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Abstract

Smoke haze due to vegetation and peatland fires in Southeast Asia is a serious public health

concern. Several approaches have been applied in previous studies; however, the concepts

and interpretations of these approaches are poorly understood. In this scoping review, we

addressed issues related to the application of epidemiology (EPI), health burden estimation

(HBE), and health risk assessment (HRA) approaches, and discussed the interpretation of

findings, and current research gaps. Most studies reported an air quality index exceeding

the ‘unhealthy’ level, especially during smoke haze periods. Although smoke haze is a

regional issue in Southeast Asia, studies on its related health effects have only been

reported from several countries in the region. Each approach revealed increased health

effects in a distinct manner: EPI studies reported excess mortality and morbidity during

smoke haze compared to non-smoke haze periods; HBE studies estimated approximately

100,000 deaths attributable to smoke haze in the entire Southeast Asia considering all-

cause mortality and all age groups, which ranged from 1,064–260,000 for specified mortality

cause, age group, study area, and study period; HRA studies quantified potential lifetime

cancer and non-cancer risks due to exposure to smoke-related chemicals. Currently, there

is a lack of interconnection between these three approaches. The EPI approach requires

extensive effort to investigate lifetime health effects, whereas the HRA approach needs to

clarify the assumptions in exposure assessments to estimate lifetime health risks. The HBE

approach allows the presentation of health impact in different scenarios, however, the risk

functions used are derived from EPI studies from other regions. Two recent studies applied

a combination of the EPI and HBE approaches to address uncertainty issues due to the
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selection of risk functions. In conclusion, all approaches revealed potential health risks due

to smoke haze. Nonetheless, future studies should consider comparable exposure assess-

ments to allow the integration of the three approaches.

1. Introduction

Vegetation and peatland fires are gaining global attention owing to their increasing frequency

and intensity. These events have been linked to climate change [1–3], as well as climatic [4]

and anthropogenic factors [5–7]. Vegetation fires [8, 9] include natural wildfires and pre-

scribed fires for socioeconomic purposes [10]. Meanwhile, peatland fires includes vegetation

and the underlying peat layer [11], which are of high concern in equatorial areas with large

organic (histosol) and peat soil volumes [12–15]. Both natural climatic factors [16] and pre-

scribed fires [17] are important for balancing ecosystem mechanisms and land management.

However, excessive and uncontrollable fires due to climate change have tremendous negative

impacts on ecosystems [18] and human health [19, 20].

Vegetation and peatland fires in Southeast Asia are predominantly attributed to prescribed

burning activities for economic and land use change purposes [21–23]. Moreover, dry weather

conditions induced by the El Niño-Southern Oscillation or a positive Indian Ocean Dipole

event [23, 24] intensify fires in the region. Generally, fire occurrences in Southeast Asia are

classified into two main areas [7, 23]: mainland areas (Thailand, Myanmar, Laos, Vietnam,

and Cambodia) and maritime areas (Malaysia, Brunei, Indonesia, Singapore, and the Philip-

pines). The types and sources of fires are heterogeneous among countries in these areas. Indo-

nesia and Malaysia have marked annual vegetation and peatland fire incidence [25, 26].

Countries located downwind of fire sources are affected by transboundary haze issues during

the southwest monsoon season [27–29], in addition to fire and air pollutants from local

sources [23, 29, 30]. The mainland is mostly affected by agricultural burning in the northern

part of the area [23, 31, 32]. The complexity of haze occurrence across regions increases the

challenges in assessing associated health risks.

Smoke released during vegetation and peatland fires contains a complex mixture of chemi-

cals that are harmful to human health [33, 34]. These include particulate matter (PM) (e.g.,

PM10 and PM2.5) and its chemical constituents (e.g., elemental carbon, ionic species, elemen-

tal species, organic carbon), inorganic gases (e.g., carbon monoxide, ozone), hydrocarbons

(e.g., polycyclic aromatic hydrocarbons (PAHs)), oxygenated organics (e.g., catechols, qui-

nones), chlorinated organics (e.g., dioxin), and free radicals. Accumulating epidemiological

evidence indicates the global health effects of fire smoke [35–37]. Several reviews on this topic

have been published, including two that focused on Southeast Asian studies [38, 39]. These

studies employed various approaches with different measures of health effects, namely (i) epi-

demiology (EPI), (ii) health burden estimation (HBE), and (iii) health risk assessment (HRA).

The EPI approach is used to infer a causal association and allows quantification of the expo-

sure-response relationship. The HBE approach is used to quantify the attributable health bur-

den (using the exposure-response function derived from EPI studies) over an exposure at an

average concentration of pollutant [19] or preventable mortality considering different scenar-

ios [40, 41]. The HRA approach is the process to estimate the nature and probability of adverse
health effects in humans who may be exposed to chemicals in contaminated environmental
media, now or in the future [42].
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Previous reviews have shown comprehensive literature on smoke haze-related health

effects, but have not clearly addressed the differences among the three different approaches

[38, 39]. Understanding the basic concepts and interpretation of findings of each approach is

important since the results can be used to communicate health risks to the public and subse-

quently facilitate policy decisions. In this study, we performed a scoping review to summarize

the trends of EPI, HBE, and HRA studies in Southeast Asia over the past few decades to clarify

health effects, quantify exposure, interpret findings, as well as assess the underlying assump-

tions, strengths and limitations, and future challenges.

2. Methods

We conducted a literature search using online search engines, including PubMed, Scopus, and

Web of Science, for scientific articles on vegetation fires and human health, published between

1990 and 2022. The general search terms related to vegetation and peatland fires or smoke

haze events, human health, and Southeast Asia are shown in Table 1. Detailed search terms for

each search engine are listed in S1 Table. Only full-text original or research articles on smoke

haze and human health that were reported in studies conducted in Southeast Asia were

included. Descriptive studies were also included if the haze episodes were explicitly mentioned.

Gray literature was not considered in this study. Articles that focused on indoor exposure,

occupational health, non-health-related issues, review articles, protocol papers, experimental

study articles, letters, editorials, and commentaries were excluded. The results of this study

were reported following the Preferred Reporting Items for Systematic reviews and Meta-Anal-

yses extension for Scoping Reviews (PRISMA-ScR) guidelines [43] (S1 Checklist).

Three authors (VP, AU, and KU) performed initial screening of the articles based on the

title and abstract. With three equally distributed sets of articles, two of the three authors

screened the same set of articles simultaneously. Any disagreement between the two was

resolved through a discussion with the third author. References from full-text articles were

manually searched. After identifying eligible articles, full-text articles were reviewed, and the

data were extracted according to three approaches (EPI, HBE, and HRA).

The extracted data included the following: study approach, name of the first author, publi-

cation year, study area (country and area), study period, health endpoint analyzed, exposure

assessment (pollutant of interest, levels of pollutants, exposure indicator of haze), measures of

health outcomes, and results.

Table 1. Search terms by category.

Category Search terms

Smoke haze and fire

events

“forest fire” OR “peatland fire” OR “wildfire” OR “prescribed fire” OR “vegetation fire” OR

“landscape fire” OR “agricultural burning” OR “transboundary haze” OR “smoke haze” OR

“biomass burning” OR “bushfire” OR “haze”

Health (“health” OR “mortality” OR “morbidity” OR “hospital admission” OR “emergency visit”

OR “out-patient” OR “emergency ambulance dispatch�” OR “health risk assessment” OR

“symptom” OR “respiratory” OR “cardiovascular” OR “cancer” OR “clinic visit�” OR

“public health” OR “health risk�” OR “health impact” OR “mental health” OR

“psychological” OR “death�” OR “asthma” OR “birth�” OR “low birth weight”)

AND

(“human” OR “epidemiol�”)

Study area “Southeast Asia” OR “ASEAN” OR “Asia” OR “Malaysia” OR “Thailand” OR “Indonesia”

OR “Laos” OR “Myanmar” OR “Cambodia” OR “Vietnam” OR “Singapore” OR “Brunei”

OR “Philippines”

Time frame “Jan/01/1990” to “Feb/28/2022”

https://doi.org/10.1371/journal.pone.0274433.t001
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3. Results

3.1 Study selection

Fig 1 illustrates the selection process for this review. A total of 685 articles were identified.

