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properties through upregulation of beta-
catenin in NSCLC
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Abstract

Background: Accumulating evidence suggests that cancer stem cells (CSCs) play a critical role in tumor initiation,
progression and therapy, and recent studies have indicated that Forkhead box C1 (FOXC1) is strongly associated
with CSCs. This study investigates the regulatory effects of FOXC1 on CSC-like properties in non-small cell lung
cancer (NSCLC).

Methods: We analyzed FOXC1 expression in NSCLC using the Cancer Genome Atlas (TCGA) database on UALCANC
and performed survival analyses of NSCLC patients on Human Protein Atlas. CSC-like properties were analyzed based
on CSC marker-positive cell population, self-renewal ability, stemness-related gene expression, tumorigenicity and drug
resistance. The percentage of CD133+ cells was analyzed by flow cytometric analysis. Self-renewal ability was detected
by sphere-formation analysis. Real-time PCR, western blotting and immunohistochemical staining were employed to
detect mRNA and protein levels. Tumorigenicity was determined based on a xenograft formation assay, and effects
of FOXC1 on drug resistance were assessed by cell viability and apoptosis assays. Luciferase reporter and chromatin
immunoprecipitation (ChIP) assays were used to investigate the binding of FOXC1 to beta-catenin promoter.

Results: FOXC1 expression was found to be elevated in NSCLC tissues and negatively correlated with patient survival.
FOXC1 knockdown reduced CD133+ cell percentage, suppressed self-renewal ability, decreased expression of
stemness-related genes (Oct4, NANOG, SOX2 and ABCG2) and inhibited NSCLC cell tumorigenicity in vivo. Moreover,
FOXC1 knockdown increased cisplatin and docetaxel sensitivity and reduced gefitinib resistance, whereas FOXC1
overexpression enhanced CSC-like properties. Luciferase reporter and ChIP assays showed beta-catenin to be a direct
transcriptional target of FOXC1. Furthermore, overexpression of beta-catenin reversed the CSC-like property inhibition
induced by FOXC1 knockdown, and knockdown of beta-catenin attenuated the CSC-like properties induced by FOXC1
overexpression.

Conclusions: This study demonstrates that FOXC1 induces CSC-like properties in NSCLC by promoting beta-catenin
expression. The findings indicate that FOXC1 is a potential molecular target for anti-CSC-based therapies in NSCLC.
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Background
Lung cancer is the most common cancer and is the lead-
ing cause of cancer death [1]. Despite rapid advances in
cancer treatment, the prognosis of lung cancer patients
remains less than optimal. The 5-year survival rate in
lung cancer patients is 4–17%, depending on tumor
stage and region [2, 3]. Cancer stem cells (CSCs), a small
population of cancer cells that retain stem cell properties
[4, 5], play an essential role in tumor initiation, progres-
sion and therapy. The self-renewal and differentiation of
CSCs are responsible for tumor initiation and mainten-
ance. CSCs also act as tumorigenic cells in metastasis.
Moreover, CSCs exhibit resistance to anticancer drugs,
and CSCs remaining after therapy lead to cancer recur-
rence. Because of the conspicuous role of CSCs in tumor
initiation, maintenance, metastasis, drug resistance and
recurrence, inhibiting CSCs by targeting signaling path-
ways that regulate these cells is an effective anti-lung
cancer strategy [6].
Forkhead box (FOX) proteins, characterized by a winged

