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The role ofMithramycin as an anticancer drug has beenwell studied. Sarcoma is a type of cancer arising from cells
of mesenchymal origin. Though incidence of sarcoma is not of significant percentage, it becomes vital to under-
stand the role of Mithramycin in controlling tumor progression of sarcoma. In this article, we have analyzed the
global gene expression profile changes induced by Mithramycin in two different sarcoma lines from whole ge-
nome gene expression profilingmicroarray data.Wehave found that the primarymode of action ofMithramycin
is by global repression of key cellular processes and gene families like phosphoproteins, kinases, alternative splic-
ing, regulation of transcription, DNA binding, regulation of histone acetylation, negative regulation of gene ex-
pression, chromosome organization or chromatin assembly and cytoskeleton.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
Specifications
GEO accession
 GSE25127

Organism
 Homo sapiens

Cell line
 Ewing sarcoma cell lines (TC71 and TC32)

Sex
 –
Array type
 Expression profiling by array

Platform
 GPL570 [HG-U133_Plus_2] Affymetrix human

genome U133 plus 2.0 array

Data format
 CEL files

Experimental factors
 The data consist of 12 arrays. Two cell lines, TC71

and TC32, were treated with solvent control or
with Mithramycin, and RNA was extracted at 6 h.
Three biological replicates per cell line/treatment
Experimental features
 The study aims to define gene expression
changes associated with Mithramycin treatment
of Ewing sarcoma cell lines
Consent
 –
Sample source location
 Bethesda, MD — 20892, USA
n).

. This is an open access article under
Data files
th
Accession
e CC BY license
Title
(http://crea
Source name
tivecommons.org/licenses/by/3.
Cell line
0/).
Treatment
GSM617274
 TC32-M1
 TC32 cell line, Mithramycin
 TC32
 Mithramycin

GSM617275
 TC32-M2
 TC32 cell line, Mithramycin
 TC32
 Mithramycin

GSM617276
 TC32-M3
 TC32 cell line, Mithramycin
 TC32
 Mithramycin

GSM617277
 TC32-S1
 TC32 cell line, control
 TC32
 Control

GSM617278
 TC32-S2
 TC32 cell line, control
 TC32
 Control

GSM617279
 TC32-S3
 TC32 cell line, control
 TC32
 Control

GSM617280
 TC71-M1
 TC71 cell line, Mithramycin
 TC71
 Mithramycin

GSM617281
 TC71-M2
 TC71 cell line, Mithramycin
 TC71
 Mithramycin

GSM617282
 TC71-M3
 TC71 cell line, Mithramycin
 TC71
 Mithramycin

GSM617283
 TC71-C1
 TC71 cell line, control
 TC71
 Control

GSM617284
 TC71-C2
 TC71 cell line, control
 TC71
 Control

GSM617285
 TC71-C3
 TC71 cell line, control
 TC71
 Control
Material and methods

Gene expression data for reanalysis was obtained fromGene Expres-
sionOmnibus (GEO) database NCBIwith the link. http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE25127. The raw data (CEL file) was
normalized and processed using GeneSpring GX V 12.5 (Agilent Tech-
nologies Inc., Santa Clara, USA).
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Raw data summarization

All the samples raw data were summarized using the Robust Multi
Array Average (RMA)method. RMA is a background correctionmethod
that is based on the distribution of Perfect Match (PM) values among
probes on an Affymetrix array. It can be used attaching a standard
error (SE) to the quantity using a linear model that removes probe-
specific affinities [1]. Background corrected, log transformed and
Quantile normalized arrays were used and to protect from outliers ro-
bust procedures like median Polish are used [2]. Median Polish is an it-
erative process which operates on a matrix by alternately extracting
row and columnmedians. The convention followed is that the iteration
starts with extracting medians for arrays (across probes). Iteration con-
tinues until convergence or until a limit on the number of iterations is
reached. The limit is of 50 iterations [2].

