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Diabetic retinopathy (DR), a diabetic microangiopathy caused by diabetes, affects approximately 93 million people, worldwide.
However, the drugs used to treat DR have limited efficacy and the variety of side effects. This is possibly because the
complicated pathogenesis of DR is associated with multiple proteins. In this work, we attempted to identify potential drugs
against DR-associated proteins and predict potential targets for drugs using in silico prediction of chemical-protein interactions
(CPI) based on multitarget quantitative structure-activity relationship (mt-QSAR) method. Therefore, we developed 128 binary
classifiers to predict the CPI for 15 DR targets using random forest (RF), k-nearest neighbours (KNN), support vector machine
(SVM), and neural network (NN) algorithms with MACCS, extended connectivity fingerprints (ECFP6) fingerprints, and
protein descriptors. In order to facilitate discovery of the novel drugs and target identification using the 128 binary classifiers, a
free web server (DRDB) was developed. Compound Danshen Dripping Pills (CDDP), composed of Salvia miltiorrhiza, Panax
notoginseng, and borneol, is commonly used in the treatment of cardiovascular diseases. To explore the applicability of DRDB,
the potential CPIs of CDDP in treatment of DR were investigated based on DRDB. In vitro experimental validation
demonstrated that cryptotanshinone and protocatechuic acid, two key components of CDDP, are capable of targeting ICAM-1
which is one of the key target of DR. We hope that this work can facilitate development of more effective clinical strategies for
the treatment of DR.

1. Introduction

Diabetic retinopathy (DR) is one of the most important
manifestation of diabetic microangiopathy, which is a fun-
dus disease with specific changes and one of the serious
complications of diabetes [1]. Worldwide, there are approx-
imately 93 million DR patients. Diabetes patients mainly
suffer from abnormal insulin hormones and cell metabo-
lism, which cause changes in eye tissue, nerve and blood
vessel microcirculation, and damage eye nutrition and
visual function. Due to the change of blood composition

in diabetic patients, the function of vascular endothelial
cells is abnormal, and the blood-retinal barrier is damaged
[2, 3]. The lesions of retinal capillaries include aneurysms,
bleeding spots, hard exudates, cotton wool spots, beaded
veins, intraretinal microvascular abnormalities (IRMA),
and macular edema.

Current treatments for DR include drug therapy, laser
photocoagulation, and vitrectomy [4]. In terms of drug
treatment, there are drugs to control blood sugar, lower
blood lipids, and control blood pressure [5]. In earlier stud-
ies, doxium (calcium 2, 5-dihydroxybenzene sulfonate) was
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found to significantly inhibit and reverse the three high fac-
tors leading to DR: high capillary permeability, high blood
viscosity, and high platelet activity [6]. Aspirin also has a
certain preventive effect on microthrombosis, which can
inhibit the production of thromboxane and prostaglandin
metabolites and inhibit the platelet agglutination [7]. Thera-
peutic drugs were divided into four categories, including
antivascular endothelial growth factor (anti-VEGF), corti-
costeroids, angiotensin receptor blockers, and fibrates
drugs. However, the current therapies for DR are associ-
ated with the limited efficacy and the variety of side
effects. Topical nonsteroidal anti-inflammatory drugs have
proven to be ineffective in long-term diabetic macular
edema (DME) treatment [8]. Besides, intravitreal antivas-
cular endothelial growth factor drugs may increase the risk
of cardiovascular complications in diabetic patients [8].
Therefore, there is a need to develop the effective treat-
ment or more efficacious drugs.