After de-duplicating the articles, title and abstract were screened; this yielded 104 articles. Of

these, 58 met the eligibility criteria. Twelve studies were included in this manual search.

Finally, 70 studies were included in this review.

3.2 Characteristics of the three approaches

Table 2 summarizes the characteristics of each approach. Among the 70 studies, 42, 11, and 15

were EPI, HBE and HRA studies, respectively; two were both EPI and HBE. Forty-nine studies

were conducted in the maritime area (Indonesia [41, 44–57], Malaysia [29, 58–68], Singapore

[69–82], Brunei [83, 84], multiple countries in maritime area [40, 85–89]), 17 in the mainland

area (Thailand [32, 90–104], multiple countries in mainland area [105]); and 4 in multiple

countries in the entire Southeast Asia [19, 106–108] (Fig 2). The breakdown of studies by

country is as follows: 41 EPI [32, 44–46, 49–58, 61–67, 69, 70, 75–84, 90, 97–103], three HBE

[41, 47, 104], and 15 HRA [29, 48, 59, 60, 68, 71–74, 91–96] studies were conducted in a single

country (Indonesia, Malaysia, Singapore, Brunei, and Thailand); whereas one EPI study [85],

eight HBE [19, 40, 86–89, 105, 106] and two EPI- and HBE-combined studies were conducted

in multiple countries [107, 108]. Except for four EPI studies [45, 53, 55, 102], majority of the

Fig 1. Flowchart of review process.

https://doi.org/10.1371/journal.pone.0274433.g001
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Table 2. Summary of studies on the health effects of smoke haze in Southeast Asia.

Approach Author (Year) Location Study period Exposure

timea
Health endpoint Pollutant Exposure

assessment

and indicators

of exposure

Exposure

concentrationb
Air Quality

Indexc

EPI Brauer and

Hisham-Hashim

(1998) [85]

Malaysia and

Singapore

Aug–Sep 1997 S Morbidity

(respiratory)

NA NA NA NA

EPI Aditama (2000)

[44]

Indonesia Sep 1997–Jun

1998

S Morbidity

(respiratory)

NA NA NA NA

EPI Emmanuel (2000)

[69]

Singapore Aug–Nov

1997

S Morbidity

(respiratory)

PM10 Temporal

comparison

and binary

indicator

defined by

PM10

>50 μg/m3

60–100 μg/m3

(The highest PSI

recorded was 134)

(PSI: 134)

Unhealthy

EPI Tan et al. (2000)

[70]

Singapore Jun–Dec 1997 S Morbidity

(respiratory)

PM10,

CO, O3,

NO2, SO2

Haze: Sep 29–

Oct 27, 1997

Post-haze:

Nov 21–Dec

5, 1997

Daily mean PM10

(haze period)

125.4 μg/m3

(post-haze

period)

40.0 μg/m3

(AQIhaze: 86)

Moderate

(AQIpost-haze:

37)

Good

EPI Odihi (2001) [83] Muara and

Temburong,

Brunei

Darussalam

Sep 1997–Jun

1998 and Jan–

Jun 1997–Sep

1998

S Morbidity

(respiratory)

NA Temporal

comparison

(Sep–Oct of

1997)

NA NA

EPI Kunii et al. (2002)

[50]

Jambi,

Indonesia

Sep 29, 1997,

and Oct 7,

1997

S Morbidity

(symptoms)

NA NA Daily maximum

PM10: 1,824 μg/

m3

(AQI >500)

Hazardous

EPI Sastry (2002) [58] Kuala Lumpur,

Johor Bahru,

Ipoh, Kuching,

Penang,

Malaysia

1996–1997 S Mortality (all-

cause)

PM10,

visibility

Binary

indicator

defined by

PM10

>210 μg/m3,

or visibility

<0.91 km

Daily mean

PM10: 64.2 μg/m3

Daily mean

visibility: 6.8 km

Daily maximum

PM10: 423.9 μg/

m3

(AQImean: 55)

Moderate

(AQImax: 299)

Very Unhealthy

EPI Anaman and

Ibrahim (2003)

[84]

Brunei-Muara

district,

Brunei

Darussalam

Jan–Apr 1998 S Morbidity

(respiratory)

PSI PSI NA NA

EPI Frankenberg et al.

(2005) [51]

Indonesia 1997 S Morbidity

(general)

TOMS

aerosol

index

Binary

indicator

defined by

TOMS aerosol

index

Maximum: 6 NA

EPI Mott et al. (2005)

[61]

Kuching,

Malaysia

1995–1998 S Morbidity

(cardiorespiratory

diseases)

NA Temporal

comparison

(Aug–Oct

1997)

Daily maximum

PM10 (on Sep 22,

1997): 852 μg/m3

(AQI >500)

Hazardous

EPI Jayachandran

(2009) [52]

Indonesia 1997 S Mortality (fetal,

infant, and

children)

TOMS

aerosol

index

TOMS aerosol

index

Daily mean: 0.120

(Aug–Oct 1996):

0.048

(Aug–Oct 1997):

0.578

NA

(Continued)
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Table 2. (Continued)

Approach Author (Year) Location Study period Exposure

timea
Health endpoint Pollutant Exposure

assessment

and indicators

of exposure

Exposure

concentrationb
Air Quality

Indexc

EPI Wiwatanadate

and Liwsrisakun

(2011) [90]

Chiang Mai,

Thailand

Aug 15, 2005–

Jun 30, 2006

S Morbidity

(respiratory)

PM2.5,

PM10,

O3, NO2,

SO2

PM2.5, PM10,

O3, NO2, SO2

Daily mean

PM2.5: 43.8 μg/

m3

PM10: 58.1 μg/m3

CO:1.09 ppm

O3: 17.5 ppb

NO2: 17.2 ppb

SO2: 1.7 ppb

Daily maximum

PM2.5: 310 μg/m3

Daily maximum

PM10: 335 μg/m3

(AQIPM2.5-max:

360) Hazardous

EPI Ho, R.C. et al.

(2014) [75]

Singapore Jun 21–26,

2013

S Morbidity

(psychological)

NA NA NA NA

EPI Othman et al.

(2014) [62]

Selangor,

Malaysia

2005–2006,

2008–2009

S Morbidity

(respiratory)

API,

PM10

Binary

indicator

defined by

API

Daily mean

PM10:

(haze days)

168 μg/m3

(non-haze days)

51.7 μg/m3

Daily mean API:

54.6

(110 days with

API beyond

“unhealthy” level)

(AQIhaze-PM10:

107)

Unhealthy for

Sensitive

Groups

(AQInonhaze-

PM10: 47)

Good

(API: 54.6)

Upper-

moderate

EPI Sahani et al.

(2014) [63]

Klang Valley,

Malaysia

2000–2007 S Mortality

(respiratory,

natural)

PM10 Binary

indicator

defined by

PM10

>100 μg/m3

Daily mean:

(overall)

55.5 μg/m3

(haze days)

134.5 μg/m3

(non-haze days)

53.1 μg/m3

(AQIoverall: 51)

Moderate

(AQIhaze: 90)

Moderate

(AQInon-haze:

49)

Good

EPI Yeo et al. (2014)

[76]

Singapore Jun 25, 2013–

Jul 11, 2013

S Morbidity

(respiratory)

NA NA NA NA

EPI Pothirat et al.

(2016) [97]

Chiang Mai,

Thailand

Jan–Mar,

2006–2009

S Morbidity

(respiratory)

PM10 PM10 Daily median:

64.5 μg/m3
(AQI: 55)

Moderate

EPI Hassan et al.

(2017) [64]

Kuala Lumpur,

Malaysia

Jan 2010– Oct

2015

S Morbidity (Lung

cancer)

Visibility Binary

indicator

defined by

visibility <10

km

NA NA

EPI Kim et al. (2017)

[53]

Indonesia 1993, 1997,

2000, 2007

L Morbidity

(respiratory)

TOMS

aerosol

index

TOMS aerosol

index

NA NA

EPI Sheldon and

Sankaran (2017)

[77]

Center of

Singapore,

Singapore

2010–2016 S Morbidity

(respiratory)

PSI PSI Daily mean: 39

Daily maximum:

258

(PSImax: 258)

Very unhealthy

EPI Syam et al. (2017)

[49]

Borneo and

Sumatra,

Indonesia

Oct 2015–

Nov 2015

S Morbidity

(respiratory)

NA Self-reported

hours of

smoke

exposure

NA NA

EPI Ho, A.F.W. et al.