helix DNA-binding domain [7], are important transcrip-
tion factors [8, 9], and many FOX family members play a
critical role in cancer progression [10–13]. Previous stud-
ies have proven that FOX proteins are strongly associated
with CSCs. For example, downregulation of FOXA1 ex-
pression promotes CSC-like properties in breast cancer
cells, leading to tamoxifen resistance [14]. FOXM1 in-
creases the CSC population and induces endocrine resist-
ance in breast cancer [15], and FOXQ1 inhibition with
diallyl disulfide is a novel strategy for suppressing breast
CSCs [16]. Forkhead box C1 (FOXC1), a member of the
FOX protein family, acts as an oncogene in various can-
cers [17]. For instance, FOXC1 mRNA and protein levels
are upregulated in 60% and 63.3%, respectively, of patients
with non-small cell lung cancer (NSCLC), which is the
main type of lung cancer, and FOXC1 knockdown inhibits
proliferation and metastasis in NSCLC [18–20]. FOXC1
also promotes proliferation, migration, invasion and drug
resistance in hepatocellular carcinoma [21, 22] and breast
cancer [23–26]. Recently, several studies have shown that
FOXC1 governs hair follicle stem cell quiescence to main-
tain regenerating potential [27, 28]. Hedgehog and Notch
are essential pathways in CSC regulation [29]. FOXC1 acti-
vates Notch pathway by directly regulating Dll4 in endothe-
lial cells [30] and enhances Hedgehog signaling activity via
Gli2 binding in basal-like breast cancer [31]. Moreover,
FOXC2 has been shown to enhance CSC-like properties in
breast cancer and prostate cancer [32, 33]. These findings
emphasize the role of FOX proteins in regulating CSCs.
Nonetheless, there is no report on the function of FOXC1

in the regulation of CSCs in NSCLC. This study is the first
to investigate FOXC1 induction of CSC-like properties in
NSCLC, and we hope that the findings will provide a foun-
dation for NSCLC therapy via CSC eradication.

Methods
Cells and cell culture
HBE, A549, NCI-H292, NCI-H1299, NCI-H1975 and
HCC827 cells were purchased from the Cell Bank of Type
Culture Collection of the Chinese Academy of Sciences
(China). PC9 cells were purchased from the RIKEN BioR-
esource Center (Japan). The gefitinib-resistant PC9/G cell
line was produced in our laboratory following a previously
described procedure [34]. All cell lines were cultured as
described in the providers’ instructions and were authenti-
cated via short tandem repeat (STR) genotyping analysis.

Real-time PCR
Total RNA was extracted from NSCLC cells using RNA-
pure (ZOMANBIO, China) and reverse-transcribed into
cDNA using a Reverse Transcriptase Kit (ZOMANBIO).
HSYBR qPCR Mix (ZOMANBIO) was used to perform
real-time PCR with primers for FOXC1 (HQP005629),
beta-catenin (HQP003539), NANOG (HQP019390), Oct4
(HQP464025), SOX2 (HQP017628), ABCG2 (HQP022745)
and GAPDH (HQP064347) purchased from GeneCopoeia
(USA). The primers used for putative FOXC1 binding site
2 were as follows: forward, 5′-AAAAAATTGGAGGC
TGCTT-3′; reverse, 5′-CCAAAGAAAAATCCCCACA-3′.
Fold change was calculated by the ΔΔCt method.

Western blotting
RIPA (Beyotime, China) buffer supplemented with phos-
phatase inhibitor (Beyotime) and a Nuclear Protein Extrac-
tion Kit (Beyotime) were used to extract total and nuclear
proteins from NSCLC cells. The extracted proteins were
transferred to PVDF membranes after fractionation by
SDS-PAGE. After blocking in 5% milk for 2 h, the PVDF
membranes were incubated at 4 °C overnight with a spe-
cific antibody. Protein bands were visualized using ExPlus
ECL (ZOMANBIO) with a MicroChemi system (DNR,
Israel). The primary antibody against glycogen synthase
kinase 3 beta (GSK3β) (12456 T) was purchased from Cell
Signaling Technology (USA), and primary antibodies
against FOXC1 (ab5079), LMNB1 (ab133741), ABCG2
(ab207732), SOX2 (ab92494), Oct4 (ab181557), phospho-
GSK3β (pGSK3β) (ab75814) and NANOG (ab109250) were
purchased from Abcam (USA). The primary antibody
against GAPDH (60004–1-Ig) was purchased from Protein-
tech (China), and the primary antibody against beta-actin
(A01011–1) was purchased from Abbkine (China).