Disease progression of DR is associated with multitargets
as a complicated disease. Currently, target prediction and
identification of optimal candidates in drug discovery
strongly depend on computational intelligence and data-
driven decision. As for target prediction and identification
of optimal candidate, identification of the chemical-protein
interaction (CPI) between proteins and chemicals is crucial.
Compared to traditional experimental identification, in
silico computational approaches are time-saving and low-
cost. Several types of drug-related interactions have received
an enormous amount of attention recently. Chen et al. sum-
marized the databases, web servers, and state-of-the-art
computational models (e.g., network-based method and
machine learning-based method) involved in CPI [9]. The
advantage of most of state-of-the-art computational models
is that they are suitable for compounds without known 3D
target structures, and they are applicable to predict novel
CPI for new compounds. For pathway-based drug discovery,
the new strategy of identification of the drug-pathway asso-
ciations is developed based on various state-of-the-art com-
putational methods including matrix decomposition-based,
Bayesian spare factor-based, and some machine learning
methods [10]. In addition, microRNAs have been identified
as diagnostics and therapeutic targets in recent years [11].
The state-of-the-art computational methods have been
developed to identify the potential small molecule-miRNA
associations. Recently, Koutsoukas et al. summarized the
computational methods for predicting the CPI, including
ligand-based approach and structure-based approach [12].
Multitarget quantitative structure-activity relationship (mt-
QSAR) method, as a ligand-based approach, facilitates the
prediction of activities against different proteins and explo-
ration of multiple pharmacological activities. To explore
the polypharmacology against DR, construction of multi-
classifiers for target prediction is appreciated [13].

To apply the mt-QSAR method to predict CPI towards
DR, 15 targets (ACE, AGTR1, FLT1, PRKCB, AKR1B1,
AR, ICAM1, MAPT, NOS2, NOS3, SERPINE1, SLC2A1,
TNF, VCAM1, and KDR) involved in the progression of
DR were selected to construct the binary classifiers in this
work. We constructed multiple classifiers based on random

forest (RF), k-nearest neighbours (KNN), support vector
machine (SVM), and neural network (NN) algorithms with
MACCS, ECFP6 fingerprints, and protein descriptors. After
that, multiple classifiers of each target were integrated into a
platform for systematic target prediction in a comprehen-
sively DR database (http://tangwang.tasly.com/). To evaluate
the applicability of DR database, we collected the compo-
nents of Salvia miltiorrhiza, Panax notoginseng, and borneol
from CDDP and applied the binary classifiers manufactured
in DR database to predict the potential targets for these com-
ponents. Then, system pharmacology-based investigation of
Salvia miltiorrhiza, Panax notoginseng, and borneol against
DR were conducted. The prediction results were further
confirmed by in vitro experimental validation. The sche-
matic workflow of DRDB implementation is presented in
Figure 1.

2. Materials and Methods

2.1. Data Collection and Processing for Classification Model
Construction. DR-associated genes were collected and inte-
grated from the databases including DisGeNET, OMIM,
and Genecard. High-frequency genes were analyzed by liter-
ature retrieval, in which 15 important genes (including ACE,
AGRT1, FLT1, PRKCB, AKR1B1, AR, ICAM1, MAPT,
NOS2, NOS3, SERPINE1, SLC2A1, TNF, VCAM1, and
KDR) were finally screened out to build QSAR modelling.

The biological activity of 15 genes was collected from
ChEMBL database [14]. The compounds with specific IC50
values were selected to construct the binary classifiers for
each target. And the compounds were preprocessed as fol-
lows: (i) duplicated compounds in each set were removed;
(ii) salts were neutralized; (iii) compounds were classified
into active and inactive categories according to pIC50 (-log
IC50 (mol/L)) values based on the criteria that obtained a
balanced distribution of active and inactive compounds.
The details of each data set used to construct the predictive
model are presented in Table S1. The preparation of data
set is carried out using the software KNIME 4.1.0 (https://
www.knime.org).

2.2. The Construction of Random Forest, K-Nearest
Neighbours, Support Vector Machine, and Neural Network
Models. The small molecules were characterized using
MACCS fingerprint and extended connectivity fingerprints
(ECFP), respectively. The MACCS and ECFP6 (1024 dimen-
sional counted with a radius set to 3) fingerprints were com-
puted using RDKit. For each target, data set was divided into
a training set (80% data set) and a test set (20% data set)
using the stratified sampling method. Training set was used
to train the models, and 5-fold cross-validation was per-
formed for internal model validation. Test set was used as
an external dataset to evaluate the quality of the model. Eight
predictive models (RF_MACCS, RF_ECFP6, SVM_MACCS,
SVM_ECFP6, KNN_MACCS, KNN_ECFP6, NN_MACCS,
and NN_ECFP6) were constructed for each target based on
MACC and ECFP6 fingerprints and four machine learning
algorithms (random forest (RF) [15], k-nearest neighbours
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(KNN) [16], support vector machine (SVM) [17], and neural
network (NN) [18]).

