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Abstract

The relationship between linkage disequilibrium (LD) and recombination fraction can be used to infer
the pattern of genetic variation and evolutionary process in humans and other systems. We described
a computational framework to construct a linkage-LD map from commonly used biallelic, single-
nucleotide polymorphism (SNP) markers for outcrossing plants by which the decline of LD is visualized
with genetic distance. The framework was derived from an open-pollinated (OP) design composed of
plants randomly sampled from a natural population and seeds from each sampled plant, enabling
simultaneous estimation of the LD in the natural population and recombination fraction due to allelic
co-segregation during meiosis. We modified the framework to infer evolutionary pasts of natural popu-
lations using those marker types that are segregating in a dominant manner, given their role in creating
and maintaining population genetic diversity. A sophisticated two-level EM algorithm was implemented
to estimate and retrieve the missing information of segregation characterized by dominant-segregating
markers such as single methylation polymorphisms. The model was applied to study the relationship
between linkage and LD for a non-model outcrossing species, a gymnosperm species, Torreya grandis,
naturally distributed in mountains of the southeastern China. The linkage-LD map constructed from
various types of molecular markers opens a powerful gateway for studying the history of plant evolution.
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1. Introduction

Linkage disequilibrium (LD), a concept to describe the non-random as-
sociation of alleles at different loci, has been a focus of population gen-
etic studies during the last several decades.! However, since LD is
affected by many evolutionary forces, the use of LD alone to infer the
genetic structure of populations may generate spurious results.” For

this reason, how LD can be served as a more efficient tool has been

one of the most important issues in population and evolutionary genet-
ics. One of the strategies to resolve this issue is constructing a LD map
from which to infer population history by visualizing the decline pattern
of LD with genetic distance. This strategy has been widely used in human
genetics>* and increasingly recognized in other species.®” Many of
these LD maps are constructed from the relationship of pairwise LD
with the physical distance of the same marker pair, which do not esti-
mate the frequency of recombination between marker loci.
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2 Linkage-linkage disequilibrium map

The basic principle by which LD is used for historical inference
results from its relationship with the recombination rate.! Therefore,
the estimation of the linkage, apart from estimating LD, is an essential
step towards constructing a LD map. Wu and Zeng?® pioneered the ap-
plication of a sampling design to simultaneously estimate these two
parameters. By sampling parents randomly from a natural population
and the seeds of the sampled parents, this design constructs a two-level
hierarchic structure of molecular data, which enables the characteriza-
tion of how different markers are associated in the original population
and how the markers co-transmit their alleles in a Mendelian fashion
from the parent to offspring. Lou et al.” derived a close-form EM al-
gorithm to estimate the LD and recombination rate within a unifying
framework. Such a joint linkage-LD analysis has been applied to the
genetic mapping of complex traits, leading to the identification of
biologically validated quantitative trait loci (QTLs) for drought resist-
ance in maize.'® More recently, this strategy has been modified to
accommodate to the estimation of genetic imprinting!! and genetic
variance.'? Pikkuhookana and Sillanpaa'® implemented a Bayesian
algorithm for parameter estimation from this strategy.

In this article, we described a general computational framework
built on Wu and Zeng’s® open-pollinated design to construct a link-
age-LD map using biallelic co-dominant markers. To make this frame-
work more useful for a broader area of applications, we extended it to
enable the utilization of dominant-segregating markers. Several recent
studies have shown that epigenetic variation provides a source for the
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generation of phenotypic diversity in natural populations
also epigenetic marks, such as differential cytosine methylation, may
be inherited and have experienced the pressure of natural selection.'®
Thus, it has become increasingly important to construct a more compre-
hensive linkage-LD map by including methylation markers. In epigen-
etic population studies, there are many ways to score and analyse
methylation-sensitive amplification polymorphisms, of which one com-
mon approach is to score those fragments that stay unmethylated as 1
and all others methylated as 0. This scoring approach leads to the
segregation pattern of the so-called single methylation polymorphism
(SMP) markers equivalent to that of dominant genetic markers.'” Lu
et al.'"® found a possibility of using three-point analysis to enhance
the precision and power of linkage detection for dominant markers.
Likewise, Li et al.'” developed a three-point analysis to analyse LD
among three dominant markers and establish a procedure for testing
and estimating multiple disequilibria at different orders. However, the
simultaneous estimates of LD and recombination fraction between
dominant markers are methodologically challenging, because their

genotypes can little explain the information of allelic segregation. We
implemented a two-level EM algorithm for joint linkage and LD ana-
lysis by modelling and retrieving the unobservable feature of segregating
genotypes for dominant-inherited markers. An example was demon-
strated to show the utility and usefulness of the model by analysing a
real data collected from an OP design of an outcrossing species, Torreya
grandis, naturally distributed in mountains of the southeastern China.