(2018a) [78]

Singapore 2010–2015 S Morbidity

(cardiovascular)

PSI Categorical

and

continuous

indicator of

PSI

Daily mean: 36

Daily maximum:

197.6

(PSImean: 36)

Good

(PSImax: 197.6)

Unhealthy

(Continued)
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Table 2. (Continued)

Approach Author (Year) Location Study period Exposure

timea
Health endpoint Pollutant Exposure

assessment

and indicators

of exposure

Exposure

concentrationb
Air Quality

Indexc

EPI Ho, A.F.W. et al.

(2018b) [79]

Singapore 2010–2015 S Morbidity

(cardiovascular)

PSI Categorical

and

continuous

indicator of

PSI

Daily median:

(Overall): 32.8

(PSIgood-period):

29.5

(PSImoderate-

period): 58.4

(PSIunhealthy-

period): 130.3

(PSIoverall: 32.8)

Good

During

‘unhealthy-PSI’

period, average

PSI: 130.3

EPI Ming et al. (2018)

[65]

Klang Valley,

Malaysia

2014–2015 S Morbidity

(respiratory)

Visibility Binary

indicator

defined by

visibility <10

km

NA NA

EPI Ho, A.F.W. et al.

(2019) [80]

Singapore 2010–2015 S Morbidity

(cardiovascular)

PSI Categorical

and

continuous

indicator of

PSI

Daily median:

32.8

41 days were

identified in

‘unhealthy’ PSI

(PSI�101)

(PSI: 32.8)

Good

41 days were

identified in

‘unhealthy’ PSI

(PSI�101)

EPI Pothirat et al.

(2019) [98]

Chiang Dao

district,

Thailand

Mar and Aug

2016

S Morbidity

(respiratory)

NA Temporal

comparison

(March)

Daily mean

PM10:

(low-PM10

period)

29.2 μg/m3

(high-PM10

period)

120.4 μg/m3

(AQIlow-period:

27)

Good

(AQIhigh-period:

83)

Moderate

EPI Suyanto et al.

(2019) [54]

Pekanbaru,

Indonesia

2015–2016 S Morbidity

(respiratory)

PM10 and

AQI

Temporal

comparison

(2015)

AQI >300 on 9

Sep 2015

AQI <100 in

2016

(AQI >300)

Hazardous

EPI Tan-Soo and

Pattanayak (2019)

[55]

Sulawesi, Nusa

Tenggara,

Kalimantan,

Sumatra,

Indonesia

1997, 2000,

2007, 2014

L Morbidity

(nutrition)

TOMS

aerosol

index

Aerosol Index Annual average

aerosol index

range: 0.1–0.3

NA

EPI Aik et al. (2020)

[81]

Singapore 2009–2018 S Morbidity (acute

conjunctivities)

PM2.5,

PM10

Haze episode

(details were

not described)

Weekly mean

PM2.5: 18.4 μg/

m3

Weekly mean

PM10: 30.0 μg/m3

NA

EPI Ho A.F.W. et al.

(2020) [82]

Singapore 2010–2015 S Mortality (all-

cause)

PSI Categorical

and

continuous

indicator of

PSI

Daily median:

(Overall): 32.8

(PSIgood-period):

29.5

(PSImoderate-

period): 58.4

(PSIunhealthy-

period): 130.3

(PSIoverall: 32.8)

Good

During

‘unhealthy-PSI’

period, average

PSI: 130.3

EPI Mueller et al.

(2020) [99]

Upper north

region,

Thailand

2014–2017 S Morbidity

(respiratory)

PM10 PM10 Daily mean:

(haze days)

74.6 μg/m3

(non-haze days)

26.0 μg/m3

(AQIhaze: 60)

Moderate

(AQInon-haze:

24)

Good

(Continued)
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Table 2. (Continued)

Approach Author (Year) Location Study period Exposure

timea
Health endpoint Pollutant Exposure

assessment

and indicators

of exposure

Exposure

concentrationb
Air Quality

Indexc

EPI Ontawong et al.

(2020) [100]

Pong District,

Phayao

Province,

Thailand

4 years (Not

specified)

L Morbidity

(respiratory)

NA NA NA NA

EPI Vajanapoom et al.

(2020) [101]

Chiang Mai,

Thailand

2002–2016 S Mortality (all-

cause)

PM10 PM10, NO2,

SO2, O3, CO

Daily mean:

(Period 1: before

haze control)

54.3 μg/m3

(Period 2: haze

control initiated)

42.2 μg/m3

(Period 3: haze

control

continued)

45.2 μg/m3

(AQIPeriod-1: 50)

Good

(AQIPeriod-2: 39)

Good

(AQIPeriod-3: 42)

Good

EPI Zaini et al. (2020)

[56]

Riau,

Pekanbaru,

Indonesia

2015 S Morbidity

(respiratory)

NA NA NA NA

EPI Jaafar et al. (2021)

[66]

Selangor,

Malaysia

2012–2015 S Morbidity

(respiratory)

PM10 Binary

indicator

defined by

PM10

�51 μg/m3

Daily maximum:

595.1 μg/m3 (July

2013)

(AQI: 491)

Hazardous

EPI Mueller et al.

(2021) [102]

Thailand Jan 1, 2015–

Apr 30, 2018

L Morbidity

(birthweight)

PM10 Fire hotspots

by satellite

data

Mean (entire

pregnancy):

39.7 μg/m3

NA

EPI Pothirat et al.

(2021) [103]

Chiang Mai,

Thailand

2016–2018 S Mortality (all-

cause, cause-

specific)

PM2.5,

PM10

PM2.5, PM10 Daily median

PM10: 39.5 μg/m3

Daily median

PM2.5: 18.2 μg/

m3

(AQIPM10: 36)

Good

(AQIPM2.5: 64)

Moderate

EPI Uttajug et al.

(2021) [32]

Upper north

Thailand (8

provinces),

Thailand

2014–2018 S Morbidity

(respiratory)

PM10 PM10 Daily mean:

(haze days)

122.9–165.1 μg/

m3

(non-haze days)

18.0–30.4 μg/m3

(AQIhaze: 106)

Unhealthy for

Sensitive

Groups

(AQInon-haze:

28)

Good

EPI Astuti et al. (2022)

[57]

Palangka Raya,

Central

Kalimantan,

Indonesia

Oct 2015 S Morbidity

(respiratory)

NA Fire hotspots

by satellite

data

Daily maximum

PM10: 775 μg/m3

(Mid-Oct)

(AQI >500)

Hazardous

EPI Jalaludin et al.

(2022) [45]

Indonesia 2000,

2007/2008,

2014/2015

L Morbidity

(cognitive

function)

PM2.5 NA Annual mean:

(fire-prone

provinces)

9.7 μg/m3

(non fire-prone

provinces)

12.7 μg/m3

NA

(Continued)
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Table 2. (Continued)

Approach Author (Year) Location Study period Exposure

timea
Health endpoint Pollutant Exposure

assessment

and indicators

of exposure

Exposure

concentrationb
Air Quality

Indexc

EPI Phung et al.

(2022) [67]

12 districts in

Malaysia

2014–2016 S Mortality PM10 Binary

indicator

defined by

PM10

>50 μg/m3,

>75μg/m3,

>100μg/m3,

and >150μg/

m3, and

duration of

occurrence

Daily mean

(averaged for 12

districts): 52.8 μg/

m3

231 days

identified with

PM10 >150 μg/

m3

(AQI: 48)

Good

231 days were

identified with

‘unhealthy’ air

quality level

(API�101)

EPI Siregar et al.

(2022) [46]

Sumatra,

Indonesia

2007–2008 L Morbidity

(cardiovascular)

PM2.5 PM2.5 Annual mean:

14.43 μg/m3
NA

HBE Johnston et al.