To investigate the influence of the factors of proteins in
modelling performance, proteochemometrics (PCM) was
implemented by integrated descriptors of chemical com-
pounds with descriptors of proteins. The PyBioMed [19]
was used to calculate the amino acid composition, transition,

and distribution descriptors for 15 targets. In total, 8568
protein descriptors were calculated for each target sequence.
The values of all of descriptors were normalized in the range
between 0 and 1 using the min-max normalization function.
The principal component analysis (PCA) was used to reduce
the dimensions of protein descriptors. After that, 150 pro-
tein descriptors were preserved and used to construct the
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Figure 1: The workflow of DRDB server to predict CPIs towards DR.
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PCM models. Training and test sets for PCM modelling
were constructed by combining data sets of 15 targets. Then,
12289 chemicals (positives: 6137, negatives: 6152) and 3080
chemicals (positives: 1539, negatives: 1541) constitute the
integrated training and test sets for the PCM models, respec-
tively. Eight predictive models (RF_MACCS_protein, RF_
ECFP6_protein, SVM_MACCS_protein, SVM_ECFP6_pro-
tein, KNN_MACCS_protein, KNN_ECFP6_protein, NN_
MACCS_protein, and NN_ECFP6_protein) were con-
structed based on the composition of chemical compounds
and descriptors of proteins.

Random forest (RF), an ensemble method, is consisted of
many decision trees which produce individual predictions.
The most votes of a large number of trees determine the
classification result of RF, which has become a “gold stan-
dard” with high prediction accuracy for the comparison with
other machine learning methods [20].

K-nearest neighbours (KNN) make predictions using
proximity by grouping the individual data point. The value
k refers to the number of closest neighbours that are used
in the voting process. For classification problems, a majority
voting rule is used to assign a class label by counting the
class of k closest neighbours.

Support vector machine (SVM) is developed based on
Vapnik’s structural risk minimization (SRM) principle of
the statistical learning theory and is applicable for dealing
with nonlinear problems for classification by constructing
a hyperplane to separate positive and negative samples with
a maximum margin.

Neural network (NN) comprises several neurons which
are connected to each other and organized into layers. NN
attempts to identify the potential relationships in input data
through mimics the study of human brain and utilize com-
plicated mathematical models for processing information.

To evaluate the prediction capability of the predictive
models, five indicators including sensitivity (SE), specificity
(SP), accuracy (Q), Matthews correlation coefficient (MCC),
and area under curve (AUC) were used. These indicators were
calculated based on the true positives (TP), true negatives
(TN), false positives (TP), and false negatives (FN) in the
following way:

SE = TP
TP + FN

, ð1Þ

SP =
TN

TN + FP
, ð2Þ

Q =
TP + TN

TP + TN + FP + FN
, ð3Þ

MCC =
TP × TN − FN × FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FNð Þ TP + FPð Þ TN + FNð Þ TN + FPð Þp
:

ð4Þ
2.3. Database Implementation. DR-related chemicals and
drugs were extracted fromChEMBL and DrugBank databases,
respectively. The signaling pathways associated with 15 targets
and DR-related drugs were extracted from KEGG database.

HERB (http://herb.ac.cn) was used to collect natural com-
pounds. We manually checked records from DrugBank,
ChEMBL, KEGG, Pharmacodia, and TTD, to obtain up-to-
date information about DR drugs (update to February 1,
2022). The approved or clinical trial drugs for DR treatment
were stored in DRDB database. Finally, by searching ChEMBL
ID of 15 DR-related protein targets, a list of chemicals,
reported bioactivities, bioassays, references, and drugs for the
treatment of other diseases associated with proteins were
retrieved and stored in the backend of DRDB.

The DR database’s client and RESTful server sides were
built with the Angular web framework and the Django REST
framework (http://www.django-rest-framework.org), respec-
tively. DRDB database was installed using PostgreSQL
(http://postgresql.org) on an Ubuntu server. The RDKit pack-
age (http://rdkit.org), an open source cheminformatics toolkit,
was used for similarity search and prediction. Furthermore,
the JSME Javascript plugin was used to draw structures on
the website.