2. Model
2.1. Sampling strategy

From a natural plant population at Hardy—Weinberg equilibrium
(HWE), we randomly sample 7 unrelated maternal individuals and
open-pollinated seeds from each sampled plant. This constitutes a
two-level hierarchic sampling setting in which both parental plants
and their offspring are genotyped by the same set of molecular mar-
kers. Consider a pair of biallelic markers A and B, which generate
nine joint genotypes, AABB (coded as 1), AABb (coded as 2), . . .,
aabb (coded as 9). Let n; denotes the number of mother plants with
marker genotype i, and nf denotes the number of offspring with mark-
er genotype j derived from mother genotype i. Depending on the geno-
type of a mother, all offspring from her have different numbers of
marker genotypes. Table 1 tabulates genotypic observations for the
two-level hierarchic setting.

Let pap, Pab, Pap and p,;, denote haplotype frequencies for AB, Ab,
aB and ab, respectively. The four haplotype frequencies are expressed as

pap = papp+D
pab = papy—D
Pas = papp — D
Pab = PaPp+ D

where allele frequencies are defined as p4 and p,, (pa + p, = 1) for mark-
er Aand pg and p;, (pg + pp = 1) for marker B, respectively, and D is the
LD between the two markers. Under the assumption of HWE, the ex-
pected frequency of two-marker genotype i in the parental population
(P;) is expressed as the product of the two corresponding haplotype fre-
quencies. Based on the principle of co-transmission of two genes from a
parent to its progeny, we derived the expected frequency of two-marker
genotype j in the progeny population from mother genotype i (Pj:), ex-
pressed as a function of the recombination fraction 6 for the double het-
erozygous mother genotype. All these maternal and offspring genotype
frequencies are given in Table 2.

Table 1. Data structure of two co-dominant markers typed for a panel of half-sib families, each composed of the mother and offspring, sampled

at random from a natural population

Grp Family Offspring

Mother Num. AABB AABb AAbb AaBB AaBb Aabb aaBB aaBb aabb
1 AABB m nl " n} "
2 AABb n ) n3 " 4 " s
3 AAbb n3 n3 ng n§ ng
4 AaBB N ni n% nﬁ ni nZ ni
N AaBb ns i " 3 nt " n$ nl I "
6 Aabb g nZ } ng ng nt ng
7 aaBB 17 ' 7 n; "’
8 aaBb ng 7 3 n§ } n} g
9 aabb 79 ) n§ 3 g
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Table 2. Mating frequencies of mother and offspring genotype frequencies per family for two co-dominant markers sampled from a natural

population
No. Offspring
Maternal mating AABB  AABb AAbb  AaBB AaBb Aabb aaBB  aaBb aabb
Genotype  Frequency ABIAB  ABIAb AbIAL  ABlaB ABlab  AblaB  Ablab aBlaB  aBlab ablab
1 AABB  pjy Das Dab Dan Pab
2 AABb 2paB Pav 3baB  3pap +3bap  3Pab  3ban 3Pab + 308 Pab
3 AAbb Pl bas bav baB Dab
4 AaBB 2pAB PaB %PAB %PAb %PAB + %PaB %Pab + %PAb %PaB %Pab
2048 Pab @1 Pap ®1 Pap ©1(Pab + PaB)  ©1Pap ©1 paB
S AaBb + o1pap + o2pap  + + + @ pag + 1 Pab
2pab bas 2 PAB W2 PAB 02(Pap + Pap)  ©2Pab ©2 Pab
6 Aabb 2pab Dab 1pas 10ap 10AB+3PaB Db+ 30w 10an 1 0ab
7 aaBB i Pas pab Pap Dab
8  aaBb 2 pab Pab 3PAB 3DaB +3Pa  3Pab 3Pa 3Pabt3bap  3Dab
9 aabb v, pas Pab Pa Dab
Maternal genotype AaBb (no. 5) contains a mix of different diplotypes that are encompassed by a box.
2.2. The co-dominant model ) |
2.2.1. Likelihood Parent Aab Haplotype
We use M,, and M, to denote observed maternal genotypes and Diplotype ~ Frequency  AB Ab aB ab
offspring genotypes‘ for n‘mrkers A and B. Let (9[,,. ) denote t}‘w un- ABlab s -0 1l 19 1-0)
known parameters including all haplotype frequencies (arrayed in £,
and the recombination fraction 6. A unifying log-likelihood that inte- AblaB 1-¢ 16 %(1 -0 1-6) 16
grates two-level maternal and progeny genotype data can be expressed as
Letw; = 19(1 — 6) + (1 — ¢)6,0, = 196 + (1 — ¢)(1 — 9). Thus,

Upper level Lower level
L((2,60)|(M,,, M,)) = constant + m;log(P;) + #llog(P}) (1)
Maternal  Offspring

where the first term of the right side is the upper level likelihood con-
structed by maternal genotype observations and haplotype frequencies
Q, that form expected maternal genotype frequencies (Table 2) and the
second term is the lower level likelihood constructed by maternal and
offspring genotypes, haplotype frequencies &, and the recombination
fraction 6. The upper level likelihood is constructed by mother genotype
observations and expected mother genotype frequencies, expressed as

log L(Qp|M,,) = constant + 7 log( pig) + 12 log(2 pag pas)

+ 3 log(p3,) + 14 10g(2 pas pan)
+n510g(2 pap Pap + 2 Pab Pa) + 161082 P ab Pab)

+ 17 log(plp) + 118 108(2 pan pap) + 19 log(p2,)
(2)

For double heterozygote AaBb, its observed genotype may be derived
from two possible diplotypes, ABlab (with probability of papp.s) or
AblaB (with probability of papp.p), where the vertical lines are used
to separate the two underlying haplotypes of a diplotype. For a given
parental genotype combination, a certain group of offspring genotypes
is produced. For a mother with genotype AaBb, there will be two pos-
sible diplotypes, ABlab and AblaB, whose relative frequencies are

DABDab

_ PabPaB 3)
PaBPab + Pavban’

" DABDab + DavDap’

respectively. Both the diplotypes will produce haplotypes AB, Ab, aB
and ab with frequencies defined as follows:

overall haplotype frequencies produced by this parent are calculated as
wfor AB or ab and w, for Ab or aB.

