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Hyperuricemia (HUA) as a metabolic disease is closely associated with metabolic disorders. 0e etiology and pathogenesis of
HUA are not fully understood, so there is no radical cure so far. Metabolomics, a specialized study of endogenous small molecule
substances, has become a powerful tool for metabolic pathway analysis of selected differential metabolites, which is helpful for
initially revealing possible development mechanisms of various human diseases. Twenty HUA patients and 20 healthy individuals
participated in the experiment, and ultrahigh performance liquid chromatography coupled with quadrupole time-of-flight
tandem mass spectrometry (UPLC-Q-TOF/MS) was employed to investigate serum samples to find differential metabolites. 0e
statistical techniques used were principal component analysis and orthogonal partial least-squares discriminant analysis. 0e
differences in metabolomics results of samples after pretreatment with different solvents were compared, 38, 20, 26, 28, 33, 50, and
40 potential differential metabolites were found, respectively, in HUA patient samples, and each group involved different
metabolic pathways. Repetitivemetabolites were removed, 138 differential metabolites in HUA serumwere integrated for analysis,
and the human body was affected by 7 metabolic pathways of glycerophospholipid metabolism, sphingolipid metabolism,
arachidonic acid metabolism, linoleic acid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan
biosynthesis, and α-linolenic acid metabolism. In this work, the metabolomics approach based on UPLC-Q-TOF/MS was
employed to investigate serum metabolic changes in HUA patients, 138 potential differential metabolites related to HUA were
identified, which provided associations of lipids, amino acids, fatty acids, organic acids, and nucleosides profiles of HUA in-
dividuals. Metabolic pathways involved in glycerophospholipid metabolism, sphingolipid metabolism, arachidonic acid meta-
bolism, linoleic acid metabolism, phenylalaninemetabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and a-linolenic
acid metabolism shed light on the understanding of the etiology and pathogenesis process of HUA.

1. Introduction

Hyperuricemia (HUA) as a metabolic disease is closely
associated with metabolic disorders and is an important risk
factor for gout, cardiovascular disease, metabolic syndrome,
and so on [1–6]. In recent years, with the improvement of
living standards, more high-purine, high-protein, and high-
calorie foods have entered people’s diet structure [7]; thus,
the prevalence of HUA is on the rise globally with the trend
of younger age [8–14]. 0e etiology and pathogenesis of
HUA are not fully understood, so there is no radical cure so

far. 0erefore, it is of great significance to explore metabolic
disorders in vivo and the pathogenesis of HUA from the
perspective of metabolomics.

Metabolomics analysis explores the dynamic changes of
endogenous small molecule substances (saccharides, organic
acids, lipids, amino acids, etc.) at a certain stage of the
disease [15]. Metabolomics has been widely applied in the
field of human healthy metabolic pathway analysis of se-
lected differential metabolites and is helpful for initially
revealing the possible development mechanisms of various
human diseases [16, 17]. 0e study of metabolic disorders is
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meant for assisting disease, clinical diagnosis, screening of
therapeutic drugs and targets [18–20]. Over recent years,
extensive studies have been extensively conducted on HUA
metabolomics, but these studies were mainly focused on
animal experiments and there is little research describing
HUA metabolic disorders in humans [21–25].

0e integrity of the extraction of endogenous small
molecular substances from biological samples is tremen-
dously important for the analysis results. 0e loss of bio-
logical information caused by improper extract methods has
considerably affected the elucidation of disease mechanisms
[26–28]. Organic solvent protein precipitation (PPT) is
simple, economical, and easy to perform that has usually
been regarded as the most commonly used extract method
for serum samples prior to metabolomics analysis [29, 30].
Precipitation solvents often adopted include methanol
(MeOH) or acetonitrile (MeCN) and a mixture of two
[31–33]. We have simply analyzed the relationship between
several precipitation solvents of PPTand the analysis results
and subsequently recommend appropriate protocols of se-
rum preparation for HUA metabolomics analysis.