2.4. Meta-Analysis. China National Knowledge Infrastruc-
ture (CNKI), WanFang, VIP, and PUBMED databases were
electronically searched to collect all relevant publications
that reported Compound Danshen Dripping Pills treating
DR by using the following search terms: “Compound Dan-
shen Dripping Pills” and “Diabetic retinopathy.” The litera-
ture search was performed up to November 2021. All
statistical analyses were performed using the Review Man-
ager Software (RevMan5.4) provided by Cochrane. The
weighted mean differences (WMD) of the measurement data
are used as the combined statistic, of which 95% confidence
intervals (CI) were assessed, and the forest map was made
[21]. Heterogeneity was assessed by the WHAT test, I2 >
50% or P < 0:1 is used to assess significance, and a random
effects model is used to explain the possible causes of hetero-
geneity. If I2 < 50%, there is no heterogeneity, and a fixed
effects model will be used [22]. The magnitude of publica-
tion bias is judged by the degree of symmetry of the funnel
graph [23]. The information of inclusion criteria, exclusion
criteria [24–27], data extraction [28–42], and study quality
assessment [43] could be referred in supporting information.

2.5. Collection of Components of Salvia miltiorrhiza, Panax
notoginseng, and Borneol. YaTCM [44] is a free web-based
Chinese medicine database, which contains 6,220 herbal medi-
cines, 47,696 natural compounds, and 18,697 targets. Different
from TCMSP [45], ETCM [46], HERB [47], and SymMap
[48], herbal medicines are included in YaTCM. YaTCM can
be obtained free of charge at http://cadd.pharmacy.nankai.edu
.cn/yatcm/home. SymMap, a comprehensive Chinese medicine
database enhanced by symptom mapping, contains 499 kinds
of medicinal materials and 19,595 kinds of ingredients regis-
tered in the Chinese Pharmacopoeia. The monomer compo-
nents of three herbs (Salvia miltiorrhiza, Panax notoginseng,
and borneol) in CDDP were extracted from the YaTCM,
HERB, and SymMap databases and represented as SMILES for-
mat according to their PubChem CID. In total, there are 69
ingredients in borneol, 261 ingredients in Salvia miltiorrhiza,
and 354 ingredients in Panax notoginseng.
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2.6. Target Prediction for Components of Salvia miltiorrhiza,
Panax notoginseng, and Borneol and Chemical-Protein
Interaction Network Analysis.We applied multiple classifiers
of each target to predict the putative targets for molecules
against DR. In order to take the advantage of different clas-
sifiers, the multiple voting method was applied to estimate
whether a compound was active against a target. The more
classifiers predict to be positive, the more likely it is consid-
ered as a valid chemical-protein interaction. To explore the
possible mechanism of borneol, Salvia miltiorrhiza, and
Panax notoginseng, we constructed the compound-target
network. The potential chemical-protein interaction net-
work was constructed and analyzed by Cytoscape 3.9.1
(Cytoscape Consortium, United States) software.

2.7. Target Validation In Vitro. The targets predicted by
QSAR model were validated in vitro. Cells were cultured in
Dulbecco’s Modified Eagle’s medium/F12 medium
(DMEM/F12; Gibco) supplemented with 10% foetal bovine
serum (Life iLab Biotech) and 1% penicillin/streptomycin
at 37°C in a humidified incubator with 5% CO2. In order
to establish a hyperglucose cell model, ARPE-19 cells were
treated with 50mM D-glucose for 72 hours. In addition,
ARPE-19 cells were treated with cryptotanshinone and pro-
tocatechuic acid (10mM, 20mM) for 72 hours in the pres-
ence of high glucose. Cells cultured in DMEM without
glucose served as the control. Cell viability were measured
using Cell Counting Kit-8 (CCK-8) after drug treatment.

