory
processing and/or behavior that are affected, which would
strengthen these findings.

CONCLUSION

Autism spectrum disorders are associated with sensory
processing abnormalities that often lead to behavioral alterations.
The current study investigates the relations between the SP2
scales and the CBCL outcomes in order to study the association
between sensory and behavior problems, using 26 machine
learning regressors of different families: linear regression, kernel
and support vector regression, ensembles including bagging,
adaboost, gradient boosting machine and random forest,
regression trees, and neural networks. Using a sample of 72
participants, the predicted outcomes are “from good to excellent”
for externalization domain using all the SP2 items, and “from
moderate to good” for anxious/depressed and social problems
using avoiding and registration quadrants, respectively. The
predictions are also “from moderate to good” for the remaining
outcomes except somatic complaints and rule-breaking,
where the predictions are “bad to moderate.” Considering
the classification into normative vs. preclinical and clinical,
the accuracy reaches 97.2 and 87.5% for externalization and
anxious/depressed, respectively. However, somatic complaints
and rule-breaking outcomes, with low predictive reliability, still
achieve accuracies near 80%, alongside with attention problems
and internalization, while the remaining outcomes achieve
accuracies above or near 70%.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Materials, further inquiries can be
directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Research Ethics Committee of Santiago-Lugo.
Written informed consent to participate in this study was
provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

HA: article writing and experimental work with machine
learning regressors. SC: article writing. EC: analysis of regression
results. MT-F: conceptualization, methodology, investigation,
and writing. AS: discussion of results in ASD context. AG-V:
discussion of relations between sensory and behavior. AC:
resources, writing, review, editing, and supervision. MF-D:
execution of regression models. MF-P: writing of original
draft and review, visualization, and project administration.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work has received financial support from the Consellería de
Educación, Universidade e Formación Profesional (accreditation
2019-2022 ED431G-2019/04) and the European Regional
Development Fund (ERDF), which acknowledges the CiTIUS—
Centro Singular de Investigación en Tecnoloxías Intelixentes da
Universidade de Santiago de Compostela as a Research Center
of the Galician University System. SC acknowledges the Centro
de Investigação em Psicologia para o Desenvolvimento (CIPD)
[The Psychology for Positive Development Research Center]
(UID/PSI/04375), Lusíada University North, Porto, supported by
national funds through the Portuguese Foundation for Science
and Technology, I.P., and the Portuguese Ministry of Science,
Technology, and Higher Education (UID/PSI/04375/2019). AS
was supported by the Psychology Research Center (PSI/01662),
School of Psychology, University of Minho, through the
Foundation for Science and Technology (FCT) through the
Portuguese State Budget (Ref.: UIDB/PSI/01662/2020). MT-F,
AC, and MF-P were funded by Instituto de Salud Carlos
III (PI19/00809 to AC) and co-funded by European Union
(ERDF) A way of making Europe, and Fundación María
José Jove.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnmol.
2022.889641/full#supplementary-material

REFERENCES

Achenbach, T. M., and Rescorla, L. A. (2001). Manual for the ASEBA School-

Age Forms & Profiles: An Integrated System of Multi-Informant Assessment.

Burlington, VT: University of Vermont; Research Center for Children, Youth,

& Families.

American Psychiatric Association (2013). Diagnostic and Statistical Manual of

Mental Disorders, 5th Edn.Washington, DC: American Psychiatric Association.

doi: 10.1176/appi.books.9780890425596

Ben-Sasson, A., Carter, A. S., and Briggs-Gowan, M. J. (2009). Sensory over-

responsivity in elementary school: prevalence and social-emotional correlates.

J. Abnorm. Child. Psychol. 37, 705–716. doi: 10.1007/s10802-008-9295-8

Frontiers in Molecular Neuroscience | www.frontiersin.org 7 May 2022 | Volume 15 | Article 889641

https://www.frontiersin.org/articles/10.3389/fnmol.2022.889641/full#supplementary-material
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1007/s10802-008-9295-8
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Alateyat et al. Machine Behavior Prediction in Autism

Bitsika, V., Sharpley, C. F., and Mills, R. (2016). Are sensory processing features

associated with depressive symptoms in boys with an ASD? J. Autism Dev.