Establishment of stable cell lines
A short hairpin RNA against FOXC1 (shFOXC1)-expressing
plasmid HSH005629–33-LVRU6rLP (GeneCopoeia) or
FOXC1-expressing plasmid CS-X0042-Lv217–01 (Gen-
eCopoeia) was packaged into lentivirus following the
user manual of the Lenti-Pac HIV Expression Pack-
aging kit (GeneCopoeia). NSCLC cells were infected
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with lentiviral particles for 12 h. FOXC1-knockdown
(A549-LV-shFOXC1 and PC9/G-LV-shFOXC1) and over-
expressing (NCI-H1299-LV-FOXC1 and PC9-LV-FOXC1)
cell lines were obtained by selection with puromycin.
Beta-catenin-overexpressing (A549-shFOXC1-LV-beta-ca-
tenin and PC9/G-shFOXC1-LV-beta-catenin) and knock-
down (NCI-H1299-FOXC1-LV-shbeta-catenin and PC9-
FOXC1-LV-shbeta-catenin) cell lines were established
using a similar procedure. The beta-catenin-expressing
plasmid EX-T0573-Lv220 and the shbeta-catenin-ex-
pressing plasmid HSH054811–4-LVRU6GP were
purchased from GeneCopoeia. The shFOXC1 target
sequence was GGGAAACTGTATTAATCTTAT and
the shbeta-catenin target sequence was GCTGATATT
GATGGACAGTAT.

Flow cytometric analysis
A sample of 1 × 106 cells was washed twice with PBS
supplemented with 0.5% BSA and 2 mM EDTA and in-
cubated in diluted CD133-PE antibody solution (Milte-
nyi Biotec, Germany) for 10 min. After washing the cells
twice, the percentage of CD133+ cells was analyzed by
flow cytometry (BD, USA).

Sphere-formation analysis
A total of 5 × 103 cells were seeded into 6-well ultra
low-attachment plates and incubated in DMEM/F12
(Gibco, USA) supplemented with EGF (20 ng/mL,
Peprotech, USA), FGF-basic (20 ng/mL, Gibco) and B27
(20 μl/mL, Gibco) for two weeks. The number of
spheres (diameter > 100 μm) was counted under an elec-
tron microscope (Nikon, Japan).

Xenograft assay
BALB/c nude mice, aged 5 weeks and weighing 20–22 g,
were purchased from Hunan SJA Laboratory Animal
Co., Ltd. (China). A series of NSCLC cells (5 × 105, 5 ×
104 and 5 × 103) were suspended in Matrigel (BD, USA)
and subcutaneously inoculated into the mice. The tumor
volume was calculated using the formula (length ×
width2)/2.

Immunohistochemical staining
FOXC1 and beta-catenin protein levels in xenograft tu-
mors were detected using anti-FOXC1 (ab5079) and
anti-beta-catenin (Sc-7199) antibodies following stand-
ard protocols for immunohistochemical staining.

Cell viability assay
Cells (5 × 103) were incubated in culture medium supple-
mented with serial concentrations of cisplatin, docetaxel
or gefitinib for 48 h. A cell counting kit (ZOMANBIO)
was used to measure cell viability.

Apoptosis assay
A total of 1.5 × 105 cells were incubated in culture
medium supplemented with cisplatin, docetaxel or gefi-
tinib for 48 h. The percentage of apoptotic cells was ana-
lyzed using an Annexin V-FITC apoptosis analysis kit
(Sungene Biotech, China) following the user manual.

Luciferase reporter assay
The full-length FOXC1 cDNA was cloned into the pIRES2
vector (Clontech, USA) to construct FOXC1-expressing
plasmid pIRES2-FOXC1. The wild-type or mutant beta-
catenin promoter [(− 1369/+ 163) beta-catenin, relative to
the transcriptional start site] was cloned into the pGL3
plasmid (Promega, USA) to construct beta-catenin re-
porter plasmid pGL3-beta-catenin. 293 T cells were trans-
fected with pIRES2-FOXC1, pGL3-beta-catenin and
Renilla luciferase reporter PRL-TK plasmids using Lipo-
fectamine 3000 (Invitrogen). After 48 h, a dual-luciferase
reporter assay system (Promega) was employed to meas-
ure luciferase activity.