When the cells reached the logarithmic growth phase, the
mediumwas replaced with the serum-free medium containing
different drugs, and the cells were continued to be cultured for
72 hours. To extract the total protein, cells were collected and
disrupted with RIPA lysis buffer (Solarbio) and ultrasonic pro-
cessor. The supernatant was obtained after centrifugation,
which concentration was estimated with Bicinchoninic Acid
Protein Assay kit (Thermo Fisher Scientific, Inc.). 40μg pro-
tein from each sample was separated on 10% sodium dodecyl
sulfate polyacrylamide gels. The samples were transferred onto
nitrocellulose filter membrane (Millipore), which were then
blocked with 5% skimmilk for one hour at room temperature.
After blocking, the membrane was incubated overnight at 4°C
with appropriate primary antibodies (GAPDH, 1 : 8000, Pro-
teintech; ICAM-1, 1 : 500, Santa Cruz Biotechnology). The
next day, membrane was washed three times with TBST buffer
and then incubated with HRP-conjugated secondary anti-
bodies (1 : 5000; KPL) at room temperature for two hours.
The membrane was washed three times again to wash off the
residue antibody solution completely and interacted with
enhanced chemiluminescence substrate (Millipore). Protein
band was detected with chemiluminescence gel imaging
system (Tanon 5200).

3. Results and Discussion

3.1. Machine Learning Models. The classification perfor-
mance of 120 classifiers for 15 targets was evaluated using
various metrics, and the results are presented in Tables 1
and 2. In the cross-validation process, the MCC values of
86 classifiers out of 120 (71.67%) are greater than 0.5, 86

models out of 120 (71.67%) give an AUC value higher than
0.75. In general, AUC values of 120 models are greater than
0.667 with an average value of 0.782, and Q valuesare greater
than 0.676 with an average value of 0.783, indicating that the
models have reasonable classification performance (Table 1).
In additions, test set was used to further evaluate the perfor-
mance of the classifiers, and the results are listed in Table 2.
As presented in Table 2, the MCC values range from 0.192 to
0.944, with an average value of 0.590. The AUC values range
from 0.596 to 0.971, with an average of 0.791. Among the 15
targets, eight classifiers from the microtubule-associated
protein tau (MAPT) did the worst performance, with the
average AUC and MCC values of 0.69 and 0.39, respectively.
Perhaps the main reason for this is due to few compounds
(n = 71) included in the training set, which limits to a nar-
row application domain of classifiers target MAPT. For most
of targets, the prediction results obtained with ECFP6 are
better than that obtained with MACCS.

The PCM classifiers for each combination of fingerprints
and protein descriptors (MACCS and protein descriptors,
ECFP6 and protein descriptors) were constructed using RF,
SVM, KNN, and NN as well. In total, eight classifiers for
each target were developed. The performance of each classi-
fiers were evaluated by 5-fold cross-validation and test set.
Statistical characteristics of these models can be found
Tables 1 and 2, respectively. PCM classifiers achieve an aver-
age AUC of 0.783 and 0.794 on training and test data sepa-
rately, which is comparable to results from eight classifiers
obtained with molecular fingerprints (MACCS and ECFP6).
Similar to eight classifiers obtained with molecular finger-
prints (MACCS and ECFP6), the performance of PCM clas-
sifiers based on the combination of ECFP6 and protein
descriptors is better than that of PCM classifiers based on
the combination of MACCS and protein descriptors.