Based on the information about genetic segregation in each family,
the lower lever likelihood is constructed as

log L(Q,|M,,, M,,, Q) = constant
+ 11 log(pa) + 17 log(pas) + 71 log(pan) + 7 log(pas)
+ m, log(3pas) + 115 log(3pas +1pas) + 73 log(pas)
+ 13 log(3 par) + 13 10g(3 pap + 3 pas) + 15 1084 pas)
+ 153 log(pas) + 13 log(pap) + 13 log(pan) + 15 10g( pap)
+ nlog(3pas) + i log(3pas) + g log(3pas + 1 pas)
+ 131085 pab + 5Da0) + 13 108(30,5) + 1 logGD )

+ ntlog(w1 pap) + 72 log(w1 pap + @2 pag) + 13 log(wz pas)

+ 1§ log (@1 pap + @2 pap) + 115 log (w2 pap) + 1 log(@1 pas + @2 bap)
+ 13 log(w1 pay) + g log(3pa) + 13 log(3 pap) + 13 log(3 pan + 1 pan)

+ n6 lOg %pAh + 2pab) + n(, lOg(zpﬂB) + n6 lOg(zpab)

+ 3 log(pas) + 13 log(pas) + 1 log(pas) + 75 log( pas)
+ n8 log % B)+ n8 log(szB + szb) +n log(sz;,)
+ng lOg % dB) +”8 log( pab +2paB) +nx lOg( pub)

(
(
(
(
(
(
(
+ 114 10g(@1 pan + @2 pa) + 13 10g(1 ( pap + pan) + @2(pan + Pab))
(:
(
(
(
(
(
(

+ 1§ log(pag) + 1§ log(pap) + 18 log(par) + 173 log(pap) 4)

Below, an algorithmic procedure will be described to estimate the
parameters that define the likelihood.
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2.2.2. Estimation

We implement two EM algorithms to estimate the unknown para-
meters. The first is implemented to estimate the haplotype frequencies
and therefore allelic frequencies and linkage disequilibria by jointly
maximizing log-likelihoods (2) and (4). The second is implemented
to estimate the recombination fraction that is contained with double
heterozygote by maximizing the log-likelihood (4). In the E step of
the second EM algorithm, we calculate the probability with which a
considered haplotype produced by double heterozygote parent is the
recombinant type using

for haplotype ABor ab
for haplotype Abor aB

()

In the M step, the estimate of the recombination fraction is

=(1-9)0 y3=(1-9¢)0+¢(1-0)
v, = ¢6 vy =00+ (1-9)(1-6)

obtained by

m
0= (6)

where m equals the sum of following terms,

(k) 42 )
Wy
< V1 Dab V2 PAB )nz
W3Dab +Vabas  W3Dap+Vabas)
n < V1 DaB V) PAB > it
V3DaB +W4PAB  VW3DaB + W4PAB
< V1 Dab V3 Dab > 6
+ ns
V3Dab +VaPab  V3Dab+ VaDab
V1 DaB V3 Dab 8
+ ns
V3DaB + W4Pab Y3 DaB + WaPDab
Y1 (Pas + Dab)
v3(pap + Pab) + Wa(Pab + Pas) s
+ s

W (Pab + Pan)
v3(PaB + Pab) + Wa(Pab + Das)

and
M= n} +nk +nd +nt +nd +n§+nl +nd+n]

The E and M steps are iterated between Equations (5) and (6) until
convergence.

2.2.3. Hypothesis testing

After genetic parameters are estimated, we test whether the two mar-
kers are associated and/or linked on the same genomic region. This can
use the following hypotheses:

Hy:D=0and 6 =0.5

Hj : At least one of the equalities above does not hold

The likelihoods under the Hy and H; are calculated from which a
log-likelihood ratio is calculated. By comparing this test statistic with a
2 threshold with two degrees of freedom, we can accept or reject H.

It is also needed to test the significance of D and 6 separately,
showing how the two markers are related. Under the null hypothesis
Hy : D = 0, parental diplotype and genotype frequencies can be sim-
ply expressed as a function of allele frequencies which can be estimated
with no need of the EM algorithm. Similarly, under the null hypothesis
Hy : 6 = 0.5, offspring diplotype and genotype frequencies within

Table 3. Data structure of two dominant markers typed for a panel of
half-sib families, each composed of the mother and offspring,
sampled at random from a natural population

Grp Family Offspring

Mother Num. A_B_ A_bb aaB_ aabb
e R
2 A_bb 10 nm) n}fg n??(l) n??g
3 aaB_ no/1 n(l)ﬂ né;(l) ngﬂ ng;(l)
4 aabb 70/0 n(l)?(l) néjg "8?(1) ngég

A_=AA + Aa and B_=BB + Bb.

each family are simply expressed as function of the Mendelian segre-
gation ratio so that no parameter needs to be estimated.