In this study, high-sensitivity and high-resolution ultrahigh
performance liquid chromatography coupled with quadrupole
time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS)
combined with multivariate statistical analysis was applied; the
metabolome of HUA patients was investigated to identify
serum differential metabolites and analyze metabolic pathways
affected by HUA, exploring its mechanisms.

2. Materials and Methods

2.1. Reagents and Instruments. Liquid chromatography-
mass spectrometry (LC-MS) grade MeOH and MeCN were
purchased from Merck (Darmstadt, Germany). Ultrapure
water was purified by a Milli-Q water system (Millipore,
Milford, MA, USA). LC-MS grade formic acid was obtained
from Fisher Scientific Corporation (Loughborough, UK).

Instruments used in this study include vortex mixer
(HaimenKylin-Bell Lab Instruments Co., Ltd., Jiangsu, China),
cryogenic supercentrifuge (Shanghai Luxiang Instrument Co.,
Ltd., Shanghai, China), nitrogen evaporator (Beijing Cheng-
mengWeiye Technology Co., Ltd., Beijing, China), and UPLC-
Q-TOF/MS (Waters Corp., Milford, MA, USA).

2.2. Participants. Participants were collected from the
Rheumatology Clinic and Physical Examination Center of
Beijing University of Chinese Medicine Affiliated Dongzhi-
men Hospital (Beijing, China). HUA patients (n� 20) and
healthy volunteers (n� 20) were enrolled in this study. 0e
related clinical information, including gender, age, and bio-
chemical indexes of serum, was collected. Inclusion criteria
were as follows: (1) serum uric acid level was ≥420 μmol/L in
males and ≥360 μmol/L in females and (2) aged between 20
and 65 years. Exclusion criteria were as follows: (1) pregnant
or lactating women; (2) suffering from cardiovascular disease,
kidney disease, or other diseases that will affect the clinical
observations and biological indicators or having metabolic
diseases, tumors, and mental disease; (3) patients with HUA

caused by the following drugs: thiazide diuretics, furosemide,
pyrazinamide, aspirin, and other drugs.0ese participants did
not take medicines or supplements before they collected
serum samples. Verbal informed consent from all subjects was
obtained, and the project was approved by the Ethics
Committee of Beijing University of Chinese Medicine Af-
filiated Dongzhimen Hospital and was conducted according
to the Declaration of Helsinki Principles. All serum samples
were stored at −80°C before analysis.

2.3. Sample Preparation. 0e same batch of serum samples
were pretreated by seven organic solvent protocols (MeOH,
MeOH-MeCN (90 :10, v/v), MeOH-MeCN (70 : 30, v/v),
MeOH-MeCN (50 : 50, v/v), MeOH-MeCN (30 : 70, v/v),
MeOH-MeCN (10 : 90, v/v), andMeCN) labelled as groups A,
B, C, D, E, F, and G, respectively. Frozen serum samples,
including 20 HUA samples (HUA group) and 20 healthy
samples (control group), were thawed at 4°C; then, each
sample was divided into seven aliquots of 100 ul.0en, 300 µL
of the corresponding organic solvent was added to each 100 µl
serum aliquot, vortexed for 5min, and incubated for 10min
on ice; it was then centrifuged at 12 000 r/min for 10min at
4°C. All supernatants were evaporated to dryness. Afterwards,
the residues were reconstituted in 100 µL of 80% MeOH
aqueous, vortexed for 5min, and incubated for 10min on ice;
then, they were centrifuged at 12 000 r/min for 10min at 4°C.
0e supernatant was analyzed using UPLC-Q-TOF/MS.