In this investigation, 16 classifiers (RF_MACCS, RF_
ECFP6, SVM_MACCS, SVM_ECFP6, KNN_MACCS, KNN_
ECFP6, NN_MACCS, NN_ECFP6, RF_MACCS_protein, RF_
ECFP6_protein, SVM_MACCS_protein, SVM_ECFP6_pro-
tein, KNN_MACCS_protein, KNN_ECFP6_protein, NN_
MACCS_protein, and NN_ECFP6_protein) of each target were
used to select compounds with potential inhibitory activity
against the corresponding target. Because different combina-
tions of fingerprints and machine learning algorithms have dif-
ferent prediction performance, we used the multivoting
ensemble method to predict CPIs. Then, we further evaluated
the prediction performance of the multivoting ensemble
method based on votes of 16 classifiers, and cutoff was defined
as the number of voting classifiers (ranging from 1 to 16) giving
positive label. The statistical results of the multivoting ensemble
method on integrated test set (3080 samples) are presented in
Table 3. Results from Table 3 present that with the increase of
cutoff, SP is increasingly from 0.491 to 0.962, and SE is decreas-
ingly from 0.957 to 0.409. The results indicate that the lower
cutoff, a larger acquisition ability of positives and a lower differ-
entiated ability of negatives. However, the higher cutoff is more
likely to identify negatives with the greater loss of positives. The
best prediction results of multivoting ensemble method were
achieved with cutoff = 9, resulting in AUC = 0:824, Q = 0:824,
and MCC = 0:648.
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In addition, we compared the prediction performances
of multiple machine learning classifiers with DeepConv-
DTI, which predicts the drug-target interactions via deep
learning with convolution based on protein sequences [49].
For keeping the consistency of the training and test sets,
the same training and test sets for PCM models were used
to train and evaluate DeepConv-DTI model. Hyperpara-
meters are listed as follows: (i) learning rate is 0.0001; (ii)
the number of epochs is 50; (iii) the batch size is 32; (iv) acti-
vation function is exponential linear unit (ELU) [50]. For
DeepConv-DTI model, the AUC, SE, SP, and Q of integrated
test set are 0.878, 0.812, 0.796, and 0.804, respectively. We
observe that DeepConv-DTI model is comparable to PCM
models based on RF, SVM, and KNN algorithms in terms
of AUC, SE, SP, and Q, and it is significantly better than
PCM model-based NN algorithm. Compared to multivoting
ensemble method, DeepConv-DTI model does not provide
significant predictive advantages in this study.

3.2. DRDB Interface. In this investigation, multiple binary
classifiers based on mt-QSAR method for 15 targets are con-
structed and integrated into a DR chemogenomics databa-
se—DRDB. DRDB is available for free on the internet at
http://tangwang.tasly.com/. It is advised to use the most
recent versions of browsers, such as Firefox or Chrome. In
DRDB, 15 genes, 157 pathways, 8 drugs, 308 chemicals,
and 3455 ingredients are included (Figure 2(a)). The DRDB
server provides a user-friendly interface with five functional
modules: search, prediction, compounds, target, and path-
way. In addition, the help module contains the usage guide-
lines of DRDB. As illustrated in Figure 2(b), users can
browse relevant entries by clicking corresponding sub-
menus. For example, users can browse medications for DR
therapy using the “Compounds” tool, as well as drugs
against 15 proteins related to DR and ingredients of herbs

for treating other diseases. On the “Search” screen, users
can not only enter drug and protein names but also enter a
specific structure. In addition, users can define query struc-
ture types, such as substructure search and similarity search
in search interface.

The main characteristic of DRDB is its capacity to eval-
uate whether a given small molecule can target 15 DR-
related targets. In prediction mode, users could select a spe-
cific target from the drop down list and upload a query mol-
ecule in smiles format. After about a half-minute of
calculation, the prediction results of 16 models for each tar-
get will be displayed. Figure 2(c) depicts the QSAR-based
predicted results based on multiple binary classifiers with
two types of chemical fingerprints—MACCS and ECFP6,
and protein descriptors, and four algorithms—RF, SVM,
KNN, and NN. Each classifies returns prediction result with
the value of 0 or 1. If more than nine of 16 classifiers return
1, then this compound is more likely to be active against the
corresponding target. With a large number of molecules,
however, “Single Prediction” can become ineffective. In that
situation, users can utilize the “Batch prediction” submenus
to upload a file containing numerous molecules (maximum
1000) stored in sdf or SMILES formats, as well as enter a
valid email address for obtaining calculation results. In a
word, DRDB is designed to facilitate the identification of
active compounds and target identification for the treatment
of DR.

To evaluate the application of DRDB, the prediction of
polypharmacology for CDDP was conducted as follow the
case study.