2.3. The dominant model
2.3.1. Estimation
Methylation-sensitive amplification polymorphisms can be scored as a
dominant marker.'” For a dominant marker, the homozygote AA for
the dominant allele cannot be distinguished from the heterozygote Aa.
Thus, these two genotypes are observed as a single ‘phenotype’ (A_).
For two dominant markers A and B, some cells for the observations
and expected genotype frequencies in Tables 1 and 2 are collapsed
in a way as shown in Tables 3 and 4, respectively. Let 7;,/;, denote
the observed number of observations of a two-dominant marker geno-
type ja/ip, ja=A_ (coded as 1) or aa (coded as 0) and jp = B_ (coded as
1) or bb (coded as 0), in the parental population. Similarly, let n’:‘//’;:
denote the observation of progeny marker genotype ka/kp given its
parent genotype ja/jp (Table 3). Frequencies of offspring genotypes
from different mother genotypes are shown in Table 4.

A two-level hierarchical likelihood (1) is formulated to jointly esti-
mate haplotype frequencies and recombination fraction by implement-
ing two EM algorithms. The first EM algorithm is used to estimate
haplotype frequencies by jointly maximizing the upper and lower
level likelihood, whereas the second EM algorithm used to estimate
the recombination by maximizing the lower level likelihood. Here,
we show how the second EM algorithm is implemented to estimate
the recombination fraction. In the E step, we calculate the overall fre-
quencies of the genotype with the progeny cells (Table 4) using

201 paB(PAB Pab + Pab PaB)

@) = 5
@, _ 2(@1Pap + 02 paB)(PaB Pab + Pab Dab)
) = 5
@ — 202Pab(DAB Pab + Dab Dab)
-
6
o, — 2(@1Pa8 + ©2048)(PaB Dab + Db Pan)
4 = 5,
D5 = 2(w1 pap + 01 PaB + @2 PaB + @2 Pap)(PAB Pab + Dab PaB)
S1
O — 2(w1 pap + @2 Pab)(PAB Pab + Dab PaB)
6 = 5
@, _ 202PaB(PAB Dab + Pab Pab)
=
83
o5 — 2(w1 pa + @2 Pab)éfAB Pab + DabPan) 7
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Table 4. Mating frequencies of mother and offspring genotype frequencies per family for two dominant markers sampled from a natural
population
No. Parental mating Offspring
Mother Frequency A_B A_bb aaB aabb
Pis Pas 0 0 0
+ + + + +
2pag pab paB Pab(2 A8 + Pab +2Pas + Pab) PaPab(Pab + Dab) 0 0
+ + + + +
1 AB 2pag bap pap Pas(PaB +2Pap + 2 Pab + Pab) 0 paB PaB(PAB + Pab) 0
+ + + + +
2 pAB Pab 201 paB Pab(2paB + Pab + Pab + Dap) | 201 a8 Pav(Dab) 201 pag Pab(Pa) 201 paB Pab(Pab)
+ + + + +
2pap Pab 20y pap PaB(2PaB + Pab + Pap) 20 pap PaB(2Pab + Pap)  \ 202 pap Pap(Pab + Pap) L0
Pis iy (PaB + Pan) iy (Dav + Pab) 0 0
2 Afbb + + + + +
2pab Pab Dab Dab(2pas + pab) Dab Pab(2 DA + Dab) PapPar(Pan) Pab bab(Pab)
D p25(Pas + pav) 0 (PaB + Dab) 0
3 aaB_ + + + + +
2pas Pab Pas Pab(2PaB + Pab) Pas Lab(Pab) Pab Dab(2paB + Pab) Pab Dab( Pab)
4 aabb  p?, pas Pab pa Dab

01 =36(1—0) + 31 —9)0,0; =100 +1(1 — 9)(1 — 0),0 = pag Pav/(PaB Pab + Pab Pan)-

where

81 = pAig + paBPar(2Pap + Pap +2PaB + Dap)

+ paB paB(DaB +2Pab +2PaB + Pab)

+ 201 pAB Pab(2PaB + Dab + Pab + Dab)

+ 202 pap pa(2pas + Pap + Pan)
82 = paB Pab(Pab + Dab)

+ 201 paB Pab(Pab) + 202 Pap PaB (2 Pab + Pab)
83 = PAB PaB(PAB + Pab) + 201 PAB Pap( Pa)

+ 202 pap ap(Pab + bab)

o) =39(1 —6) +3(1 - 9¢)6
@ =390 +3(1 - 9)(1 - 6);

We interpret @ as a probability that the offspring genotype is
AABB and the mother genotype is AaBb while both offspring and
mother genotypes are observed as A_B_. The other @’s can be inter-
preted in a similar way.