2.4. UPLC-Q-TOF/MS Conditions. 0e chromatographic
separation was achieved on an Acquity UPLCTM System
coupled to a Xevo G2 Q-TOF/MS with a Waters UPLC BEH
C18 column (2.1× 100mm I.D., 1.7 µm; Waters Corp.,
Milford, MA, USA) at a column temperature of 45 °C. 0e
mobile phase was composed of 0.2% formic acid aqueous
solution (A) and MeOH (B) with the gradient set as follows:
0–1.0min, 95–95% B; 1.0–2.0min, 95–2% B; 2.0–13.0min,
2–2% B; 13–13.5min, 2–95% B; 13.5–15min, 95–95% B.0e
flow rate was 0.40mL/min, and the injection volume was
2 μL. 0e autosampler temperature was conditioned at 4°C.

Electrospray ionization (ESI) in positive ion (ESI+)
mode and negative ion (ESI−) mode was applied for high-
resolution MS detection. 0e mass range was set at m/z
50–1200Da.0e optimized operating parameters were set as
follows: ion spray voltage of 3.0 kV, cone voltage of 25V,
cone gas flow of 50 L/h, source temperature of 120 °C, dry gas
(N2) flow of 10mL/min, atomization temperature of 450 °C,
and 400 °C for ESI+ and ESI−. MS data were recorded in
MSE mode. 0e accurate mass and composition of the
relative target ions were calculated with MassLynx V 4.0
software (Waters Corp., Milford, MA/USA).

2.5. Data Processing and Multivariate Data Analysis. Raw
data from the seven protocols were processed by Progenesis
QI software (Nonlinear Dynamics, Newcastle upon Tyne,
UK) for peak detection, peak alignment, normalization, and
other operations. Finally, two-dimensional data matrices,
including the m/z value, retention times, and normalized
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peak area, were generated. 0ese two-dimensional data
matrices were, respectively, imported into SIMCA-P 14.1
software (Umetrics AB, Umea, Sweden) for pattern recog-
nition. Principal component analysis (PCA) revealed the
distribution of metabolites in human serum samples. Or-
thogonal partial least-squares discriminant analysis (OPLS-
DA)models were constructed to distinguish sample differences
and mine differential metabolites in massive data. Permu-
tation tests were used to verify the validity of the OPLS-DA
model. 0e contribution rate of a variable is often described
by the variable importance of the projection (VIP) value.0e
greater the contribution rate is, the larger the VIP value is.
0e VIP values were generated by the OPLS-DA model.
Metabolites with VIP greater than 1, p values of t-test (p) less
than 0.05, and a fold change (FC) of greater than 2.0 or FC
less than 0.5 were selected as differential metabolites.

2.6. Metabolites Identification and Metabolic Pathway.
0e chemical information of differential metabolites was
searched through the humanmetabolome database (HMDB;
http://www.hmdb.ca/) and METLIN (http://metlin.Scripps.
edu). Input the precise molecular mass, ionization method,
and addition ion information of differential metabolites into
HMDB and METLIN, in accordance with the rule that the
deviation of the m/z value does not exceed 0.02. 0e
identification results are proved by combining the exact
number of charges and the ionization method that meets the
experimental conditions. Compare the primary and sec-
ondary mass spectra information of the differential me-
tabolites with the theoretical fragments of the HMDB search
results, then infer the structure of the compound and the
attribution of the fragments to obtain the HUA differential
metabolites.

Moreover, for exploring how the major metabolic
pathways related to the differential metabolites were af-
fected, metabolic pathway analysis was performed by
MetaboAnalyst 5.0 [34] platform (http://www.
metaboanalyst.ca). All metabolic pathways found dis-
played their impact values and p values in the form of
bubbles. 0e metabolic pathways with a pathway impact of
>0.2 and p< 0.05 were considered the most significant.

3. Results and Discussion

3.1. Basic Characteristics and Biochemistry Results. Basic
characteristics and serum biochemistry results of partici-
pants in the control group and HUA group are presented in
Table 1. 0e control group included 20 participants, with a
mean age of 40.3± 11.6 years; 55% were male. 0e mean age
of 20 participants in the HUA group was 41.1± 12.6 years;
55% were male. 0ere was no significant difference
(p> 0.05) between age and gender. Compared with the
control group, fasting serum glucose (FSG), uric acid (UA),
triglyceride (TG), alanine aminotransferase (ALT), aspartic
aminotransferase (AST), high-density lipoprotein choles-
terol (HDL), low-density lipoprotein cholesterol (LDL), and
creatinine (CR) of the patients in the HUA group all in-
creased significantly (p< 0.05).