Normalization

RMA summarized raw data was Quantile normalized to calculate
probe level expression values. Quantile is most widely used pre-
processing technique designed to remove technological noise in genomic
data. It makes the empirical distribution of all the gene expressions same
in the whole experiment [3]. Thus after normalization, all statistical pa-
rameters of the sample, i.e., mean, median and percentiles of all samples
will be identical. With Quantile normalization (QUANT), a reference
array of empirical quantiles, denoted as q=(q1,q2,…,qm), isfirst comput-
ed by taking the average across all ordered arrays. Let yC(1),j≤ yc(2),j≤ …

yc(m),j denote the ordered gene expression observations in the jth array
(j = 1,2,…,n) of the cth (c = A,B) group, the rth (r = 1,2,…,m) element
of this reference array is as follows [3].

qr ¼
1
2n

∑n
k¼1 yA

rð Þ;k þ∑n
l¼1 yB

rð Þ;l
� �

:

Baseline transformation

In order to improve the sensitivity of the measurement, baseline
transformation of the normalized data is done. This step includes sub-
traction of an estimated background signal, subtracting the reference
signal. Variance ratios were computed for the data set after shifting all
measurements upwards by a number of medians for the channel, and
subsequently taking the algorithm [4].

Quality control analysis

Quality control of normalized data is critical to identify inliers and
outliers and multiple testing methods are applied for critical evaluation
of the data quality.

Box-Whisker plot is a visualization method that requires a sample
size of only 5 for analysis [5]. It characterizes a sample using the 25th-
lower quartile (Q1), 50th-median (m or Q2) and 75th percentiles-
upper quartile (Q3) and the interquartile range (IQR = Q3 − Q1),
that covers the central 50% of the data. Quartiles are insensitive to out-
liers and preserve information about the center and spread. The core el-
ement that gives the box plot its name is a box whose length is the IQR
and its width is arbitrary [5]. A line inside the box shows the median,
which is not necessarily central. Whiskers are conventionally extended
to the most extreme data point that is no more than 1.5 × IQR from the
edge of the box or all the way to minimum and maximum of the data
values.

Analysis of hybridization controls in the microarray

The hybridization controls show the signal value profiles of the tran-
scripts (only 3′ probe sets are taken) where a line graph is plotted with
X axis representing Biotin labeled cRNA transcripts and the Y axis repre-
sents the log of the normalized signal values. Typical quality observation
is indicated by all samples adhere to the same trend line of internal
controls.

Principal component analysis

(PCA) is a statistical technique for determining the key variables in a
multidimensional data set which explains the differences in the observa-
tions [6]. PCA is computedby considering the n eigenvalues and their cor-
responding eigenvectors that are calculated from the n × n covariance
matrix of conditions. Each eigenvector defines a principal component. A
component can be viewed as a weighted sum of the conditions, where
the coefficients of the eigenvectors are the weights. The projection of
gene i along the axis defined by the jth principal component is:

a0i j¼∑n
t¼1ait vt j

where vtj is the tth coefficient for the jth principal component; ait is the
expression measurement for gene i under the tth condition. A′ is the
data in terms of principal components. Since V is an orthonormal matrix,
A′ is a rotation of the data from the original space of observations to a new
space with principal component axes. The variance for each of the com-
ponents is associated with its eigenvalue; it is the variance of a compo-
nent over all probes [6]. Consequently, the eigenvectors with large
eigenvalues are the ones that contain most of the information; eigenvec-
tors with small eigenvalues are uninformative.

Correlation-Coefficient analysis reveals the correlation analysis
across arrays. It is calculated using Pearson Correlation coefficient as
follows:

ρ
X;Y¼ E X−μXð Þ Y−μYð Þ½ �

σXσY

where σX is the standard deviation of X, μX is themean of X, and E is the
expectation.

Condition tree is a hierarchical clustering method where a tree of
genes is built by successively finding the twomost similar gene expres-
sion patterns from the complete data set [7]. It makes use of Distance
metric and linkage rule. Distance metric used is Pearson uncentered
which is similar to Pearson Correlation coefficient except that the enti-
ties are not mean-centered. It is calculated by the following formula

X
i
xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
x2i
X

i
y2i

q :

Average-linkage rule was used for clustering. This algorithm com-
putes a dendrogram that assembles all elements into a single tree. For
any set of n genes, an upper-diagonal similarity matrix is computed
that contains similarity scores for all pairs of genes. This matrix is
scanned to identify the highest value. A node is created to join these
two genes, and a gene expression profile is computed for the node by
averaging observation for the joined elements. The similarity matrix is
updated with the new node replacing the two joined elements, and
this process is repeated until only a single element remains [8].