(2012) [19]

Global and

regional

(Southeast

Asia)

1997–2006 L/S Mortality PM2.5 PM2.5 Annual average:

1.8 μg/m3

Population-

weighted annual

average: 2.1 μg/

m3

NA

HBE Marlier et al.

(2013) [106]

Southeast Asia 1997–2006 L/S Mortality

(cardiovascular)

PM2.5,

O3

PM2.5, O3 Annual average

fire-PM2.5:

8.3 μg/m3 (1997),

0.4 μg/m3 (2000)

Annual average

fire-O3: 8.0 ppb

(1997), 1.4 ppb

(2000)

NA

HBE Crippa et al.

(2016) [86]

Maritime

Southeast Asia

Sep–Oct 2015 L/S Mortality PM2.5 PM2.5 Daily mean

PM2.5: 45.12μg/

m3

Daily mean

PM10: 155.28 μg/

m3

(AQIPM2.5: 125,

AQIPM10: 101)

Unhealthy for

Sensitive

Groups

HBE Koplitz et al.

(2016) [87]

Maritime

Southeast Asia

Sep–Oct, 2006

and 2015

L Mortality PM2.5 PM2.5 Seasonal (Jul–

Oct) mean:

(fire-related) 14–

27 μg/m3

(non-fire PM2.5)

10–15 μg/m3

NA

HBE Marlier et al.

(2019) [40]

Maritime

Southeast Asia

Projection for

2020–2029

L Mortality PM2.5 PM2.5 Seasonal mean

population-

weighted (Jul–

Oct):

(Indonesia)

6.6 μg/m3,

(Malaysia)

5.5 μg/m3,

(Singapore)

6.0 μg/m3

NA

HBE Uda et al. (2019)

[47]

Indonesia 2011–2015 L Mortality PM2.5 PM2.5 Annual mean

fire-PM2.5: 26 μg/

m3

NA

HBE Bruni Zani et al.

(2020) [88]

Maritime

Southeast Asia

2005–2015 L Mortality PM2.5 PM2.5 Seasonal mean

PM10:

(Jun–Aug)

50.90 μg/m3

(Dec–Feb)

45.63 μg/m3

NA

(Continued)
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Table 2. (Continued)

Approach Author (Year) Location Study period Exposure

timea
Health endpoint Pollutant Exposure

assessment

and indicators

of exposure

Exposure

concentrationb
Air Quality

Indexc

HBE Kiely et al. (2020)

[89]

Maritime

Southeast Asia

2004–2015 L Mortality, Years of

life lost (YLL),

Disability-adjusted

life years (DALY)

PM2.5 PM2.5 Annual average:

76 μg/m3

(Population-

weighted: 27 μg/

m3)

Under peatland

protection,

annual average:

55 μg/m3

(Population-

weighted: 20 μg/

m3)

NA

HBE Kiely et al. (2021)

[41]

Indonesia 2004–2015 L Mortality,

DALY

PM2.5 PM2.5

reduction due

to peatland

restoration

In 2015,

reduction of 28%

(from 76 μg/m3 to

55 μg/m3) average

PM2.5 emission,

and 26%

population-

weighted PM2.5

(from 27 μg/m3 to

20 μg/m3)

NA

HBE Punsompong

et al. (2021) [104]

Thailand 2016 L Mortality (stroke,

ischemic heart

disease, lung

cancer, and COPD)

PM2.5 PM2.5 Annual mean

PM2.5:

(Central and

Northeast region)

26–40 μg/m3

(North region)

>40 μg/m3

NA

HBE Reddington et al.

(2021) [105]

Southern Asia

(Mainland

Southeast Asia

(Cambodia,

Laos,

Myanmar,

Thailand, and

Vietnam), and

Southeast

China)

2003–2015 L Mortality PM2.5,

Ozone

PM2.5, Ozone NA NA

EPI- and

HBE-

combined

Chen et al. (2021)

[107]

Global (43

countries)

(included

Thailand and

Philippines in

Southeast Asia)

[Global] 200–

2016;

[Thailand]

2000–2008;

[Philippines]

2006–2010

S Mortality (all-

cause,

cardiovascular,

respiratory)

PM2.5 PM2.5 Daily mean fire-

PM2.5: 0.17–

4.36 μg/m3

Daily maximum

fire-PM2.5: 3.46–

178 μg/m3

NA

EPI- and

HBE-

combined

Xue et al. (2021)

[108]

Global (192

countries)

(Southeast

Asia:

Indonesia,

Myanmar,

Vietnam,

Cambodia,

Philippines,

Thailand, Laos,

Malaysia,

Singapore,

Brunei)

2000–2014 L Mortality PM2.5 PM2.5 Monthly mean

fire-PM2.5:

4.06 μg/m3

NA

(Continued)
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Table 2. (Continued)

Approach Author (Year) Location Study period Exposure

timea
Health endpoint Pollutant Exposure

assessment

and indicators

of exposure

Exposure

concentrationb
Air Quality

Indexc

HRA Omar et al. (2006)

[68]

Kuala Lumpur,

Malaysia

Mar 22–Dec

12, 2001

L Carcinogenic risk PAH PAH NA NA

HRA Betha et al. (2013)

[48]

Kalimantan,

Indonesia

Sep 19–Oct

12, 2009

L Carcinogenic and

non-carcinogenic

risks

Trace

metal

elements

Trace metal

elements

Daily maximum

PM2.5: 7,817 μg/

m3

(AQI >500)

Hazardous

HRA Wiriya et al.

(2013) [91]

Chiang Mai,

Thailand

Apr 2010,

Aug–Oct

2010, and

Jan–Mar 2011

L Carcinogenic risk PAH PAH Seasonal mean

PM10:

(dry season 2010)

104.91 μg/m3

(wet season 2010)

13.28 μg/m3

(dry season 2011)

36.24 μg/m3

NA

HRA Betha et al. (2014)

[71]

Singapore Jun 20–28,

and Sep 12–

Oct 2, 2013

L Carcinogenic and

non-carcinogenic

risks

Trace

metal

elements

Trace metal

elements

Daily PM2.5:

(haze days)

54–329 μg/m3

(non-haze days)

11–21 μg/m3

(AQIhaze: 147–

379)

Unhealthy for

Sensitive

Groups-

Hazardous

(AQInon-haze:

46–79)

Good–

Moderate

HRA Pongpiachan et al.

(2015) [92]

(9 provinces in

upper north

region)

Thailand

Nov 2012–

Mar 2013

L Carcinogenic risk PAH PAH NA NA

HRA Huang et al.

(2016) [72]

Singapore Jan–Sep 2014 L Carcinogenic and

non-carcinogenic

risks

Trace

metal

elements

Trace metal

elements

Daily mean

PM2.5:

(haze days)

61.2 μg/m3

(non-haze days)

22.0 μg/m3

(AQIhaze: 154)

Unhealthy

(AQInon-haze:

72)

Moderate

HRA Khan et al. (2016)

[59]

Bangi,

Selangor,

Malaysia

Jul–Sep 2013,

and Jan–Feb

2014

L Carcinogenic and

non-carcinogenic

risks

Trace

metal

elements

and ionic

species

Trace metal

elements and

ionic species

Daily mean

PM2.5: 25.13 μg/

m3

(AQI: 78)

Moderate

HRA Sulong et al.

(2017) [29]

Kuala Lumpur,

Malaysia

Jun 2015– Jan

2016

L Carcinogenic and

non-carcinogenic

risks

Trace

metal

elements

and ionic

species

Trace metal

elements and

ionic species

Daily mean

PM2.5:

(pre-haze)

24.5 μg/m3

(haze)

72.3 μg/m3

(post-haze)

14.3 μg/m3

(AQIpre-haze: 77)

Moderate

(AQIhaze: 160)

Unhealthy

(AQIpost-haze:

56)

Moderate

HRA Urbancok et al.