3.2. Chromatographic Analysis and Comparison between the
Seven Groups. Base peak ion chromatograms in ESI + mode
and ESI− mode from seven HUA groups and corresponding
control groups were compared as shown in Figures 1 and 2.
Differences in peak numbers and heights were observed
between the HUA group and the control group, which
indicated that the composition and content of metabolites in
humans in different physiological states were different. In
addition, the HUA group and the control group showed
different metabolic profiles after being treated with different
pretreatment solvents.

3.3. Multivariate Statistical Analysis. Based on LC-MS re-
sults of seven groups’ serum samples, PCA was used to
study the distribution of metabolites. Figures 3(a)–9(a)
show the seven groups’ PCA score plots of the control
group and HUA group in ESI + mode. Figures 3(d)–9(d)
show seven groups’ PCA score plots of the control group
and HUA group in ESI− mode. According to the PCA
score plots, the metabolic patterns of humans behaved
differently in different statuses. It revealed that HUA
would cause disturbance in the metabolic pathway in
humans. 0ere were many influencing factors for the
clinical samples, such as gender, age, region, diet, and
living environment, which caused considerable noise
signals unrelated to grouping the information. 0us, PCA
appeared partially overlapped and therefore cannot be
further interpreted.

0e OPLS-DA model showed the differences between
the HUA group and control group more clearly compared
with the results of PCA. Seven groups’ OPLS-DA score
plots of the control group and HUA group in ESI + mode
were shown in Figures 3(b)–9(b). Seven groups’ OPLS-DA
score plots of the control group and HUA group in ESI−
mode were shown in Figures 3(e)–9(e). Except for OPLS-
DA score plot of group B in ESI + mode, the HUA group in
each OPLS-DA score plots showed an obvious separation
trend from the corresponding control group, which

Table 1: Basic characteristics and biochemistry results of partic-
ipants in the control group and HUA group.

Parameters Control group (n� 20) HUA group (n� 20)
Age (years) 41.1± 12.6 40.3± 11.6
Men (%) 55% 55%
FSG (mmol/L) 4.9± 0.4 5.8± 0.6∗
UA (µmol/L) 320.4± 40.3 481.6± 51.0∗∗
TG (mmol/L) 1.52± 0.5 3.3± 1.2∗∗
ALT (U/L) 23.6± 10.3 40.7± 15.9∗∗
AST (U/L) 20.5± 5.7 27.7± 12.8∗
HDL (mmol/L) 1.5± 0.4 1.2± 0.2∗
LDL (mmol/L) 2.7± 0.6 3.6± 0.8∗∗
CR (µmol/L) 79.5± 8.7 83.2± 14.7∗

Note. Continuous variables described as mean (standard deviation) and
categorical variables as count (proportion). FSG: fasting serum glucose;
UA: uric acid; TG: triglycerides; ALT: alanine aminotransferase; AST:
aspartic aminotransferase; HDL: high-density lipoprotein cholesterol;
LDL: low-density lipoprotein cholesterol; CR: creatinine. ∗ Significant
difference from control at p< 0.05. ∗∗ Significant difference from control
at p < 0.01.
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means there was a significant difference in metabolic
profiles between the two groups. 0e values of R2Y and Q2

of the OPLS-DA model listed in Table 2 were higher than
0.593, showing that the established model had a high
stability and prediction rate. 0e permutation test
(n � 200) was further used to validate the model, and
Figures 3(c)–9(c) and Figures 3(f )–9(f ) are the results of

the permutation tests of seven groups. All R2 and Q2

values were smaller than the values in the actual model,
indicating that there was no overfitting in the OPLS-DA
model.