Identification of differentially expressed genes

The volcano plot method is one of the most widely used method to
identify statistically significant differentially expressed genes between
two conditions. Each point in volcano plot represents a probe set or a
gene, and the x-coordinate represents the (log) fold-change (FC) and
y represents the t-statistic or − log10 of the p-value from a t-test. The
log (FC) is the unstandardized measure of differential expression, but
t-statistic is a noise-level-adjusted standardized measure [9]. In the



Fig. 1. Box plot of Quantile normalized and baseline tomedian corrected probe expression levels of 12 arrays. The line in themiddle of each box represents themedian Expression Level in
the sample.
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current reanalysis t-test was used, p-value computation type is asymp-
totic. p-Value is calculated as follows:

p‐value ¼ P X2
1 N tobs

� �

¼ 1−2P 0 bN ≤
ffiffiffiffiffiffiffiffi
tobs

p� �

where X1
2 is chi-square distribution with one degree of freedom. N is

standard normal distributed value of variable.

Statistical analysis of differentially expressed genes

Unsupervised hierarchical clustering of differentially expressed
genes shows the relationship among the objects that are represented
by a tree whose branch length reflects the degree of similarity between
Table 1
Summary statistics.

Property TC32 C1 TC32 C2 TC32 C3 TC32 M1 TC32 M2

No. of observations 54,675 54,675 54,675 54,675 54,675

No. of missing values 0 0 0 0 0

Minimum −4.90 −4.85 −4.99 −4.77 −4.78
Maximum 5.05 4.99 4.97 4.24 4.30
Mean 0.01 0.00 0.01 0.01 0.00
Trimmed mean 0.00 0.00 0.01 0.01 0.00
Median 0.00 −0.02 0.00 0.05 0.01
Std. deviation 0.47 0.47 0.47 0.45 0.44
Trimmed std. deviation 0.36 0.36 0.36 0.36 0.34
No. of outliers 6551 6287 6420 4667 5172
Percentile 1.0 −1.41 −1.38 −1.36 −1.46 −1.36
Percentile 5.0 −0.66 −0.63 −0.65 −0.76 −0.66
Percentile 10.0 −0.41 −0.40 −0.40 −0.49 −0.41
Percentile 25.0 −0.15 −0.17 −0.15 −0.13 −0.15
Percentile 50.0 0.00 −0.02 0.00 0.05 0.01
Percentile 75.0 0.15 0.14 0.15 0.23 0.18
Percentile 90.0 0.42 0.43 0.42 0.41 0.39
Percentile 95.0 0.70 0.71 0.69 0.55 0.59
Percentile 99.0 1.57 1.60 1.54 1.14 1.25

50th percentile value of±0.2 from0 is indicative of effective normalization and good quality hy
hence it was bold.
objects. In particular, the hierarchical dendrogramcan help visualize the
object relationship structure between and within clusters. In current
analysis Pearson correlation uncentered algorithmwas appliedwith av-
erage linkage rule to identify differentially expressed gene expression
patterns.

Significant biology analysis of differentially expressed genes

GO-Elite software [10] was used to identify a non-redundant set
of ontology terms, gene sets and pathways enriched in a specified
set of genes or metabolites. GO-Elite software has built in databases
for diseases and phenotype ontologies, multiple pathway data-
bases, biomarkers, and transcription factor and microRNA targets.
GO-Elite also performs advanced over-representation analysis
(ORA) statistics from user gene lists, determines the minimal set
TC32 M3 TC71 C1 TC71 C2 TC71 C3 TC71 M1 TC71 M2 TC71 M3