Chromatin immunoprecipitation (ChIP)
Formaldehyde (1%) was used to crosslink cells (4 × 106)
at 4 °C for 12 min. Glycine (0.125 mol/L) was added to
stop the crosslinking, and chromatin was sheared into
small fragments using sonication. The anti-FOXC1 anti-
body (ab5079) and protein G beads were applied to pull
down the target protein, and proteinase K was used to
digest proteins at 45 °C for 50 min. Target protein-
bound DNA was harvested and purified using HSYBR
qPCR Mix (ZOMANBIO).

Statistical analysis
Quantitative results are presented as the mean ± stand-
ard deviation (SD). Student’s t-test and the χ2 test were
utilized to determine statistical significance. The Kaplan-
Meier method and log-rank test were used in survival
analyses. p < 0.05 was considered statistically significant.

Results
FOXC1 expression is elevated in NSCLC tissues and
negatively correlates with survival probability
We analyzed FOXC1 expression in NSCLC based on in-
formation in the Cancer Genome Atlas (TCGA) data-
base on UALCANC [35] and found elevated FOXC1
expression in lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC) compared to normal
lung tissues (Fig. 1a). We also examined the relationship
between FOXC1 expression and NSCLC patient survival
on Human Protein Atlas [36], which revealed an inverse
correlation between FOXC1 expression and survival in
LUAD and LUSC patients (Fig. 1b).
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FOXC1 enhances stemness of NSCLC cells in vitro
We found FOXC1 to be widely expressed in NSCLC
cells, and FOXC1 expression was significantly higher in
gefitinib-resistant PC9/G cells than in gefitinib-sensitive
PC9 cells (Fig. 2a). High (A549 and PC9/G) and low
(NCI-H1299 and PC9) FOXC1-expressing cell lines were
used for further studies. We established an A549-
LV-shFOXC1 stable cell line with stable knockdown of
FOXC1 expression (Fig. 2b), and a NCI-H1299-LV-
FOXC1 stable cell line with constant FOXC1 expression
(Fig. 2c). FOXC1 knockdown reduced the percentage of
CD133+ cells (Fig. 2d), inhibited sphere formation
(Fig. 2f ) and downregulated mRNA and protein levels of
stemness-related genes (SOX2, Oct4, NANOG and
ABCG2) (Fig. 2h). Conversely, FOXC1 overexpression
increased the CD133+ cell percentage (Fig. 2e), pro-
moted sphere formation (Fig. 2g) and upregulated
mRNA and protein levels of SOX2, Oct4, NANOG and
ABCG2 (Fig. 2i).

FOXC1 enhances tumorigenicity of NSCLC cells in vivo
To investigate whether FOXC1 influences NSCLC cell
tumorigenicity in vivo, we subcutaneously inoculated a
series of NSCLC cells (5 × 105, 5 × 104 and 5 × 103) into

BALB/c nude mice. FOXC1 knockdown decreased tumor
incidence rate (Fig. 3a), tumor volume (Fig. 3c and e) and
tumor weight (Fig. 3g), whereas, FOXC1 overexpression
had the opposite effects (Fig. 3b, d, f and h).

FOXC1 confers drug resistance in NSCLC cells
As the presence of CSCs is one of the major causes of re-
sistance to therapy [37], we investigated whether FOXC1
is involved in drug resistance in NSCLC. Cisplatin and do-
cetaxel are widely used cytotoxic anti-cancer agents in
NSCLC treatment [38, 39]. FOXC1 knockdown enhanced
the cell killing effects of cisplatin and docetaxel on A549
cells (Fig. 4a and b) and increased the percentage of apop-
totic cells (Fig. 4e). In contrast, FOXC1 overexpression at-
tenuated cisplatin and docetaxel-mediated killing of
NCI-H1299 cells (Fig. 4c and d) and reduced apoptotic
cell percentage (Fig. 4f). Gefitinib is a classic molecularly
targeted anti-NSCLC agent [40] and FOXC1 expression
was significantly higher in the gefitinib-resistant PC9/G
cell line than in the gefitinib-sensitive parental PC9 cell
line. We established a PC9/G-LV-shFOXC1 stable cell
line, in which FOXC1 expression was stably downregu-
lated in PC9/G cells (Fig. 4g), and a PC9-LV-FOXC1
stable cell line, in which FOXC1 expression was stably