(2017) [73]

Singapore May 2015–

May 2016

L Carcinogenic risk PAH PAH Daily PM10:

(haze days; Sep–

Oct)

72–323 μg/m3

(non-haze days)

32–70 μg/m3

(AQIhaze: 59–

185)

Moderate–

Unhealthy

(AQInon-haze:

30–58)

Good–

Moderate

(Continued)
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studies examined the health effects of short-term haze exposure, focusing on the daily variation

of air pollutants. Three HBE studies estimated the mortality attributed to smoke haze using

short-term (daily) and long-term (annual) air pollution levels [19, 86, 106]. Eight HBE studies

[40, 41, 47, 87–89, 104, 105] and 15 HRA studies [29, 48, 59, 60, 68, 71–74, 91–96] examined

the health effects of long-term exposure. Ten EPI studies [32, 52, 56, 58, 63, 66, 67, 82, 101,

102], 11 HBE studies [19, 40, 41, 47, 86–89, 104–106], and two EPI- and HBE-combined stud-

ies [107, 108] assessed mortality as a health endpoint; 35 EPI studies assessed morbidity [32,

44–46, 49–51, 53–57, 61, 62, 64–66, 69, 70, 75–81, 83–85, 90, 97–100, 102]; whereas all HRA

Table 2. (Continued)

Approach Author (Year) Location Study period Exposure

timea
Health endpoint Pollutant Exposure

assessment

and indicators

of exposure

Exposure

concentrationb
Air Quality

Indexc

HRA Sharma and

Balasubramanian

(2018) [74]

Singapore 7 days in Oct

2015

L Carcinogenic and

non-carcinogenic

risks

Trace

metal

elements

Trace metal

elements

Daily mean

PM2.5:

(light-haze)

47 μg/m3

(moderate-haze)

101 μg/m3

(severe-haze)

134 μg/m3

(AQIlight-haze:

129)

Unhealthy for

Sensitive Group

(AQImoderate-

haze: 174)

Unhealthy

(AQIsevere-haze:

192)

Unhealthy

HRA Sulong et al.

(2019) [60]

Kuala Lumpur,

Malaysia

Jun 2015–

May 2016

L Carcinogenic risk PAH PAH NA NA

HRA Pani et al. (2020)

[93]

Chiang Mai,

Thailand

19 Mar–11

May 2016

L Carcinogenic and

non-carcinogenic

risks

Black

carbon

Black carbon Daily mean

PM2.5: 68–71 μg/

m3

(AQI: 157–159)

Unhealthy

HRA Thepnuan et al.

(2020) [94]

Chiang Mai,

Thailand

Feb 23–Apr

28, 2016

L Carcinogenic risk PAH PAH Daily mean

PM2.5: 64.3 μg/

m3

(AQI: 156)

Unhealthy

HRA Yabueng et al.

(2020) [95]

Chiang Mai

and Nan

Provinces,

Thailand

Mar–Apr,

2017–2018

L Carcinogenic risk PAH PAH Daily mean

PM2.5:

37.93–41.86 μg/

m3

(AQI: 107–117)

Unhealthy for

Sensitive

Groups

HRA Insian et al.

(2022) [96]

Chiang Mai,

Thailand

Mar-Jun &

Nov, 2019

L Carcinogenic risk PAH PAH Seasonal PM

during haze days:

(urban area)

105.1 μg/m3

(rural area)

128.4 μg/m3

NA

EPI: epidemiological approach; HBE: health burden estimation approach; EPI- and HBE-combined: a design that combined EPI and HBE approaches in one study;

HRA: health risk assessment approach; PSI: pollutant standard index; TOMS: total ozone mapping spectrometer; API: air pollutant index; PAH: polycyclic aromatic

hydrocarbon; COPD: chronic obstructive pulmonary disorder.
a Exposure time is indicated by “S” for short-term and “L” for long-term exposure.
b Exposure concentration reported for the pollutant specified in the “Pollutant” column. Pollutants are otherwise specified if there is information on the concentrations

of several types of pollutants.
c Values denote air quality index (AQI) based on the US EPA calculation [109]. AQI is marked as not applicable “NA” under these circumstances: (i) value reported is

not daily exposure; (ii) no exposure value reported, or country-specific national AQI (e.g., PSI (Singapore; Brunei Darussalam), API (Malaysia)) is reported; or (iii) only

fire-originated pollutant concentration is reported. The PSI and API values from the original studies are listed here if reported in previous studies. The AQI values and

indicators [109] are as follows: (i) 0�AQI�50 “Good”; (ii) 51�AQI�100 “Moderate”; (iii) 101�AQI�150 “Unhealthy for Sensitive Groups”; (iv) 151�AQI�200

“Unhealthy”; (v) 201�AQI�300 “Very Unhealthy”; and (vi) AQI�301 “Hazardous”.

https://doi.org/10.1371/journal.pone.0274433.t002
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studies [29, 48, 59, 60, 68, 71–74, 91–96] assessed potential cancer and non-cancer risks, which

could not be clearly distinguished as mortality or morbidity.

Data were obtained from the GADM maps and data [110]. Peatland information was

reprinted from previous studies [111] under a CC by license, and with permission from Dr.

Nina Yulianti, original copyright (2013, 2016) [112, 113].

EPI studies used various exposure indicators, including PM2.5, PM10, air quality indices

(AQI, PSI, API), PM constituents, and the total ozone mapping spectrometer (TOMS) aerosol

index (Fig 3). Among the 12 studies that did not use specific exposure indicators, seven

described haze-related diseases [44, 49, 50, 56, 57, 76, 85], lung function [100], and symptoms

with perceived PSI level [75], and three made a temporal comparison of health outcomes

between haze and non-haze periods [61, 83, 98]. All HBE studies [19, 40, 41, 47, 86–89, 104]

and all EPI- and HBE-combined studies [107, 108] used PM2.5 as the exposure indicator;

whereas, two HBE studies [105, 106] used both PM2.5 and ozone as indicators. HRA studies

used specific PM constituents such as PAHs [60, 68, 73, 91, 92, 94–96], trace metal elements

[29, 48, 59, 71, 72, 74], and black carbon [93] as exposure indicators.

3.2.1 Epidemiology approach (EPI). Among the 42 epidemiological studies, 33 were con-

ducted in the maritime area and nine were conducted in Thailand in the mainland area

(Table 2, S2 Table). Studies from Indonesia, Singapore, Malaysia and Brunei Darussalam

mainly focused on specific smoke haze episodes, whereas studies from Thailand were more

focused on the health effects of seasonal haze due to burning for agricultural purposes in the

northern mountainous areas [32, 90, 97–101, 103].

The 42 studies were classified into eight descriptive and 34 analytical studies examining the

association between exposure and diseases (S2 Table). Descriptive studies reported the number

of hospital visits owing to respiratory diseases [44, 85] and the prevalence of respiratory symp-

toms [49, 50, 56, 57, 76, 83] during fire episodes. Headache and eye irritation are the main

non-respiratory symptoms frequently reported in Indonesia [49, 50, 56] and Brunei [83]. Only

five studies examined the long-term effects of smoke haze: three used an Indonesian Family

Life survey, reporting the association of air pollution exposure from 1997 haze with lung

capacity [53], cardiovascular disease prevalence [46], and cognitive function [45]; one exam-

ined lung function [100]; and the other used height as a nutritional outcome [55].

Health outcomes included all-cause mortality [52, 58, 63, 67, 82, 101, 103], respiratory dis-

eases [63, 103], and cardiovascular diseases [103]. Jayachandran (2009) [52] examined the

effects of smoke on infant mortality using an ecological design. Health outcomes other than

mortality included clinic/hospital visits and hospitalization due to respiratory diseases [32, 54,

56, 57, 61, 62, 65, 66, 69, 76, 77, 84, 85, 98–100], cardiovascular diseases [61, 78, 80, 99], allergic

diseases [32, 69, 76, 77], and lung cancer [64]. Several studies used information on symptoms

obtained from interviews [50, 83], questionnaire surveys [45, 49, 51, 53, 54, 56, 75, 98], and

reports from haze clinics [76]. Six studies examined lung function [53, 56, 70, 90, 98, 100], two

examined cognitive function [45, 75], and two examined laboratory tests [53, 70].