In the M step, we estimate the recombination fraction by

="

- ®)

M:n}ﬁ(q)l + D, + Py +<D5)+n}§(l)(<l)3 + @) +n?§i

Dg) + "%(1) and m is the sum of following terms, expressed as

where (®7+

Vi, 1/1 0/0 ¥y, 1/0 0/1
— (1)), @1 +n;)7) +—=(n,), P35 + n,,, D7)
ysy ) Ty Vi 1/1
N ( Y1 Dab Y2 PaB )nm%
Vsbap +WaPaB  Y3Dab + VaPas
< V1 DaB V) DaB )"mqh
V3PaB +WaPAB VW3 PaB + W4DAB
< ViPab V2 Pab )nl/o ’
VsDab+Vabab  W3Dab+ Vabap)

( V1 DaB V2 Pab >
V3DaB +Vabab  YW3PaB + VaPab

V1 (pas + Pab) 11
* ('//3( ))nm

paB + pab) + '//4(pAb + paB)
with y; and y; defined as the probabilities with which a considered
haplotype produced by a double heterozygote parent AaBb is the re-

v2(Pab + Pas)

D5
w3(Pag + Pab) + Va(Pab + Pab

combinant type, i.e.

v, =(1—-¢)6 for haplotype ABor ab
v, = ¢0 for haplotype Abor aB

and with w3 and yy defined as the probabilities with which the double
heterozygote parent AaBb produce haplotype AB, ab or Ab, aB, i.e.

for haplotype ABor ab
for haplotype Abor aB

v = (1-9)0+0(1—0)
v =00+ (1—9)(1—0)

where ¢ is defined in Equation (3).

2.3.2. Hypothesis testing

We formulate the hypothesis tests for the significance of the LD and
linkage. The estimation of allele frequencies of two dominant markers
under the null hypothesis of no LD should also be based on the EM
algorithm; i.e. in the E step, we calculate

@, — 2 _ 2pa
A72—pA‘ “7l+pa’ )
2 Zpb
®p = ; b = )
2 - ps 1+ py
In the M step, we estimate the allele frequencies of markers A and B
by using
pa = Dy (111 4 11)0) _ 2(nop +n0p0) + Pa(r1/1 +11)0)
AT 2n v Pem 2n ’
_ Dp(ny1 +m91) _ 2mypo +n0p0) + Pp(m11 + 101)
bs = 2n ’ B 2n '

(10)
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Group1

0.0 S65-30
0.6 S18-23
0.7 S92-12
5.4 597-24
16.0 59207
S97-30

0.9 $18-19
38.5 S18-11
38.6 S518-02
428 S18-24
429 S97-09
49.6 S92-16
55.0 S92-02
59.8 S597-10
67.6 592-11
72.4 S97-28
S97-15

725 $65-07
81.5 S97-11
Q0.8 518-27

Group6

0.0 S57-01
6.2 S28-15
16.0 S92-04
32.9 S18-17
49.0 S92-10
49.7 S$18-08
50.0 S65-23
S28-12

52.2

The E and M steps between Equations (9) and (10) are iterated
until the estimates are stable. The log-likelihood ratio under the null
and alternative hypotheses is calculated and compared with a thresh-

Group2

S97-02

0.0 591-21
0.5 S28-11
12.4 S65-05
12.5 518-09
12.6 S65-21
15.6 592-21
19.6 S65-13
20.6 S18-06
23.3 S$18-01
41.4 S57-09
46.7 S28-10
58.4 591-05
63.8 528-29
64.0 S97-19
68.5 S97-06
82.8 §92-14

Group7

0.0 S28-06

58 S28-08

6.0 565-08
10.2 592-26
10.7 S91-28
12.8 592-05
13.0 528-30
18.3 528-20
25.1 S28-28
30.1 S28-18
45.3 S28-24
50.1 592-24
51.9 S65-31

old determined from a y* distribution.

3. Application

We used a real data analysis to demonstrate how the model is used to
construct a linkage-LD map. According to Wu and Zeng’s® design, we

Group3

0.0 S18-14
1.0 591-02
4.0 S91-22
4.1 $91-11
6.8 591-08
6.9 $91-07
72 591-37
13.4 S§57-23
13.5 S65-02
S528-04

17.7 591-03
27.8 $91-17
35.8 S91-01
371 S65-17
44.9 S65-16
64.2 597-23
64.7 528-32
79.4 §92-01

Group8

0.0 S518-39
2.1 S28-25
52 597-26
112 S57-05
11.6 557-34
15.6 S28-21
15.7 §97-27
20.8 S18-04
38.7 S28-27
39.4 59717
42.0 S18-30
S65-25

45.8

sampled a natural population of Torreya grandis distributed in the
southeastern China.?° In spite of the economic value of T. grandis,
this species has not been extensively studied in population genetics.
Zeng et al.”! constructed a first low-density genetic map for genus Tor-
reya using an open-pollinated progeny derived from half-sib seeds of a
landrace T. grandis ‘Merrilli’, providing basic information for marker
genotyping of this species. We sampled 50 unrelated trees randomly
from a natural population of T. grandis and 20 progeny for each
sampled tree. In total, we obtained (50 +50x20)=1,050 trees,
which were