Fig. 1 FOXC1 expression is elevated in NSCLC tissues and negatively correlates with survival probability. a FOXC1 expression levels in LUAD and
LUSC tissues and normal lung tissues in TCGA were analyzed on UALCANC. b Kaplan-Meier analyses of survival probabilities of LUAD and LUSC
patients were performed on Human Protein Atlas. The log-rank test was used to calculate p values. **P < 0.01
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upregulated in PC9 cells (Fig. 4i). FOXC1 knockdown en-
hanced PC9/G cell killing by gefitinib (Fig. 4h) and in-
creased the percentage of gefitinib-induced apoptotic cells
(Fig. 4k), whereas FOXC1 overexpression attenuated the
inhibitory effect of gefitinib on PC9 cell viability (Fig. 4j)
and reduced the percentage of gefitinib-induced apoptotic
cells (Fig. 4l).

Beta-catenin mediates FOXC1-induced CSC-like properties
in NSCLC
Wnt/beta-catenin is an important signaling pathway for
regulating CSCs [41]. Although alteration of FOXC1 ex-
pression did not cause significant changes in the levels

of GSK3β and pGSK3β (Fig. 5a and b), FOXC1 knock-
down reduced beta-catenin mRNA levels as well as
levels of total and nuclear beta-catenin protein (Fig. 5a).
FOXC1 knockdown also downregulated beta-catenin
protein levels in xenograft tumors (Fig. 5c). FOXC1
overexpression increased beta-catenin mRNA levels and
total and nuclear beta-catenin protein levels (Fig. 5b).
Moreover, FOXC1 overexpression upregulated beta-catenin
protein levels in xenograft tumors (Fig. 5d). Luciferase re-
porter assays showed that FOXC1 significantly enhanced
beta-catenin promoter activity (Fig. 5e). Because of the con-
served winged helix DNA-binding domain in FOX proteins
[7], FOX transcription factor binding sites (BSs) share a

Fig. 2 FOXC1 induces stemness of NSCLC cells in vitro. a FOXC1 protein levels in NSCLC cells were detected by western blotting. b and c FOXC1
mRNA and protein levels were stably downregulated in A549 cells and upregulated in NCI-H1299 cells. d and e The percentage of CD133+ cells
was analyzed by flow cytometry. f and g Representative images (left) and numbers (right) of spheres (diameter > 100 μm). h and i Protein and
mRNA levels of SOX2, Oct4, NANOG and ABCG2. All experiments were independently repeated three times. The bar graph presents the mean ±
SD. *P < 0.05, **P < 0.01
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consensus sequence: WAARYAAAYW (R =G or A, Y =C
or T, W=T or A) [42, 43]. Analysis of the beta-catenin
promoter sequence using TRANSFAC and JASPAR re-
vealed three putative FOXC1 BSs: BS1, GTTCGTTTGTT
[(− 1268/− 1258) beta-catenin, relative to the transcriptional
start site]; BS2, TCTATAAACAT [(− 997/− 987) beta-
catenin]; BS3, TTATTTGTTCA [(− 821/− 811) beta-
catenin]. Although mutations in BS1 and BS3 did not
significantly affect luciferase activity, BS2 mutation
decreased FOXC1-induced luciferase activity (Fig. 5f ).
ChIP and real-time PCR assays confirmed the binding
of FOXC1 to BS2 in NSCLC cells (Fig. 5g).
To investigate whether beta-catenin mediates FOXC1-

induced CSC-like properties, LV-beta-catenin lentivirus

was used to upregulate beta-catenin expression in A549-
LV-shFOXC1 cells (Fig. 6a), and LV-shbeta-catenin
lentivirus was used to knockdown beta-catenin expression
in NCI-H1299-LV-FOXC1 cells (Fig. 6b). Beta-catenin
overexpression increased CD133+ cell percentage
(Fig. 6c), promoted sphere formation (Fig. 6e) and up-
regulated levels of SOX2, Oct4, NANOG and ABCG2
proteins (Fig. 6g) in FOXC1-knockdown cells. Con-
versely, beta-catenin knockdown decreased the per-
centage of CD133+ cells (Fig. 6d), inhibited sphere
formation (Fig. 6f ) and downregulated protein levels
of SOX2, Oct4, NANOG and ABCG2 (Fig. 6h) in
FOXC1-overexpressing cells. Moreover, beta-catenin
overexpression attenuated the inhibitory effects of