3.3. Case Study: Systematic Analysis of the Multiple
Bioactivities of CDDP. Compound Danshen Dripping Pills
(CDDP) are a classic traditional Chinese medicine prescrip-
tion, which is commonly used in the treatment of various
cardiovascular diseases. Also, CDDP is being studied to treat
DR. Thus, 15 studies were selected for the evaluation of
CDDP effectiveness in alleviating DR-related symptoms.
The information and quality of included studies were avail-
able as supplementary data (Figure S1, Table S2 and S3).
The meta-analysis indicated that the curative effect of
CDDP for DR was shown to be superior to controls, and
this was significantly different for the improvements in
vision, visual field, microaneurysms, and hemorrhage
(Figures 3(a)–3(d)).

Traditional Chinese medicine (TCM) exerts biological
effects through interfering multiple biological targets by
the synergic effects of many chemical components. To
systematically analyze the action mechanisms of CDDP
against DR, the potential targets of three main herbs in
CDDP (Salvia miltiorrhiza, Panax notoginseng, and bor-
neol) were predicted based on DRDB. The predicted
associations between ingredients from three main herbs
in CDDP and 15 target proteins are presented in
Table S4. Based on the multiple voting method, the
positive result from more than nine classifiers of each
target is adopted for further analysis. The prediction
results are integrated to construct a compound-protein
interaction network. As shown in Figure 4, Salvia

Table 3: Performance summary of the multivoting ensemble
method on integrated test set.

Cutoff AUC Q SE SP MCC

1 0.724 0.724 0.957 0.491 0.507

2 0.766 0.766 0.936 0.596 0.566

3 0.789 0.789 0.916 0.663 0.597

4 0.802 0.802 0.903 0.701 0.617

5 0.810 0.810 0.888 0.731 0.627

6 0.815 0.815 0.879 0.751 0.635

7 0.817 0.817 0.863 0.770 0.636

8 0.821 0.821 0.843 0.799 0.643

9 0.824 0.824 0.820 0.828 0.648

10 0.819 0.819 0.795 0.844 0.64

11 0.816 0.816 0.771 0.86 0.634

12 0.814 0.814 0.749 0.879 0.633

13 0.803 0.803 0.709 0.897 0.617

14 0.792 0.792 0.665 0.919 0.603

15 0.765 0.766 0.591 0.940 0.566

16 0.686 0.686 0.409 0.962 0.446
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miltiorrhiza, Panax notoginseng, and borneol could target
15 targets from an overall perspective. The compound
nodes with degree value that is more than the median

degree (median degree = 1:8) of all nodes are retained.
The degree analysis demonstrate that one compound
could simultaneously interact with multiple targets, with

Keywords
DRDB controller

Return calculation
results

Results display
DrugBank

(8)

DRDB

Background process to fetch records
from drugbank etc to DRDB

DRDB system

Retrieve records
from database

HERB
(3455)

ChEMBL
(308)

KEGG
(157)

Smiles/str
ucture

Search
interface
Display

interface

Prediction
interface

USER

(a)

(b)

(c)

Figure 2: Overview of DRDB database featured with integrated computing and data-mining functions. (a) 15 genes, 157 pathways, 8
approved drugs, 308 chemicals, and 3455 ingredients are included in the DRDB. (b) Display interface of DRDB database. (c) Overview
of the application of the DRDB database for target prediction.
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Figure 3: Continued.
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an average two targets for one compound. Similarly, one
target could interact with multiple molecules, with an
average molecules of 46 for one target.

The meta-analysis showed that CDDP could effectively
treat DR, and the prediction results based on DRDB also
showed that cryptotanshinone and protocatechuic acid in
CDDP could interact with some targets associated with
DR. In order to validate the corresponding relationship
between the two components (cryptotanshinone and proto-
catechuic acid) and targets associated with DR, a hyperglu-
cose cell model was constructed with the human RPE cell
line ARPE-19 by high glucose stimulation and for target val-
idation. As shown in Figure 5, high glucose significantly
reduced ARPE-19 cell viability, which was improved by
CDDP (Figure 5(a)). ICAM-1, one of the key targets
involved in inflammation and acts as a local intensifying sig-
nal in the pathological processes associated with DR, was
induced by the stimulation of high glucose, and this increase
can be reversed by CDDP, as well as cryptotanshinone and
protocatechuic acid, two key components of CDDP, which
are consistent with our prediction based on QSAR models
(Figures 5(b)–5(d)).