54,675 54,675 54,675 54,675 54,675 54,675 54,675

0 0 0 0 0 0 0

−5.09 −5.14 −4.95 −4.43 −4.46 −4.45 −4.37
4.22 4.61 4.58 4.55 4.78 4.74 4.78
0.01 −0.01 0.00 0.01 0.01 0.01 0.00
0.01 −0.01 0.00 0.00 0.01 0.01 0.01
0.04 −0.02 −0.03 −0.02 0.00 0.01 0.00
0.44 0.42 0.43 0.42 0.41 0.41 0.41
0.35 0.32 0.33 0.31 0.32 0.31 0.31

4695 5918 5482 5806 6137 6223 6661
−1.41 −1.17 −1.12 −1.13 −1.24 −1.30 −1.28
−0.72 −0.52 −0.50 −0.49 −0.55 −0.61 −0.58
−0.46 −0.35 −0.34 −0.32 −0.34 −0.36 −0.35
−0.13 −0.17 −0.18 −0.16 −0.14 −0.12 −0.12

0.04 −0.02 −0.03 −0.02 0.00 0.01 0.00
0.21 0.11 0.12 0.12 0.14 0.15 0.14
0.39 0.39 0.43 0.40 0.39 0.35 0.36
0.53 0.64 0.69 0.66 0.62 0.56 0.59
1.14 1.42 1.45 1.40 1.32 1.24 1.28

bridization. All the samples in the analysis showed the valueswithin the allowed range and



Fig. 2. Principal component analysis plot shows one point per array and colored differently based on cell line and experimental conditions.
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of biologically distinct ontology terms and pathways from these re-
sults and summarizes these results at multiple levels. GO-Elite
computes Z-score, p value and q value for each ontology-term,
pathway or gene-set. These scores are used for performing the
ORA analysis.
Results

Quality control and normalization

All the 12 samples probe expression values were normalized using
Quantile and baseline to median of all the samples. Box Whisker plot
analysis (Fig. 1) of the normalized data showed uniform distribution
of the expression levels in both intra and intersamplemanner indicating
satisfactory hybridization. Summary statistics showed effectiveness of
Quantile normalization as 50th percentile values were close to 0
(Table 1). Principal component analysis (PCA) showed high degree of
reproducibility among the replicate samples within each group
(Fig. 2). Correlation co-efficient matrix analysis also revealed N95% cor-
relation between replicate samples (Fig. 3). Further, unsupervised hier-
archical condition tree clustered all the replicate samples under the
same branch indicating good reproducibility (Fig. 4).
Fig. 3. Pearson's Correlation coefficient plot among 12 samples. Probe intensity levels of
each array compared at by Pearson's Correlation coefficient indicating strong correlation
among the arrays of two cell lines.
Differentially expressed genes and cluster analysis

The volcano plot based method to identify genes that are 2 fold dif-
ferentially expressed upon treatment in comparison to untreated
Fig. 4. Unsupervised hierarchical cluster analysis on 12 samples of Mithramycin treated
and control derived from two cell lines with 3 replicates at each condition. The heatmap
shows the expression of 33,469 human genes at the probe level. Heat map colors normal-
ized probe intensity as indicated in the color key. The cluster analysis of mRNA gene ex-
pression data separated two cell line specific samples into control and Mithramycin
specific samples.



b) Volcano plot of TC_71

a) Volcano plot of TC_32

Fig. 5.Volcano plot shows distribution of up and down regulated genes with X axis indicat-
ing the fold change and Y axis indicating the−log10 p value. Blue highlighted region shows
2 fold up and down regulated genes with p value b =0.05.

a) Probe ID based distribution

b) Gene ID based distribution 

Fig. 6. Differential expressed genes across the cell lines TC_32 and TC_71 (Based on Probe
IDs and Gene IDs). Up headed arrow indicates up regulationwhile downheaded arrow in-
dicates down regulation.