The methods of exposure assessment varied according to the study. Binary variables indi-

cating haze exposure are commonly used in analyses [51, 54, 58, 61, 63–67, 69, 70, 75, 98]. A

haze episode was defined according to a certain cutoff value of PM10 [58, 63, 66, 69], visibility

[58, 64, 65], or aerosol index derived from satellite data [51]. Two studies considered different

aspects of exposure: duration and intensity [67], and days with burning activities [32]. Few

studies used a binary variable specified by the time period [61, 83, 98]. Studies from Singapore

used a categorical variable based on the PSI [38, 78–80]. Studies from Thailand have generally

used PM10 as a continuous variable [32, 90, 97, 99, 101, 103]; whereas other studies used aero-

sol index values derived from satellite data [52, 53, 55].
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3.2.2 Health burden estimation approach (HBE). Eleven HBE studies estimated the

health burden of vegetation and peatland fires in Southeast Asia. Among these, two studies

included both global- and regional-scaled estimations, whereby Southeast Asia was one of the

regions in the study [19, 105], six were regional-scaled (Southeast Asian region) [40, 86–89,

106], and three were conducted in a single country (Indonesia [41, 47] and Thailand [104])

(Fig 4). The burden estimation was based on historical estimation [19, 47, 86–89, 104–106] or

future or scenario projections [40, 41] (S3 Table).

The health burden was reported as excess mortality for all-causes [19, 40, 41, 86–89, 105],

chronic respiratory diseases [47, 86, 88, 104], lung cancer [47, 86, 88, 104], cardiovascular dis-

eases [47, 86, 88, 104, 106], acute lower respiratory infection [40, 41, 89, 104, 105]. HBE studies

included populations encompassing a wide age range; some included the whole population

[19, 41, 47, 86, 88, 89, 104], while others targeted adults (age >25 years) [40, 47, 87, 105, 106]

and under-fives [40, 47]. More than 300,000 deaths globally were estimated to be attributed to

exposure to PM2.5 from vegetation fires during 1997–2006 [19], and approximately 100,000

deaths were reported in Southeast Asia during the fire seasons in 1997–2006 [19], 2004–2015

[89], and 2015 [87], with approximately 27,500 deaths in the mainland area [105]. Short-term

exposure to fire-related ozone [106] and PM2.5 [86] was estimated to have resulted in 4,100

annual cardiovascular and 11,800 all-cause deaths, respectively, whereas long-term exposure

to ozone has led to 2,250 excess deaths [105]. In the maritime area, long-term exposure to fire-

related PM2.5 was expected to cause 100,300 [87], 75,600 [86], and 131,700 [89] all-cause

Fig 2. Map of countries where studies were conducted (Southeast Asia).

https://doi.org/10.1371/journal.pone.0274433.g002
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deaths. Annual mortality in the maritime area also differed by year, depending on the occur-

rence and intensity of fires, and a study estimated 150,000 and 204,000 annual deaths in 2005

and 2015, respectively [88]. Meanwhile, the protection of fire-vulnerable areas can reduce pre-

ventable deaths. It was estimated that there would be fewer excess deaths (reducing 24,000

deaths) under the protecting peatland scenario (PP) compared to 36,000 excess deaths under

the business-as-usual scenario (BAU) projected for 2020–2029 [40], and a 21% of excess deaths

to be reduced under peatland restoration scenario [41].

The methods of exposure assessment in HBE studies included simulation of the pollutant

of interest considering atmospheric conditions, such as fires or burning activities, and weather

information. The emissions to be accounted for included all vegetation types [19, 40, 86–88,

104–106] or peatland [41, 47, 89]. Some studies specifically distinguished the haze period (e.g.,

July–August to September–October) and non-haze periods (e.g., November–December, Janu-

ary–July) to quantify the health burden distinct from different sources [86, 87, 89]; whereas,

Fig 3. Exposure indicators used for each approach. AQI: air quality index (generally referred to as “AQI,” although different terms can be used (e.g., PSI

(Pollutant Standard Index), API (Air Pollutant Index)); EPI + HBE: studies that applied a combination of EPI and HBE approaches; Combined exposure

indicators were defined as a combination of pollutants and pollutant indicators; Others: pollutants other than those specified; NA: no specific variables are

used.

https://doi.org/10.1371/journal.pone.0274433.g003
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others simulated the annual average pollutant concentration that accounted for vegetation and

peatland fires [19, 40, 41, 47,88, 104–106]. Sensitivity tests for exposure assessment included

varying inputs of fire emissions [19] and meteorological conditions [87] for fire-related PM

simulations.

All HBE studies applied concentration-response functions (CRFs) for PM2.5, except for

two studies [105, 106] that applied CRFs for ozone based on previous epidemiological studies.

These included four studies using long-term CRFs [40, 41, 47, 87–89, 104, 105], three studies

using short- and long-term CRFs separately [86, 106], and one study that presented the com-

bined excess mortality using both short- and long-term CRFs [19] (Fig 4). The counterfactual

concentrations (i.e., concentrations beyond which there would be assumed the same risks as

that of the minimum or maximum concentration) considered through CRFs were 5–200 μg/

m3 for short-term [19] and <50 μg/m3 for long-term-PM2.5 exposures [19, 87], and a range of

6.96–8.38 μg/m3 depending on the specific disease [104]. For sensitivity tests, models were

altered with different CRFs, such as by shifting between linear and log-linear functions [19, 47,

106].

3.2.3 Combined epidemiology and health burden estimation (EPI+HBE) approach.

Two studies used a combination of EPI and HBE approaches [107, 108] (S4 Table). Both

Fig 4. Excess mortality reported in health burden estimation studies in Southeast Asia using concentration-risk functions for long-term (top), short-

term (middle), and both short- and long-term (bottom) exposures. a denotes cardiovascular mortality. � denotes the health burden of ozone exposure. ��

denotes an averaged estimate value. ��� denotes health burden estimates from August to October of 2004, 2006, 2009, 2012, 2014, and 2015. BAU: business-as-
usual scenario. PP: protecting peatland scenario.

https://doi.org/10.1371/journal.pone.0274433.g004
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studies estimated smoke-haze-attributable mortality globally; whereby, one study included

Thailand and the Philippines [107], and another study included all countries in the Southeast

Asia [108]. These studies first derived a CRF using an epidemiological approach, and subse-

quently used the CRF in the second part, the HBE approach, to estimate attributable mortality.

Over short-term exposure to fire-related PM2.5, Chen et al. (2021) [107] estimated 33,510 all-

cause, 6,993 cardiovascular, and 3,503 respiratory excess deaths globally. Another study [108]

showed that long-term exposure to fire-related PM2.5 attributed to 12.9 million and 55,904

excess child mortality, globally and in Southeast Asia, respectively. Among Southeast Asian

countries, Indonesia has comprised the highest number of excess child mortality [108].

3.2.4 Health risk assessment approach (HRA). Among the 15 HRA studies identified

(S5 Table), nine were conducted in the maritime area (Malaysia [29, 59, 60, 68], Indonesia

[48], and Singapore [71–74]), and six were conducted in Thailand [91–96] (i.e., mainland).

Higher concentrations of PM10 [73, 91, 96], PM2.5 [29, 74, 95, 96], PAHs [73, 96], carcino-

genic metals [48], and elemental potassium and secondary inorganic aerosols (i.e., indicators

of biomass burning sources) [29] during haze compared to non-haze periods were reported.

Peatland fires were linked to an extremely high level of PM2.5 (7,818 μg/m3 on October 1,

2009) in the immediate vicinity of the fire source (10–20 m) [48] compared with distant areas

(54–329 μg/m3) [71].

Haze episodes pose potential carcinogenic [48, 71, 72, 74, 96] and non-carcinogenic risks

[29, 48] to exposed populations. These risks have been demonstrated across different age

groups [29, 60]. Carcinogenic risks increased with increasing intensity of haze [94], and these

risks were observed for naturally ventilated indoor exposure, outdoor exposure, combined

indoor and outdoor exposures [74], and in areas closer to burning activities [96]. One study

highlighted the interactions between chemicals and lung fluids in the human body [72].