Fig. 3 FOXC1 enhances the tumorigenicity of NSCLC cells in vivo. A series of cells (5 × 105, 5 × 104 and 5 × 103) were subcutaneously inoculated
into BALB/c nude mice (n = 8/group). a and b The tumor incidence of each group. c-f Images and growth curves of tumor xenografts. g and h
Histograms show the tumor weights of each group. The bar graph presents the mean ± SD. **P < 0.01
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cisplatin, docetaxel and gefitinib on FOXC1-knockdown
cell viability (Fig. 7a, c and e), whereas beta-catenin
knockdown enhanced the inhibitory effects of drugs
on the viability of FOXC1-overexpressing cells (Fig. 7b, d
and f).

Discussion
Elevated FOXC1 expression in NSCLC tissues and in-
verse correlation between FOXC1 expression and patient
survival indicate that FOXC1 may be a negative prog-
nostic factor in NSCLC. In this study, we found that
FOXC1 is involved in the regulation of CSC-like proper-
ties, an important factor contributing to tumorigenesis
and progression of NSCLC [6]. CD133 is a specific cell
surface marker for CSCs in NSCLC, and CD133+ cells

exhibit stem-like and highly tumorigenic features
[44, 45]. Our results showed that FOXC1 knockdown
decreased the percentage of CD133+ cells. Moreover,
sphere-formation assay revealed that FOXC1 knock-
down inhibited self-renewal ability, one of the most im-
portant characteristics of CSCs [4]. Oct4, NANOG,
SOX2 and ABCG2 are essential stemness-related genes
that maintain CSC-like properties in NSCLC [46–48],
and FOXC1 knockdown decreased expression of these
genes. Efficient tumorigenicity is a definitive feature of
CSCs [49], and FOXC1 knockdown suppressed NSCLC
cell tumorigenicity in vivo. Conversely, FOXC1 overex-
pression enhanced cancer stemness. These results indi-
cate that FOXC1 is an important factor promoting
cancer stemness in NSCLC.

Fig. 4 FOXC1 induces resistance to cisplatin, docetaxel and gefitinib. a-d Cell viability was detected after cells were treated with cisplatin or
docetaxel at the indicated concentrations. e and f Percentage of apoptotic cells, including early apoptotic cells (Q2) and late apoptotic cells (Q4),
was determined by flow cytometric analysis after treatment with cisplatin or docetaxel. g and i FOXC1 protein levels were stably downregulated
in PC9/G cells and upregulated in PC9 cells. h and j Cell viability was detected after cells were treated with gefitinib at the indicated concentrations.
k and l Percentage of apoptotic cells was determined after treatment with gefitinib. All experiments were independently repeated three times. The bar
graph presents the mean ± SD. *P < 0.05, **P < 0.01
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Drug resistance, a major problem for NSCLC treat-
ment [50, 51], is another essential property of CSCs,
which resist therapy by enhancing membrane trans-
porter activity and activating anti-apoptotic path-
ways. Conventional anti-cancer drugs kill most
tumor cells but not CSCs, and surviving CSCs
re-establish tumors [37]. Cisplatin and docetaxel are
broadly employed cytotoxic anti-cancer agents in
NSCLC [38, 39]. We found FOXC1 knockdown pro-
moted NSCLC cell killing induced by cisplatin and
docetaxel, whereas FOXC1 overexpression compro-
mised this effect. These results indicate that FOXC1
plays a pivotal role in mediating the sensitivity of