Furthermore, the metabolic patterns of human behaved
differently in different groups according to the PCA and
OPLS-DA score plots. It revealed that the pretreatment
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Figure 1: Typical UPLC-Q-TOF/MS base peak ion (BPI) chromatograms of serum metabolite profiles from each group in ESI + mode.
BPI chromatograms of the control group (a) and HUA group (b) from group A. BPI chromatograms of the control group (c) and HUA
group (d) from group B. BPI chromatograms of the control group (e) and HUA group (f ) from group C. BPI chromatograms of the
control group (g) and HUA group (h) from group D. BPI chromatograms of the control group (i) and HUA group (j) from group E. BPI
chromatograms of the control group (k) and HUA group (l) from group F. BPI chromatograms of the control group (m) and HUA group
(n) from group G.
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solvent would affect the results revealing the disorder of the
metabolic pathway in human.

3.4. Metabolite Identification and Metabolic Pathway.
0ere were, respectively, 296 (Group A), 260 (Group B), 150
(Group C), 203 (Group D), 393 (Group E), 461 (Group F), and

382 (Group G) differential metabolites between the control
group and HUA group satisfying VIP> 1.0, p< 0.05, and
FC> 2.0 or FC< 0.5. According to the online database, 38
(Group A), 20 (Group B), 26 (Group C), 28 (Group D), 33
(Group E), 50 (Group F), and 40 (Group G) characteristic
metabolites in patient serummetabolic profiles of seven groups
were finally identified, and the results are listed in Tables S1-S7.
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Figure 2: Typical UPLC-Q-TOF/MS BPI chromatograms of serum metabolite profiles from each group in in ESI− mode. BPI
chromatograms of the control group (a) and HUA group (b) from group A. BPI chromatograms of the control group (c) and HUA group
(d) from group B. BPI chromatograms of the control group (e) and HUA group (f ) from group C. BPI chromatograms of the control
group (g) and HUA group (h) from group D. BPI chromatograms of the control group (i) and HUA group (j) from group E. BPI
chromatograms of the control group (k) and HUA group (l) from group F. BPI chromatograms of the control group (m) and HUA group
(n) from group G.
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Figure 3: Group A’s PCA score plot, OPLS-DA score plot, and permutation test plot of a serum sample from the control group and HUA
group in ESI + mode and ESI− mode. (a, d)0e PCA score plots in ESI + mode and ESI− mode, respectively. (b, e)0e OPLS-DA score plots
in ESI + mode and ESI− mode, respectively. (c, f ) Permutation test plots in ESI + mode and ESI− mode, respectively. C: control group; H:
HUA group.
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Figure 4: Group B’s PCA score plot, OPLS-DA score plot, and permutation test plot of a serum sample from the control group and HUA
group in ESI + mode and ESI− mode. (a, d)0e PCA score plots in ESI + mode and ESI− mode, respectively. (b, e)0e OPLS-DA score plots
in ESI + mode and ESI− mode, respectively. (c, f ) Permutation test plots in ESI + mode and ESI− mode, respectively. C: control group; H:
HUA group.
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Figure 5: Group C’s PCA score plot, OPLS-DA score plot, and permutation test plot of a serum sample from the control group and HUA
group in ESI + mode and ESI− mode. (a, d)0e PCA score plots in ESI + mode and ESI− mode, respectively. (b, e)0e OPLS-DA score plots
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Figure 6: Group D’s PCA score plot, OPLS-DA score plot, and permutation test plot of a serum sample from the control group and HUA
group in ESI + mode and ESI− mode. (a, d)0e PCA score plots in ESI + mode and ESI− mode, respectively. (b, e)0e OPLS-DA score plots
in ESI + mode and ESI− mode, respectively. (c, f ) Permutation test plots in ESI + mode and ESI− mode, respectively. C: control group; H:
HUA group.
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Figure 7: Group E’s PCA score plot, OPLS-DA score plot, and permutation test plot of a serum sample from the control group and HUA
group in ESI + mode and ESI− mode. (a, d)0e PCA score plots in ESI + mode and ESI− mode, respectively. (b, e)0e OPLS-DA score plots
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HUA group.
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Figure 8: Group F’s PCA score plot, OPLS-DA score plot, and permutation test plot of a serum sample from the control group and HUA
group in ESI + mode and ESI− mode. (a, d)0e PCA score plots in ESI + mode and ESI− mode, respectively. (b, e)0e OPLS-DA score plots
in ESI + mode and ESI− mode, respectively. (c, f ) Permutation test plots in ESI + mode and ESI− mode, respectively. C: control group; H:
HUA group.
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0e significant 35 metabolic pathways of serum differ-
ential metabolites from the seven groups are shown in
Figures 10(a)–10(g). 0e result implied that multiple met-
abolic pathways had a certain extent of disturbance effect on
HUA.0e relevant metabolic pathways for the seven groups
are numerically labelled in the figure. 0e results suggested
that the seven groups of differential metabolites mainly
involved the seven metabolic pathways of glycer-
ophospholipid metabolism, sphingolipid metabolism, ara-
chidonic acid metabolism, linoleic acid metabolism,
phenylalanine metabolism, phenylalanine, tyrosine and
tryptophan biosynthesis, and a-linolenic acid metabolism. A
schematic diagram of the relevant metabolic pathways was
summarized in Figure 10(h).