Group4

0.0 S57-38
1.3 S57-36
11.4 518-18
14.6 592-23
26.4 S28-01
43.0 S57-10
495 $18-10
53.7 528-07
59.6 S28-09
66.2 S57-18
S57-15

74.8 $28-02

genotyped by 233

Group5

0.0 S57-14
3.9 S592-03
5.0 S65-22
9.1 S57-27
16.0 S65-06
17.5 S$91-29
17.6 S57-31
22.0 $92-08
225 S592-13
25.6 S91-34
25.7 S57-19
28.7 S18-05
20.6 S57-12
37.6 S57-04
43.9 S97-04
50.0 S57-02
50.5 S97-03
53.5 S57-08
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Figure 1. Genetic linkage map consisting of eight linkage groups for the Torreya genome constructed by dominant markers. This figure is available in black and white
in print and in colour at DNA Research online.

sequence-related amplified
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polymorphism (SRAP) markers. SRAPs are dominant-segregating
markers,”* providing an excellent demonstration for the practical util-
ity of our model. This data set constitutes a two-level hierarchic frame-
work with a high level from the parents and a lower level from the
progeny. We analysed each pair of these markers using the dominant
model to simultaneously estimate the LD and recombination fraction
and further test the significance of these two parameters.
0Of233x232/2=27,028 pairs, 5,733 (21.21%) display significant
non-random associations, and 2,140 (7.92%) are significantly linked.
It was seen that much fewer pairs (1,239 or 4.58%) are both as-
sociated in the original natural population and linked when they
co-transmitted during meiosis from the parent to progeny. All this
suggests that, for many marker pairs, significant associations are incon-
sistent with significant linkage. In other words, a pair of unlinked
markers may be associated with each other, and also a pair of linked
markers may not necessarily have a significant LD. Significant as-
sociations of unlinked markers may be due to the impact of some recent
evolutionary forces on these markers, whereas the absence of associa-
tions between linked markers implies that this particular region of the
genome has experienced the random mating of numerous generations.”>

Based on the estimated pair-wise recombination fractions, we con-
structed a genetic linkage map using MapMaker software. Under the
thresholds of 6= 0.3 and LOD = 3.0, 233 markers were grouped into 8
linkage groups, but with 73 markers unlinked. Markers in each link-
age group were ordered with an objective function of the sum of ad-
jacent recombination fractions. When the optimal order of a linkage
group was determined, the map distance between any two adjacent
markers was calculated by Haldane’s map function. To the end, we
obtained a low-density genetic linkage map for T. grandis (Fig. 1).
The total length of the map is 533.2 ¢cM, with an average marker inter-
val of 3.33 cM.

By plotting pair-wise LD over the genetic distance, we constructed
a LD map from which to infer the population history of T. grandis
(Fig. 2). In general, the LD declines markedly with marker distance
within the first 10 cM of genome, and this decrease quickly becomes
gradual after this length. This trend suggests that the population of
T. grandis sampled may have experienced a long evolutionary history
in the environment where this species grows. However, there are quite
a few pairs of unlinked markers beyond 10-20 cM of genetic distance
which are associated with a large R2, suggesting that these loci may be
subjected to some recent evolutionary forces. Further studies from
single-nucleotide polymorphisms (SNPs) are needed to characterize
the biological function of these loci and relate this function to possible
anthropological selection or climate change towards an in-depth un-
derstanding of the evolutionary mechanisms of T. grandis.

From the distribution of all pair-wise LD, it was found that most
pairs of markers do not display a large LD value (Fig. 3), conforming
to the result inferred from Fig. 2 that this population may have under-
taken a long evolutionary history. Although the LD coefficients tend to
be larger between markers located within the same linkage group than
between markers from different linkage groups (Fig. 3), a portion of
between-group markers has a large LD. This suggests that the genome
harbouring these markers may be under recent evolutionary forces.
Differences in LD occurrence within and among linkage groups are vi-
sualized in Fig. 4. It can be seen that markers in linkage Group 7 are
not only rarely associated with those from other linkage groups, but
also display a sparse distribution of LD with those within the same
linkage group. More specifically, of all 13 x 12/2 = 78 possible combi-
nations between 13 markers of this group, only 15 (19.2%) pairs dis-
play significant associations. Yet, such percentages for other linkage
groups, such as Groups 2 and 8, were observed to be >60%. A reduced

Linkage Disequilibrium (R?)

Genetic Distance (cM)

Figure 2. Distribution of normalized linkage disequilibria, expressed as R?,
across genetic distance of the Torreya genome in centiMorgans. The curve
presents a general trend of the decline of LD with genetic distance. Marker
pairs in the square have a large LD, although they are distant by >10 cM
from each other. This figure was also used in the study by Sun et al.?*> This
figure is available in black and white in print and in colour at DNA Research
online.
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Figure 3. Distribution of LD between markers from the same linkage groups
(solid bars) and between markers located on different linkage groups (grey
bars) over the Torreya genome. This figure is available in black and white in
print and in colour at DNA Research online.

frequency of significant associations in linkage Group 7 suggests that
this part of the T. grandis genome may have experienced a long evo-
lutionary history. Relative to linkage Group 7, linkage Groups 2 and 8
has much more frequent LD between different loci from the same and
different linkage groups, implying that some recent pressure of natural
selection may have taken place in this part of the genome.