Haze periods were determined for exposure assessment (Fig 5). Haze days were defined by

PM2.5 concentration (PM2.5 >35 μg/m3) [29, 60], visibility (visibility <8,<6, and<3 km)

[74], and air quality index (AQI >100) [73]. Some studies identified haze by areas [68, 95] or

by burning activity seasons [59, 71, 72, 91–94, 96], during which samples were collected. Spe-

cifically, these studies identified haze events by examining burning sources [59, 95], weather

conditions (i.e., dry or wet seasons) [91], and burning intensities (low: PM10 <50 μg/m3;

Fig 5. Timeline of sampling period and haze period in health risk assessment studies in Southeast Asia. Green indicates sampling period. Yellow indicates

haze period specified within the sampling period.

https://doi.org/10.1371/journal.pone.0274433.g005
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medium: PM10 ranged 50–70 μg/m3; high: PM10 ranged 75–100μg/m3; and extreme: PM10

>100 μg/m3) [94]. One HRA study was conducted in the immediate vicinity of a fire source

(peatland fire) [48].

Exposure-response assessments in HRA studies were classified into carcinogenic and non-

carcinogenic. Cancer slope factor (SF) [48, 60, 72–74] or inhalation unit risk (IUR) [29, 59, 91,

92, 95, 96] was used for the carcinogenic assessment. Meanwhile, the reference dose (RfD) or

reference concentration (RfC) was used [29, 48, 59, 72, 74] for the non-carcinogenic assess-

ment. One study used the number of passively smoked cigarettes equivalent to a 1 μg/m3

increase in pollutants for both assessments [93].

Source apportionment was performed to identify the sources of chemicals or pollutants.

There were five categories of chemical constituents: PAHs, trace metal elements, water-soluble

ions, elemental (black) carbon, and biomass tracers (S5 Table). Biomass tracers, such as levo-

glucosan, mannosan, and galactosan, were used to determine whether vegetation or peatland

fires contributed to the generation of chemicals rather than to characterize health risks. Source

apportionment was based on fire hotspot data [59, 91, 93, 95], diagnostic ratio (DR) [60, 73,

91, 92, 94, 95], backward trajectory Hybrid Single-Particle Lagrangian Integrated Trajectory

(HYSPLIT) model [71, 73, 91, 95], principal component analysis (PCA) [73, 91, 92], positive

matrix factorization (PMF) [29, 59, 60], enrichment factor (EF) [59, 71, 72], aethalometer [93],

BaA/CHR ratio [91], and BeP/(BeP+BaP) ratio [68].

3.3 Exposure levels and AQI

Most studies have reported exposure levels by different temporal dimensions (daily, monthly,

seasonally, and annually) depending on the exposure assessment; the results are listed in

Table 2. In some studies, such information could not be extracted because it was not available

for several reasons: not reported due to study design (e.g., comparison of temporal trends); not

reported for a specific study area, and thus the exposure quantification was directly made by

spatial grids; or no exact value was available, and thus the results were displayed as figures. We

identified studies for which the study period included the years 1997 [50, 58, 61, 69, 70], 2005

and 2006 [63, 90, 97, 101], 2009 [48], 2013 [59, 62, 71, 101], and 2015 [29, 32, 54, 57, 66, 67, 73,

74, 77–80, 82, 86, 99, 101], which were the years with severe regional smoke haze in Southeast

Asia, especially in 1997, 2013, and 2015 (Fig 6).

We classified the AQI based on the U.S. EPA Air Quality Index [109] or the local AQI (e.g.,

PSI, API) if it was reported in the study. Consequently, AQI is indicated by the highest value

among criteria pollutants observed on a daily scale; the studies that reported longer-term con-

centrations (e.g., monthly, seasonally, and annually) were not used for indications of AQI. We

found 35 of the total 70 studies could be reanalyzed for AQI, whereby nine studies were classi-

fied as ‘good’ to ‘moderate’ AQI levels [59, 63, 70, 97–99, 101, 103] and 26 studies were classi-

fied as ‘unhealthy’ level, which encompasses the levels from ‘unhealthy for sensitive groups’

and above [29, 32, 48, 50, 54, 57, 58, 61, 62, 66, 67, 69, 71–74, 77–80, 82, 86, 90, 93–95] (Fig 6).

Studies that were classified as ‘good’ to ‘moderate’ AQI levels might have had higher AQI levels

within the study period, but this could not be identified in this study, and thus the reported

values were based on a daily mean or median throughout the study period; the maximum

value was not available. Most of the studies classified as ‘unhealthy’ AQI had reported the

observed maximum level of pollution, while there were several studies which reported daily

mean concentrations [29, 32, 62, 73, 74, 93–95] (Table 2). These high concentrations were

mostly due to the haze period, as specified in the study by sampling period, or stratification by

haze and non-haze periods.
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4. Discussion

In this scoping review, we systematically identified studies on the health effects of smoke haze

according to study approaches, such as EPI, HBE, and HRA. Although smoke haze is a regional

issue in Southeast Asia, studies have been reported in majority of the countries in the region.

All approaches revealed potential health risks due to smoke haze. Earlier works have mainly

used descriptive designs in the EPI approach, especially after the severe Southeast Asia smoke

haze episode in 1997. EPI studies in later years focused on estimating relative risks; however,

most of these studies have a major limitation on exposure assessment. HBE studies have been

conducted in recent years to quantify the smoke haze attributable health burden; however, most

of these studies utilized CRFs from studies conducted in other regions or non-smoke-haze-

related CRFs (i.e., using CRFs from total PM2.5). This may have led to uncertainties in the esti-

mation. Finally, the HRA approach has contributed different information about the health risks

of smoke haze. Unlike EPI and HBE, HRA studies have reported potential carcinogenic and

non-carcinogenic risks owing to the toxicity of chemical constituents during smoke haze.

We clarified the methods and interpretations of the findings in each approach for studies

conducted in Southeast Asia and found that more studies are needed to clarify the following

aspects. First, there is a need for further long-term exposure studies. Currently, there are

Fig 6. AQI levels by study period and study approach.

https://doi.org/10.1371/journal.pone.0274433.g006
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limited EPI studies that examine long-term exposure, and such information is needed as CRF

in HBE studies. Second, further studies evaluating smoke haze and carcinogenic health risks

are required. Most HRA studies have reported potential carcinogenic risks due to smoke haze,

but these have been less investigated in EPI and HBE studies. Third, explore smoke haze effects

on cause-specific health outcomes. Most EPI studies have shown consistent respiratory health

effects due to smoke haze, but other health outcomes such as cognitive function, diabetes, and

birth-related outcomes are scarce, although these health outcomes have been associated with

exposures to PM and its constituents [114–118].

4.1 Terminology for vegetation and peatland fires

Various terminologies have been used to describe vegetation and peatland fires. The terms

included ‘wildfire’ or ‘bushfire’ [36, 37, 52, 88, 100, 107, 119–128]; ‘agricultural burning,’ ‘open

burning,’ or ‘biomass burning’ [5, 23, 59, 91–95, 99, 104]; ‘vegetation fire,’ ‘peat fire,’ ‘peatland

fire,’ or ‘vegetation and peat fire’ [21, 26, 27, 32, 46–48, 86, 89]; ‘forest fire’ [44, 45, 51, 57, 58, 63,

95, 129]; ‘forest and vegetation fire’ [105]; ‘landscape fire’ [19, 106, 108, 130]; ‘Indonesian fire’

[41]; ‘smog’ [97, 98]; ‘haze’ or ‘Southeast Asian haze’ [28–30, 39, 44, 50, 54, 55, 60, 63–69, 74–76,

78–81, 83, 101, 131]; ‘smoke’ or ‘smoke haze’ [20, 40, 68, 71–73, 87, 94–96, 127, 132]; and ‘trans-

boundary haze’ [29, 38, 60, 62, 74, 133]. In the present review, the terms ‘haze’ or ‘smoke haze’

were used to represent extreme air pollution episodes due to burning activities on vegetation

and peatlands [134, 135]. Notably, haze generally refers to high pollutant concentrations, espe-

cially PM, and low visibility, and is widely used to describe extreme air pollution episodes not

limited to vegetation and peatland fires, but also for other sources from urban, industrial, and

desert dust [136–139]. Nonetheless, it is common to refer to smoke haze as a vegetation and

peatland fire-related air pollution episode in Southeast Asia [133, 140–142]. This may be due to

smoke blanketing and reduced visibility conditions caused by smoldering fires in peatlands,

which are usually intensified in dry weather [143]. It may also have been used to describe

extreme air pollution that was contributed by different burning sources, whereby it was difficult

to describe using specific terminology of fires (e.g., forest fire and agricultural burning) [95].