NSCLC cells to cisplatin and docetaxel and that it is
a potential target for overcoming chemotherapy resist-
ance in NSCLC. The molecularly targeted agent gefi-
tinib, an epidermal growth factor receptor-tyrosine
kinase inhibitor (EGFR-TKI), has been widely used in
NSCLC treatment and it can dramatically improve pa-
tient survival. However, resistance to gefitinib severely
reduces its clinical efficacy [52]. We detected higher
levels of FOXC1 protein in gefitinib-resistant PC9/G
cells than in gefitinib-sensitive PC9 cells. Knockdown
of FOXC1 expression sensitized cells to gefitinib,
whereas its overexpression conferred resistance to
gefitinib. These results indicate that FOXC1 is a

Fig. 5 FOXC1 promotes beta-catenin expression by enhancing the activity of beta-catenin promoter. a and b Real-time PCR and western blotting
were used to detect changes in beta-catenin mRNA, GSK3β, pGSK3β and total and nuclear beta-catenin protein levels induced by FOXC1 knockdown
or overexpression. c and d Representative immunohistochemical staining of FOXC1 and beta-catenin in xenograft tumors. e Luciferase reporter assays
showed that FOXC1 significantly enhanced beta-catenin promoter activity. f Putative FOXC1 binding sites in the beta-catenin promoter and mutations
in corresponding binding sites. Schematic representations of wild-type and mutant beta-catenin promoters (left) and the corresponding relative
luciferase activity (right) are shown. g ChIP and real-time PCR assays were used to investigate the binding of FOXC1 to the putative binding site BS2.
All experiments were independently repeated three times. The bar graph presents the mean ± SD. **P < 0.01
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candidate biomarker and therapeutic target for over-
coming EGFR-TKI resistance.
Finally, we explored the molecular mechanism under-

lying the promoting effects of FOXC1 on CSC-like prop-
erties. The Wnt/beta-catenin pathway is critical for
regulating CSC-like properties. After activation of this
pathway, increased amount of beta-catenin protein in
the nucleus forms complexes with TCF/LEF to regulate
target gene expression [41]. In NSCLC cells, FOXC1
knockdown reduced beta-catenin mRNA levels as well
as total and nuclear beta-catenin protein levels.
FOXC1 knockdown also downregulated beta-catenin
protein levels in xenograft tumors. Moreover, FOXC1
knockdown decreased expression of Oct4, NANOG,
SOX2 and ABCG2, which are important downstream tar-
get genes of beta-catenin in regulating cancer stemness
[53–56]. In contrast, FOXC1 overexpression resulted in

opposite effects. Luciferase reporter assays revealed that
FOXC1 promoted beta-catenin expression by enhancing
beta-catenin promoter activity. ChIP and real-time PCR
assays confirmed the binding of FOXC1 to the beta-ca-
tenin promoter (− 997/− 987). Beta-catenin is considered
to be a major contributor to high metastatic potential, a
characteristic of CSCs [41, 57], and FOXC1 has been
proven to promote metastasis in NSCLC [18, 19]. These
observations are consistent with our finding that FOXC1
promotes beta-catenin expression. Furthermore,
beta-catenin overexpression rescued the inhibited CSC-
like properties induced by FOXC1 knockdown, whereas
beta-catenin knockdown attenuated the enhanced CSC-
like properties induced by FOXC1 overexpression.
These results indicate that beta-catenin mediates the
promoting effects of FOXC1 on CSC-like properties
in NSCLC.

Fig. 6 Beta-catenin mediates FOXC1-induced cancer stemness in NSCLC. a and b Total and nuclear beta-catenin protein levels were stably
upregulated in A549-LV-shFOXC1 cells and downregulated in NCI-H1299-LV-FOXC1 cells. c and d The percentage of CD133+ cells was analyzed
by flow cytometry. e and f Representative images (left) and numbers (right) of spheres (diameter > 100 μm). g and h Protein levels of SOX2, Oct4,
NANOG and ABCG2. All experiments were independently repeated three times. The bar graph presents the mean ± SD. **P < 0.01
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Conclusions
In conclusion, this study is the first to demonstrate
that FOXC1 contributes to CSC-like properties in
NSCLC, including increased CD133+ cell population
and stemness-related gene expression, enhanced self-
renewal ability and tumorigenicity and induction of
drug resistance, by promoting beta-catenin expression.
These findings indicate that FOXC1 is a potential mo-
lecular target for anti-CSC-based therapies in NSCLC.
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