4. Computer simulation

To examine the statistical properties of the model for constructing the
LD map with dominant markers, we performed computer simulation
by mimicking a natural population at HWE. We randomly sample a
panel of unrelated open-pollinated families (each including a female
parent and multiple offspring). Given a total of 1,000 progeny, the
simulation considers three sampling strategies, 1,000 x 1 (1,000 mater-
nals with a single offspring), 200 x 5 (200 maternals with 5 offspring)
and 50 x 20 (50 maternals with 20 offspring). For each strategy, we si-
mulated two co-dominant markers with strong and weak LD, D =0.15
and 0.02, respectively, in the population. The allele frequencies for the
two markers are p4 = 0.6 vs. p,=0.4 and pp=0.5 vs. p;, = 0.5, respect-
ively. The two markers are linked with two sizes of then recombination
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9971

Figure 4. Pattern of LD occurrence between markers from the same linkage
groups (outer circle) and from different linkage groups (inner circle). The
existence of LD between a pair of markers is denoted by a line that links
them, with the magnitude of LD positively related to the thickness of the line.
This figure is available in black and white in print and in colour at DNA
Research online.

fraction 6=0.20 and 0.05. In each design, 1,000 simulation replicates
were performed to estimate the means of the MLEs for each parameter
and their standard deviations. By collapsing the simulated co-dominant
marker genotypes into a dominant setting, we can test how well our
model performs to construct a dominant LD map.

Table 5 gives the results of parameter estimates from simulation
studies under different designs. As expected, because of more informa-
tion contained, co-dominant markers provide better estimation of
each parameter than dominant markers, although the drawback of
the latter can be overcome by choosing an optimal sampling strategy.
General trends of estimation precision of parameters are summarized
as follows: (i) LD can be estimated with high accuracy and precision
for both co-dominant and dominant markers under all simulation
schemes considered. However, as expected, more small families per-
form better than fewer larger families, because the estimate of LD is
based on the sampled parents from the original population. (ii) The
estimation of the recombination fraction @ is first dependent on the
size of LD, followed by the degree of linkage and the sampling strat-
egy. If LD is near zero, then ¢ is close to § so that @; and w, will not
contain 6. Thus, 6 is not estimable when there is no association be-
tween the two markers. To better estimate the linkage, precise estima-
tion of LD is essential.

An additional scenario of simulation was conducted by collapsing
only one of the two co-dominant markers into a dominant status. As
expected, this scenario was intermediate in the precision of parameter
estimation between those in which both markers are co-dominant and
dominant, respectively. We have also performed simulation studies
using the same schemes described above, but by quantitatively chan-
ging the values of LD within its interval. This simulation allows us to
determine the minimum value of LD beyond which 6 can be well esti-
mated. In the package of software, we provide the function of

determining such an LD value given a sampling strategy and allele
frequencies.

5. Discussion

Similar to the HWE, significant departure from linkage equilibrium (LE)
indicates that the population studied is undergoing some evolutionary
pressure by extensive inbreeding, gene flow, genetic drift, mutation, nat-
ural selection, etc. However, unlike HWE, LE cannot be established in
one generation of random mating, rather than it needs a number of gen-
erations to be reached, because LD declines at a rate that depends on the
recombination fraction.! For this reason, a test of LD about its departure
from LE may tell us more stories about the evolutionary history of the
population. Just because the use of LD to infer a population’s past events
is founded on its relationship with the frequency of recombination, a
joint estimation of the LD and recombination fraction can provide
more precise information about evolutionary inference.®

In this article, we extended Wu and Zeng’s® open-pollinated pro-
geny design to construct a linkage-LD map and particularly showed
how this design can accommodate to missing information of
dominant-segregating markers such as cytosine methylation markers.
DNA methylation, as a covalent base modification of plant nuclear
genomes, is thought to be accurately inherited through both mitotic
and meiotic cell divisions.'* Also, similarly to spontaneous mutations
in DNA, errors in the maintenance of methylation states would violate
the equilibrium of natural populations, leading to changes in associa-
tions between epialleles at different methylated loci. Thus, by con-
structing a linkage-LD map using those so-called SMPs, we can
infer evolutionary pasts of the natural populations from a different
perspective.”1

Indeed, as a simple and cheap technique, dominant markers, such
as SRAP markers,?* are still being used for many under-represented
species including forest trees and wildlife species.?*2%2¢ Thus, the
dominant model described can widen the usefulness of the open-
pollinated design in practical population studies. Simulation studies
have determined an appropriate sampling strategy to construct a
linkage-LD map using dominant markers. Since the precise estimation
of LD is of primary importance to linkage estimation, we recommend
using many smaller families over small larger families. In addition, the
efficiency of linkage-LLD map construction can be enhanced by three-
point analysis, which has proved to not only provide more informa-
tion about the genome structure and organization, but also reduce a
possibility of biased estimation of the linkage when LD has a small
value.?”*® This is especially true for dominant markers.