4.2 Health effects and interpretation of findings

The reported health effects and their interpretations varied according to approach. EPI studies

have reported measures of association, such as relative risk (RR), odds ratio (OR), and excess

risk (percentage change). These measures show the direction and strength of an association

and are used to evaluate causal inference and comparability with cross-disciplinary studies

[144]. HBE studies reported on the health burden attributable to the pollutant of interest, usu-

ally with attributable excess mortality. Other measures of health burden, such as years of life

lost (YLL) and disability-adjusted life years (DALY), have also been reported [41, 89].

Although mortality reflects the overall impact of the pollutant of interest [121], YLL and

DALY could be used for quantification from the perspectives of valuation and economic cost,

which would be more informative for policy decision making [145]. HRA studies have

reported toxicity or carcinogenicity risks related to PM composition. While toxicity risks were

reported as a ratio (HQ) showing the possibility of any non-cancer health effect; carcinogenic-

ity risks were reported as a probability of cancer (e.g., 1 in 1,000,000 persons) if the population

was to be exposed to the investigated chemicals for a lifetime [59].

4.3 Exposure assessment

Haze exposure was quantified using several methods. Many EPI studies conducted in the mari-

time area used binary variables (i.e., haze and non-haze) [51, 55, 58, 62–67, 69], while most
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studies in northern Thailand used continuous variables [32, 90, 97, 99, 101, 103]. HBE studies

quantified exposure to pollutants of interest [19, 47, 87, 89], such as fire-related PM [107, 108],

and estimated population-weighted exposure [19, 41, 105]. Long-term exposure was estimated

using the annual average pollutant concentration, and short-term exposure was estimated

using the daily average pollutant concentration during specified periods that spanned several

months to years. HRA studies quantified lifetime exposure to fire-related PM constituents

through calculations that considered exposure duration and individual characteristics [29, 71].

For example, 60 haze days per year were used as an assumption when considering the worst-

case scenario. Individual characteristics included the inhalation rate, body weight, age, and

expected life years.

The main exposure variables differed for each approach. As shown in Fig 3, EPI studies in

Southeast Asia comprised not only continuous pollutant variables but also binary and categor-

ical indicators to quantify the health effects of smoke haze. This review found that the connec-

tion between EPI and HBE was mainly comprised of PM2.5 as an exposure indicator.

Although HRA studies have focused on PM, the analyses were mainly based on PM constitu-

ents, which suggested both potential carcinogenic and non-carcinogenic toxicity related to

smoke haze pollutants. However, no EPI studies have examined health effects related to the

PM constituents.

4.4 Exposure-response association and assessment

Exposure-response association is a function which indicates health effects given a particular

level of exposure. CRF is established through EPI studies and is applied in HBE studies to esti-

mate the attributable health burden. One major difference between EPI and HBE/HRA studies

is that the EPI approach aims to examine associations and causal inferences, whereas the HBE

and HRA approaches assume that exposure is causally related to health outcomes.

In the present review, most CRFs applied in HBE studies were based on epidemiological

studies in urban settings in other regions [19, 40, 47, 86]. This may have increased uncertain-

ties owing to differences in pollutant emissions and chemical compositions of fires in different

regions [1, 146]. Although an increasing number of studies have attempted to estimate the

health burden of fire-related PM [147], only two studies have been conducted to estimate the

attributable mortality for global and included Southeast Asia, comprising the entire population

in Thailand and the Philippines [107]; and children in Southeast Asia [108]. In addition, while

the HBE approach may be used to estimate health burden based on exposure duration, most

epidemiological studies in Southeast Asia have focused on short-term exposure. Similar to the

HBE approach, the HRA approach applies risk functions to assess health risks due to the pol-

lutant of interest. Risk functions in HRA studies are often derived from animal studies, given

the difficulty in conducting human studies which consider a lifetime period.

4.5 Research gaps and future studies

The present literature review revealed research gaps and challenges related to the interconnec-

tivity of the three approaches. First, there was heterogeneity in the exposure assessment meth-

ods, which limited the connectivity and generalizability of the evidence. The HBE studies used

population-scale exposure levels, and no individual exposure levels, which may differ accord-

ing to the pattern of daily activities, were considered. Behavior and mitigation measures, such

as school closure and reduction of outdoor movements, implemented during haze episodes

may also lead to misclassification of actual exposure and increased uncertainty. In contrast,

HRA studies accounted for individual characteristics, such as age, body weight, inhalation

rate, and years of exposure. Although the EPI approach is relatively advantageous in terms of
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demonstrating associations based on observed datasets, long-term studies require extensive

effort. In this sense, the HBE and HRA approaches may complement EPI studies, but these

approaches require careful consideration of the underlying assumptions.

Second, there is little evidence regarding the health effects of various pollutants or chemical

components released into smoke plumes. PM was among the most intensively studied pollut-

ants in EPI and HBE studies; whereas HRA studies mainly examined the toxicity of PM con-

stituents emitted during smoke haze [33, 127]. Emissions of fire-related pollutants may vary

depending on vegetation type and burning conditions [2, 148]. Furthermore, it is difficult to

distinguish and quantify fire-related pollutants from peatland fires because of the nature of the

shift between flaming and smoldering condition [146]. HRA studies have shown potential car-

cinogenic risks of smoke haze, but only one EPI study [64] and two HBE studies [47, 104] have

examined lung cancer risk. Black carbon was mentioned in one HBE study [87], and only one

HRA study examined its health risk [93]. Gaseous pollutants such as carbon monoxide (CO)

have been shown to increase the prevalence of headaches in EPI studies [56], but health risks

due to exposure to such pollutants are yet to be clarified, especially in the vicinity of burning

sites where the concentration of CO is high [149–152].

Third, the local and transboundary sources of smoke haze from vegetation and peatland

fires remain largely unaddressed. The wind direction and dry season caused an imbalance in

the amount of pollutants in the fire pollutant source and receptor areas. Some areas may not

have burning activity but are exposed to high concentrations of transboundary pollutants.

Local sources of haze pollutants can be reduced or controlled via local mitigation policies, but

transboundary sources of haze pollutants require efforts across borders. Additionally, pollut-

ants in burning areas may differ from those found in distant locations. Burning conditions

such as moisture content and weather may contribute to this [2, 153], for example, higher EC,

K+, CL-, and PAHs at flammable and higher temperatures; levoglucosan and water-soluble

organic carbon at low temperatures and in smoldering combustions [154]. Thus, evidence

across multiple areas in the region is needed to facilitate policy decision making.

Future studies should consider the interconnectivity between different approaches. Pollut-

ants and chemicals quantified in HRA sampling may be further utilized in EPI studies,

although more effort may be required given the need for a larger dataset. Findings reported in

EPI and HRA studies regarding chemical components may be considered in exposure assess-

ments in HBE studies. Studies with a combination of approaches, such as the EPI- and HBE-

combined approach [107, 108], would be useful because they maximize the strengths of one

approach and complement the limitations of the other. For example, the combined approach

demonstrates both EPI evidence and health burden, which would facilitate future policy deci-

sions and risk communication. More EPI studies compiling different local characteristics with

similar exposure metrics could facilitate the quantification of risks and establish exposure-

response functions to be applied in HBE studies in a particular region.

5. Conclusion

This study reviewed previous studies on smoke haze-related health effects in Southeast Asia.

The studies were reviewed and discussed based on EPI, HBE, and HRA approaches. This study

found that although all the approaches indicated potential health risks due to smoke haze, cur-

rently available studies have limited interconnectivity among approaches. This is due to the

heterogeneity in exposure assessments, the use of different pollutants or exposure metrics, and

the unaddressed issue of smoke haze sources.

Future studies should consider integrating the findings from the three approaches through

study designs with comparable exposure assessments and a combination of approaches. The
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sources of smoke haze should be clearly indicated, as this would facilitate policy decisions for

efficient mitigation of smoke haze in the region.
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