Disord. 46, 242–252. doi: 10.1007/s10803-015-2569-4

Breiman, L. (1996). Bagging predictors. Mach. Learn. 24, 123–140.

doi: 10.1007/BF00058655

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.

doi: 10.1023/A:1010933404324

Briscoe, J., andMarín, O. (2020). Looking at neurodevelopment through a big data

lens. Science 369, 1–10. doi: 10.1126/science.aaz8627

Chambers, J. M. (1992). “Linear models,” in Statistical Models in S, eds J. M.

Chambers, and T. J. Hastie (Pacific Grove, CA: Wadsworth & Brooks/Cole).

Chang, C. C., and Lin, C. J. (2011). LIBSVM: a library for support vector machines.

ACM T. Intel. Syst. Technol. 2, 1–27. doi: 10.1145/1961189.1961199

Chiarotti, F., and Venerosi, A. (2020). Epidemiology of autism spectrum disorders:

a review of worldwide prevalence estimates since 2014. Brain Sci. 10, 274–295.

doi: 10.3390/brainsci10050274

Cidav, Z., Munson, J., Estes, A., Dawson, G., Rogers, S., and Mandell, D. (2017).

Cost offset associated with early start Denver model for children with autism. J.

Am. Acad. Child. Psychol. 56, 777–783. doi: 10.1016/j.jaac.2017.06.007

Cohen, W. (1995). “Fast effective rule induction,” in Proceedings International

Conference Machine Learning, eds A. Prieditis and E. Russell (Tahoe

City, CA: Morgan Kaufmann), 115–123. doi: 10.1016/B978-1-55860-377-6.

50023-2

Deb, B. K., and Bateup, H. S. (2022). Modeling somatic mutations associated with

neurodevelopmental disorders in human brain organoids. Front. Mol. Neurosci.

14, 787243. doi: 10.3389/fnmol.2021.787243

Drucker, H. (1997). “Improving regressors using boosting techniques,” in

Proceeding International Conference Machine Learning (San Francisco, CA:

Morgan Kaufmann), 107–115.

Dunn, W. (2014). Sensory Profile 2 Manual. San Antonio, TX: Pearson; The

Psychological Corporation.

Eaton, J., Bateman, D., Hauberg, S., and Wehbring, R. (2022). GNU Octave v.

5.2.0 Manual: A High-Level Interactive Language for Numerical Computations.

Available online at: http://www.octave.org (accessed March 3, 2022).

Fernández-Delgado,. M., Sirsat, M. S., Cernadas, E., Alawadi, S., Barro,

S., and Febrero-Bande, M. (2019). An extensive experimental survey of

regression methods. Neural Netw. 111, 11–34. doi: 10.1016/j.neunet.2018.

12.010

Fernández-Prieto, M., Moreira, C., Cruz, S., Campos, V., Martínez-

Regueiro, R., Taboada, M., et al. (2021). Executive functioning: a

mediator between sensory processing and behaviour in autism spectrum

disorder. J. Autism Dev. Disord. 51, 2091–2103. doi: 10.1007/s10803-020-0

4648-4

Foss-Feig, J. H., Heacock, J. L., and Cascio, C. J. (2012). Tactile responsiveness

patterns and their association with core features in autism spectrum

disorders. Res. Autism Spectr. Disord. 6, 337–344. doi: 10.1016/j.rasd.2011.

06.007

Frank, E., Hall, M. A., and Witten, I. H. (2016). The Weka Workbench. Online

Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”.

Burlington, MA: Morgan Kaufmann.