Fig. 7. Unsupervised hierarchical clustering of differentially expressed genes shows dis-
tinct gene expression patterns upon treatment with reference to the untreated samples.
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sarcoma cell lines by applying unpaired Student t-test for p-value calcu-
lation (p b 0.05) and Benjamini–Hocheberg based FDR correction re-
vealed 1247 genes differentially expressed in TC_32 cell line, while
816 geneswere differentially expressed in TC_71 cell line. Down regula-
tionwas observed as the prominent regulation in both cell lines [Fig. 5].
Venn diagram representation analysis for understanding distribution of
up and down regulated genes across two separate sarcoma cell lines
showed probes/genes (based on Entrez Gene ID) that are common
and specific to cell line specific manner (Fig. 6). A total of 288 genes
were commonly down regulated and 36 genes were commonly up reg-
ulated upon treatment in both the sarcoma cell lines. Further, unsuper-
vised hierarchical clustering using Pearson uncentered algorithm with
average linkage rule of differentially expressed gene showed distinct
patterns of up and down regulated genes upon treatment and also indi-
cates significant reproducibility within the replicate samples (Fig. 7).

Biological analysis of differentially expressed genes

Biological analysis of differentially expressed genes performed using
GO-Elite v1.2.5 with over representation analysis (ORA) showed many
gene ontology categories, pathways, and protein domains were
enriched by differentially expressed genes in both the sarcoma cell
lines. The 324 genes that were commonly dysregulated byMithramycin
in both the sarcoma cell lines showed distinct biological categories that
were indicative of probable mode of action or effect of Mithramycin on
sarcoma cell line. They include, phosphoprotein gene family, geneswith
metal ion binding capacity & kinases, biological processes like



Fig. 8. Pie chart representation of significant biological categories that harbor genes down regulated or up regulated by Mithramycin in both sarcoma cell lines generated using high
charts [25].
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alternative splicing, regulation of transcription, DNA binding, acetyla-
tion, negative regulation of gene expression, chromosome organization
and cytoskeleton and key cellular component as nucleus for the list of
genes that were down regulated. Up regulated genes were mostly se-
creted and extracellular apart from having role in defense response
(Fig. 8).
Discussion

The role of Mithramycin as an anticancer drug has beenwell studied
[11]. Its antitumor activity is attributed to its GC specific recognition that
permits Mithramycin to bind to numerous promoter regions, thereby
regulating the expression of downstream genes. Anionic form of
Mithramycin has the ability to bind bivalent metal ions and form
drug–metal ion complexes which bind to DNA in GC selective manner
via the minor groove at and above physiological pH [12,13]. Thus one
of themajor intracellular modes of action of this drug is via the associa-
tion of drug–metal complex with chromosomal DNA in chromatin [14,
15] which results in transcription inhibition. Mithramycin has been
found to induce apoptosis by regulating themTOR/Mcl-1/tsBid pathway
in androgen-independent prostate cancer cells [16]. MCL1 is proposed
as a key target for Mithramycin A-induced apoptosis in androgen-
independent prostate cancer cells and a tumor xenograft animal
model [16]. Mithramycin is also reported to repress basal and cigarette
smoke-induced expression of ABCG2 and inhibits stem cell signaling in
lung and esophageal cancer cells [17]. Histone deacetylase inhibitors
and Mithramycin A impact a similar neuroprotective pathway at a
crossroad between cancer and neurodegeneration [18]. Modulation of
the activity of Sp transcription factors by Mithramycin analogues had
shown promising results for treatment of metastatic prostate cancer
[19]. Combination therapy using betulinic acid and Mithramycin effec-
tively suppresses pancreatic cancer by inhibiting proliferation, invasion,
and angiogenesis [20]. It has been reported that Mithramycin is a gene-
selective Sp1 inhibitor that confers a biological intersection between
cancer and neurodegeneration [21]. Mithramycin inhibits DNAmethyl-
transferase andmetastasis potential of lung cancer cells [22]. Trial of the
clinical use of Mithramycin in treating testicular cancer is also well
established [23]. Effect of Mithramycin onwidespread painful boneme-
tastases in breast cancer is well studied [24]. In this data in “data in
brief” article, the effect of Mithramycin in two different sarcoma cell
lines was analyzed in a global manner. Global gene expression profiling
analysis showed repression of phosphoproteins, kinases, alternative
splicing, regulation of transcription, DNA binding, regulation of histone
acetylation, negative regulation of gene expression, chromosome orga-
nization or chromatin assembly and cytoskeleton.
Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2014.11.001.
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