The complicated pathogenesis of DR may be associated
with multiple proteins. In silico prediction of chemical-
protein interactions (CPI) based on multitarget quantita-
tive structure-activity relationship (mt-QSAR) method
plays a vital role in target prediction and identification of
optimal candidates in drug discovery of complicated dis-
ease. In this work, a total of 128 binary classifiers for 15
targets associated with DR were constructed to predict
the CPIs. The results of 5-fold cross-validation and test
set validation suggested that the classifiers have moderate

classification performance. Generally, the limitations of
machine learning algorithms, e.g., the type of molecular
fingerprints and composition of training set, have a major
impact on the accuracy of the classifiers. For example, the
eight classifiers from MAPT (71 compounds in the train-
ing set) did the worst performance among the 15 targets
in this study. Perhaps the main reason for this is due to
few compounds included in the training set, which limits
to a narrow application domain of classifiers target MAPT.
With the advantage of based only on compounds struc-
tural information, machine learning methods in this study
could be applied to predict other types of drug-related
interactions. For example, there are evidence suggests that
microRNA may affect gene expression and disease pro-
gression. More and more computational methods have
been developed to identify the potential small molecule-
miRNA associations and achieve good predictive perfor-
mance [51, 52]. Machine learning methods in this study
are expected to be used in identification of the potential
small molecule-miRNA associations.

In general, the computational complexity of machine
learning classifiers and the demand of particular operation
system and software compiler limit the use of these
models. To facilitate the application of multiple classifiers
against 15 targets in drug discovery, 128 binary classifiers
and chemogenomics information associated with DR were
integrated into a free web server named DRDB, which
included 15 genes, 157 pathways, 8 drugs, 308 chemicals,
and 3455 ingredients. For case study, the applicability of
DRDB was illustrated to systematically analyze the multi-
ple bioactivities of CDDP against DR. The prediction
results showed that one compound could simultaneously
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Figure 3: Meta-analysis of the effect of CDDP on patients with DR. (a) Vision. Seven studies provided visual acuity data with heterogeneity
(P = 0:007, I2 = 66%), which was related to the intervention, observation methods, and duration of treatment, so a random effects model was
used for analysis. The combined effect of seven studies was statistically significant (P < 0:01). (b) Gray value of visual field. Six studies were
included in the analysis, and there was heterogeneity among the studies (P < 0:01, I2 = 88%). The combined effects of the six studies were
statistically significant (P < 0:01) analyzed by a random effects model for combined analysis. (c) Microaneurysms. Six studies provided
microaneurysm data and had no heterogeneity (P = 0:91, I2 = 0%). A fixed effects model was used for analysis. (d) Area of hemorrhagic
focus. Six studies were included in the analysis, and there was heterogeneity among the studies (P < 0:01, I2 = 97%). A random effects
model was used for combined analysis.
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Figure 4: The compound-protein interaction network of Salvia miltiorrhiza, Panax notoginseng, and borneol based on DRDB. Triangle,
ellipse, and circle represent protein nodes, herb nodes, and ingredient nodes, respectively.
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interact with multiple targets based on network pharma-
cology approach. Cryptotanshinone and protocatechuic
acid, two key components of CDDP, could target ICAM-
1 related to DR in vitro experiment. DRDB has potential
applications towards target prediction and identification
of optimal candidates and network pharmacology.

4. Conclusions

In this study, a chemogenomics database associated with DR
was developed. The developed system provides implementa-
tion of 128 binary classifiers for the target identification and
drug discovery for DR treatment. DRDB, a computational
server, is available for discovery of multitarget ligands to
combat DR and systematic prediction of CPIs based on
mt-QSAR method. DRDB could contribute to systematically
understand the pharmacological mechanisms of traditional
Chinese medicine (TCM). In addition, the applicability of
DRDB was illustrated through systematic analysis of multi-
ple bioactivities of CDDP based on network pharmacology
approach. In vitro experimental validation demonstrated
that cryptotanshinone and protocatechuic acid, two key
components of CDDP, could target ICAM-1 related to DR.
These active compounds and CPIs could provide a basis
for pharmacological profiles of CDDP therapy in DR. We
hope that DRDB server could facilitate the discovery of
new drugs and treatments for DR.
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