4. Discussion

HUA is a complex metabolic syndrome, which is the result
of a combination of multiple factors [35–39], including
gender, age, heredity, metabolism, environment, diet, race,

drug, and disease, and may also be related to other potential
factors. A study of HUA patients and healthy people by
metabolomics techniques is conducted to find the change
rules from the complex endogenousmetabolites of HUA and
to explore the etiology and pathogenesis of HUA.

0e pretreatment solvents, MeOH, MeOH-MeCN (90 :
10, v/v), MeOH-MeCN (70 : 30, v/v), MeOH-MeCN (50 : 50,
v/v), MeOH-MeCN (30 : 70, v/v), and MeOH-MeCN (10 :
90, v/v), and pathogenesis MeCNwere compared; except for
the solvents used, the subsequent operations were the same.
LC-MS/MS is one of the most commonly used methods for
metabolite analysis of biological samples in metabolomics
analysis. In this study, a UPLC-Q-TOF/MS-based serum
metabolomics approach coupled with multivariate statistical
analysis provided a convincing method to clearly differen-
tiate patients with HUA from matched control subjects and
identify the potential differential metabolites. Results indi-
cate that OPLS-DA revealed an evident separation between
the HUA and control samples. 0e number and types of
differential metabolites in the seven groups are not the same,
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Figure 9: Group G’s PCA score plot, OPLS-DA score plot, and permutation test plot of a serum sample from the control group and HUA
group in ESI + mode and ESI− mode. (a, d)0e PCA score plots in ESI + mode and ESI− mode, respectively. (b, e)0e OPLS-DA score plots
in ESI + mode and ESI− mode, respectively. (c, f ) Permutation test plots in ESI + mode and ESI− mode, respectively. C: control group; H:
HUA group.

Table 2: R2Y and Q2 value obtained for the seven groups of OPLS-DA score plots.

Parameters A B C D E F G

ESI + mode R2Y 0.846 0.716 0.870 0.843 0.969 0.909 0.918
Q2 0.728 0.593 0.793 0.755 0.817 0.840 0.862

ESI− mode R2Y 0.895 0.990 0.985 0.989 0.951 0.898 0.990
Q2 0.650 0.766 0.698 0.790 0.726 0.761 0.724
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and the metabolic pathways involved are also different,
which will have an impact on the reference direction for
exploring the HUA mechanism. If a serum precipitation
solvent suitable for HUA metabolomics analysis must be
recommended, thenMeOH–MeCN (10 : 90, v/v) can be used
for subsequent analysis.