Georgescu, A.L., Koehler, J.C., Weiske, J., Vogeley, K., Koutsouleris, N., and Falter-

Wagner, C. (2019). Machine learning to study social interaction difficulties in

ASD. Front. Robot. AI 6, 132. doi: 10.3389/frobt.2019.00132

Gonthier, C., Longuépée, L., and Bouvard, M. (2016). Sensory processing in low-

functioning adults with autism spectrum disorder: distinct sensory profiles

and their relationships with behavioral dysfunction. J. Autism Dev. Disord. 46,

3078–3089. doi: 10.1007/s10803-016-2850-1

Iarocci, G., and McDonald, J. (2006). Sensory integration and the perceptual

experience of persons with autism. J. Autism Develop. Disord. 36, 77–90.

doi: 10.1007/s10803-005-0044-3

Kojovic, N., Ben Hadid, L., Franchini, M., and Schaer,. M. (2019). Sensory

processing issues and their association with social difficulties in children

with autism spectrum disorders. J. Clin. Med. 8, 1508. doi: 10.3390/

jcm8101508

Lane, A. E., Young, R. L., Baker, A. E., and Angley, M. T. (2010).

Sensory processing subtypes in autism: association with adaptive

behavior. J. Autism Dev. Disord. 40, 112–122. doi: 10.1007/s10803-009-0

840-2

Lombardo, M. V., Lai, M. C., and Baron-Cohen, S. (2019). Big data approaches

to decomposing heterogeneity across the autism spectrum. Mol. Psychiatry 24,

1435–1450. doi: 10.1038/s41380-018-0321-0

Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., Bishop, S. L., et al.

(2008). ADOS. Escala de Observación Para El Diagnóstico Del Autismo. Madrid:

TEA Editions.

Marco, E., Hinkley, L., Hill, S., and Nagarajan, S. (2011). Sensory processing

in autism: a review of neurophysiologic findings. Pediatr. Res. 69, 48–54.

doi: 10.1203/PDR.0b013e3182130c54

Mathworks (2021). Matlab v. 9.10.0. Mathworks. Available online at: http://www.

mathworks.com (accessed March 3, 2022).

McLean, R. L., Johnson-Harrison, A., Zimak, E., Joseph, R. M., and Morrow,

E.M. (2014). Executive function in probands with autism with average IQ and

their unaffected first-degree relatives. J. Am. Acad. Child Adolesc. Psychol. 53,

1001–1009. doi: 10.1016/j.jaac.2014.05.019

Miguel, H. O., Sampaio, A., Martínez-Regueiro, R., Gómez-Guerrero, L., López-

Dóriga, C. G., Gómez, S., et al. (2017). Touch processing and social

behavior in ASD. J. Autism Dev. Disord. 47, 2425–2433. doi: 10.1007/

s10803-017-3163-8

Mikkelsen, M., Wodka, E. L., Mostofsky, S. H., and Puts, N. A. J. (2018). Autism

spectrum disorder in the scope of tactile processing. Dev. Cogn. Neurosci. 29,

140–150. doi: 10.1016/j.dcn.2016.12.005

Osório, J.M.A., Rodríguez-Herreros, B., Richetin, S., Junod, V., Romascano, D.,

Pittet, V., et al. (2021). Sex differences in sensory processing in children

with autism spectrum disorder. Autism Res. 14, 2412–2423. doi: 10.1002/

aur.2580

Parenti, I., Rabaneda, L. G., Schoen, H., and Novarino, G. (2021).

Neurodevelopmental disorders: from genetics to functional

pathways. Trends Neurosci. 43, 608–621. doi: 10.1016/j.tins.2020.

05.004

Pedregosa, P., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

et al. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res.

12, 2825–2830. Available online at: https://www.jmlr.org/papers/volume12/

pedregosa11a/pedregosa11a.pdf

Piccardi, E. S., Begum, A. J., Jonesm, E. J. H., Mason, L., Charman, T., Johnson,

M. H., et al. (2021). Behavioural and neural markers of tactile sensory

processing in infants at elevated likelihood of autism spectrum disorder

and/or attention deficit hyperactivity disorder. J. Neurodev. Disord. 13, 1.

doi: 10.1186/s11689-020-09334-1

Puts, N. A., Wodka, E. L., Tommerdahl, M., Mostofsky, S. H., and Edden,

R. A. (2014). Impaired tactile processing in children with autism

spectrum disorder. J. Neurophysiol. 111, 1803–1811. doi: 10.1152/

jn.00890.2013

Quinlan, R. J. (1992). “Learning with continuous classes,” in Proceeding Australian

Journal Conference Artifical Intelligence (Singapore:World Scientific), 343–348.