Although the original model for joint linkage and LD analysis was
proposed more than a decade ago, its practical use has not occurred
until recent years when the collection of molecular markers for under-
represented species has been feasible. The current study presents one
of the first applications of Wu and Zeng’s® open-pollinated design to
study the population structure and history of an outcrossing species.
Torreya grandis is a gymnosperm tree species with a large size, endem-
ic to the eastern and southeastern China.>® Because of economic and
ecological values, this species has been increasingly studied in terms of
its evolutionary history and the genetic control of complex traits.*'
The results from a joint linkage and LD analysis with dominant mar-
kers suggest that this species has experienced a long history of evolu-
tion, but some regions of its genome are subject to a certain recent
evolutionary forces. This information will provide guidance for better
germplasm management of this important woody plant. Advances in
understanding the evolutionary history of Torreya can be made by
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Table 5. MLEs (+standard deviations) of allele frequencies, linkage disequilibrium and recombination fraction from 1,000 simulation replicates

under different sampling strategies

Family True True MLE

Number Size D [ p q D 0

Co-dominant markers
50 20 0.150 0.200 0.600 = 0.047 0.502 £0.050 0.149 £ 0.023 0.200 = 0.042
50 20 0.150 0.050 0.600 = 0.049 0.503 =0.050 0.149 = 0.022 0.051+0.032
50 20 0.020 0.200 0.599 = 0.049 0.503 =£0.049 0.020 = 0.035 0.167 £0.155
50 20 0.020 0.050 0.600 = 0.047 0.503 £0.050 0.021 £0.036 0.096 =0.132
200 5 0.150 0.200 0.599 =0.024 0.499 = 0.025 0.150 = 0.011 0.200 =0.039
200 5 0.150 0.050 0.600 = 0.024 0.499 = 0.025 0.150=0.011 0.051 +0.030
200 5 0.020 0.200 0.600 = 0.024 0.500 = 0.025 0.021 = 0.018 0.161 = 0.165
200 5 0.020 0.050 0.600 = 0.024 0.500 =0.025 0.019£0.017 0.107 =£0.143
1000 1 0.150 0.200 0.600 =0.011 0.500=0.011 0.150 = 0.005 0.200 = 0.038
1000 1 0.150 0.050 0.600 = 0.011 0.500+0.011 0.150 £ 0.005 0.049 = 0.031
1000 1 0.020 0.200 0.600 = 0.011 0.500=0.012 0.020 = 0.008 0.172+0.172
1000 1 0.020 0.050 0.600 =0.011 0.500£0.012 0.020 = 0.008 0.113 £0.154

Dominant markers
50 20 0.150 0.200 0.602 =0.062 0.505 =0.062 0.148 =+ 0.035 0.213 £0.145
50 20 0.150 0.050 0.604 = 0.064 0.505 =£0.061 0.145+0.038 0.093 £0.101
50 20 0.020 0.200 0.606 = 0.066 0.509 £0.062 0.009 = 0.069 0.136 £0.166
50 20 0.020 0.050 0.606 = 0.064 0.506 =0.062 0.011 £0.068 0.126 £0.163
200 5 0.150 0.200 0.601 +0.033 0.501+0.031 0.149 = 0.017 0.200 = 0.104
200 N 0.150 0.050 0.602 =0.033 0.503 £0.031 0.149 £0.017 0.060 = 0.060
200 N 0.020 0.200 0.602 =0.033 0.502 +=0.032 0.018 £ 0.028 0.141 £0.166
200 5 0.020 0.050 0.602 =0.033 0.501+0.031 0.017 =£0.028 0.135+0.163
1000 1 0.150 0.200 0.600 =0.014 0.500+0.013 0.150 = 0.008 0.202 =0.078
1000 1 0.150 0.050 0.600 =0.015 0.500=0.014 0.150 = 0.007 0.055 £0.050
1000 1 0.020 0.200 0.600 =0.014 0.500+0.014 0.020 =0.012 0.132 =+ 0.161
1000 1 0.020 0.050 0.600 =0.014 0.500+0.014 0.020 = 0.011 0.118 £ 0.152

sampling multiple populations in a range of its distributions. This
study, along with the previous one based on half-sib seeds from a sin-
gle tree of T. grandis reporting a linkage map covering a total of
7,139.9 ¢M in 10 groups,>' was among the first to construct genetic
linkage maps for genus. It is important to align the two maps into a
single one for a better coverage of the Torreya genome. Also, much
more markers that can align those unlinked markers detected from
the current and Zeng et al.’s studies are needed to completely cover
11 chromosomes of T. grandis. A complete coverage of markers allows
more extensive studies of variation and examination of LD patterns,
which will better reveal levels of complexity for this species.

It has been recognized that genetic mapping based on LD analysis
helps to fine map complex traits or disease, but this approach may
have a high likelihood to detect spurious signals of association, be-
cause allelic association can also be due to evolutionary forces rather
than physical linkage.? A joint linkage and LD analysis can overcome
this false-positive discovery.?” Thus, the LD map constructed from
genetic and epigenetic markers will provide an important fuel to
map key QTLs that affect quantitative traits of economic and environ-
mental importance.”
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