In this study, combining repeated compounds, a total of
138 differential metabolites were identified in seven groups.
0ese identified differential metabolites belong to five
families of compounds: lipids, amino acids, fatty acids,
organic acids, and nucleosides. Lipids were detected in seven
groups covering 20 lipid classes, namely, phosphatidyl-
choline (PC), phosphatidylethanolamine (PE), phosphati-
dylserine (PS), phosphatidylglycerol (PG),
phosphatidylinositol (PI), phosphatidylglycerol phosphate
(PGP), lysophosphatidylcholine (LysoPC), lysophosphati-
dylethanolamine (LysoPE), lysophosphatidylinositol
(LysoPI), lysophosphatidic acid (LysoPA), sphingomyelin
(SM), lysosphingomyelin (LysoSM), TG, monoacylglyceride
(MG), diglyceride (DG), ceramide (Cer), lactosylceramide
(LacCer), glucosylceramide (GlcCer), cholesteryl ester (CE),
and sphinganine 1-phosphate (S1P). A total of 138 differ-
ential metabolites were imported into the MetPA website at
one time for metabolic pathway analysis; the results are
shown in Figure 11. Seven significant metabolic pathways of
glycerophospholipid metabolism, sphingolipid metabolism,
arachidonic acid metabolism, linoleic acid metabolism,
phenylalanine metabolism, phenylalanine, tyrosine and
tryptophan biosynthesis, and a-linolenic acid metabolism
related to the 138 HUA differential metabolites were
discovered.

0e metabolites involved in glycerophospholipid
metabolism and sphingolipid metabolism account for a large
proportion of all metabolites, prompting attention to the
correlation between abnormal lipid metabolism and HUA.
In the previous study of HUA rat model by potassium
oxonate or fructose in our laboratory [25, 40], glycer-
ophospholipid metabolism was implicated. A large number
of glycerophospholipids and their metabolites in serum
samples of HUA patients were disturbed; phospholipid
metabolism disorder occurred; PC, LysoPC, PE, LysoPE, PI,
LysoPI, PS, PG, PGP, and LysoPA were mainly involved.
Glycerophospholipid is a compound with the highest con-
tent in human body. It is an important component of biofilm
and participates in cell membrane signal transduction and
protein recognition. Among them, LysoPCs have a great
influence on HUA and have been proved to increase the
permeability of endothelial cells and affect the integrity of
blood vessels under inflammatory conditions. For example,
the downregulated levels of LysoPC(18 : 0), LysoPC(18 :
1(9Z)), and LysoPC(16 : 0) in HUA patients suggested a
decrease in myocardial contractility and an increased
probability of heart failure and myocardial infarction in
HUA patients. LysoPCs are mainly metabolized in the liver
and can significantly change in liver diseases and hepato-
toxicity. 0e metabolic disorder of LysoPCs in serum is
closely related to cirrhosis, fatty liver, viral hepatitis, and
hepatitis B-associated liver cancer. SM, LysoSM, Cer,
LacCer, GlcCer, and S1P were mainly involved in

sphingolipid metabolism. 0ese metabolites are involved in
many important signal transduction processes, such as cell
growth, differentiation, senescence, and death. Due to the
disorders of glycerophospholipid metabolism and sphin-
golipid metabolism closely related to many diseases, such as
metabolic syndrome, diabetes mellitus (DM), cardiovascular
diseases (CVD), cerebrovascular diseases (CBVD), athero-
sclerosis, and cancer, indicating that with the increase of
serum uric acid (SUA) levels, the risk of these diseases also
increases. In addition, the transformation of metabolites
involves the production of some inflammatory factors,
which can cause inflammatory reactions in HUA patients.