Rasmussen, C., and Williams, C. (2006). Gaussian Processes for Machine Learning.

Cambridge, MA: MIT Press. doi: 10.7551/mitpress/3206.001.0001

Ridgeway, G. (1999). The state of boosting. Comp. Sci. Stat. 31, 172–181.

Rutter, M., Le Couteur, A., and Lord, C. (2006). ADI-R: Entrevista Para el

Diagnóstico del Autismo-Revisada. Madrid: TEA Editions.

Tavassoli, T., Bellesheim, K., Tommerdahl, M., Holden, J. M., Kolevzon,

A., and Buxbaum, J. D. (2016). Altered tactile processing in children

with autism spectrum disorder. Autism Res. 9, 616–620. doi: 10.1002/

aur.1563

Thabtah, T. (2019). Machine learning in autistic spectrum disorder behavioral

research: a review and ways forward. Inform. Health Soc. Care 44, 278–297.

doi: 10.1080/17538157.2017.1399132

The R Team (2022). The R Project for Statistical Computing. The R Team. Available

online at: http://www.r-project.org (accessed March 3, 2022).

Thye, M. D., Bednarz, H. M., Herringshaw, A. J., Sartin, E.

B., and Kana, R. K. (2018). The impact of atypical sensory

processing on social impairments in autism spectrum disorder.

Dev. Cogn. Neurosci. 29, 151–167. doi: 10.1016/j.dcn.2017.

04.010

Frontiers in Molecular Neuroscience | www.frontiersin.org 8 May 2022 | Volume 15 | Article 889641

https://doi.org/10.1007/s10803-015-2569-4
https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1126/science.aaz8627
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.3390/brainsci10050274
https://doi.org/10.1016/j.jaac.2017.06.007
https://doi.org/10.1016/B978-1-55860-377-6.50023-2
https://doi.org/10.3389/fnmol.2021.787243
http://www.octave.org
https://doi.org/10.1016/j.neunet.2018.12.010
https://doi.org/10.1007/s10803-020-04648-4
https://doi.org/10.1016/j.rasd.2011.06.007
https://doi.org/10.3389/frobt.2019.00132
https://doi.org/10.1007/s10803-016-2850-1
https://doi.org/10.1007/s10803-005-0044-3
https://doi.org/10.3390/jcm8101508
https://doi.org/10.1007/s10803-009-0840-2
https://doi.org/10.1038/s41380-018-0321-0
https://doi.org/10.1203/PDR.0b013e3182130c54
http://www.mathworks.com
http://www.mathworks.com
https://doi.org/10.1016/j.jaac.2014.05.019
https://doi.org/10.1007/s10803-017-3163-8
https://doi.org/10.1016/j.dcn.2016.12.005
https://doi.org/10.1002/aur.2580
https://doi.org/10.1016/j.tins.2020.05.004
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://doi.org/10.1186/s11689-020-09334-1
https://doi.org/10.1152/jn.00890.2013
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1002/aur.1563
https://doi.org/10.1080/17538157.2017.1399132
http://www.r-project.org
https://doi.org/10.1016/j.dcn.2017.04.010
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Alateyat et al. Machine Behavior Prediction in Autism

Tomcheck, S. D., and Dunn, W. (2007). Sensory processing in children with and

without autism: a comparative study using the short sensory profile. Am. J.

Occup. Ther. 61, 190–200. doi: 10.5014/ajot.61.2.190

Tseng, M. H., Fu, C. P., Cermak, S., Lu, L., and Shieh, J. Y. (2011). Emotional

and behavioral problems in preschool children with autism: relationship

with sensory processing dysfunction. Res. Autism Spect. Dis. 5, 1441–1450.

doi: 10.1016/j.rasd.2011.02.004
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