Fatty acid metabolism is also involved in abnormal lipid
metabolism; in this study, there are three pathways, namely,
arachidonic acid metabolism, linoleic acid metabolism, and
a-linolenic acid metabolism. In the previous study of the
HUA rat model by fructose in our laboratory [40], ara-
chidonic acid metabolism and linoleic acid metabolism were
implicated. Linoleic acid can reduce lipids and cholesterol in
the blood, soften blood vessels, regulate blood pressure, and
accelerate blood circulation [41]. Linoleic acid is converted
to c-linolenic acid by 6-acyl-coenzyme A dehydrogenase in
humans and mammals and further converted to arachidonic
acid [42]. Arachidonic acid is closely related to lipid
metabolism; its lipid-lowering effect is four times that of
linoleic acid, which reduces the accumulation of fat in the
body and lowers TG and LDL in blood lipids and raises
HDL. 0erefore, the reduction of arachidonic acid content
will affect the regulation of lipid levels in the body. As shown
in Table 1, compared with healthy people, the contents of TG
and LDL in HUA patients were significantly increased, and
the content of HDL was significantly decreased. Hyper-
triglyceridemia is the main cause of the onset of HUA. 0e
ratio of serum LDL, TG, and TG to HDL was positively
correlated with SUA levels, while HDL levels were inversely
correlated with SUA levels. Arachidonic acid in cell mem-
brane phospholipids can synthesize leukotrienes; it is as-
sociated with many inflammatory conditions, such as gout
and arthritis. A-Linolenic acid regulates fat storage, accel-
erates biological metabolism, and regulates the expression of
inflammation-related genes. 0e fatty acids of palmitic acid
and oleic acid are also involved in fatty acid metabolism,
which have the effects of lowering blood glucose, regulating
blood lipid levels, and reducing the risk of CVD [43, 44]. In a
word, the disorder of multiple fatty acids suggests that HUA
patients have a higher risk of CVD, CBVD, DM, skin dis-
eases, and atherosclerosis. In the treatment of CVD and
CBVD, DM, and hyperlipidemia, attention should be paid to
the detection of SUA and prevention and treatment of HUA
actively. Moreover, the metabolic disorder of unsaturated
fatty acids in HUA patients is closely related to inflammation
[45].

In this study, phenylalanine, tyrosine, and tryptophan
were decreased in the serum of the HUA patient. Phenyl-
alanine is an essential amino acid for the human body.
Phenylalanine is converted into tyrosine by phenylalanine 4-
hydroxylase, which together synthesize important neuro-
transmitters and hormones involved in the metabolism of
glucose and fat [46, 47]. Phenylalanine is the upstream
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Figure 10: Continued.
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metabolic substance of tyrosine, and its content changes are
closely related to tyrosine. 0e synthesis of dopamine and
thyroid hormone, important neurotransmitters in the hu-
man body, requires the participation of tyrosine. Tyrosine
can also be converted into fumaric acid and acetyl acetate to
participate inmetabolic activities, such as the TCA cycle, and
provide energy for the body. 0yroid hormone is related to
immunity and mainly plays a role in stabilizing metabolism
in the body. Phenylalanine and tyrosine are also closely
related to DM, hypertension, and other diseases [48, 49].
Tryptophan, under the action of indoleamine 2,3-dioxyge-
nase, produces formylkynurenine, and then for-
mylkynurenine rapidly converted into kynurenine by
kynurenine formamidase, which is involved in inflammatory
and immune responses.

5. Conclusions

In conclusion, in this work, the metabolomics approach
based on UPLC-Q-TOF/MS was employed to investigate
serummetabolic changes in the HUA patients; 138 potential
differential metabolites related to HUA were identified,
which provided associations of lipids, amino acids, fatty
acids, organic acids, and nucleosides profiles with HUA
individuals. Metabolic pathways involved in glycer-
ophospholipid metabolism, sphingolipid metabolism, ara-
chidonic acid metabolism, linoleic acid metabolism,
phenylalanine metabolism, phenylalanine, tyrosine and
tryptophan biosynthesis, and a-linolenic acid metabolism
shed light on the understanding of the etiology and path-
ogenesis process of HUA.
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