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Abstract: During the last two decades, tetrabutylammonium bromide (TBAB) has gained significant
attention as an efficient metal-free homogeneous phase-transfer catalyst. A catalytic amount of TBAB
is sufficient to catalyze various alkylation, oxidation, reduction, and esterification processes. It is
also employed as an efficient co-catalyst for numerous coupling reactions. It has also acted as an
efficient zwitterionic solvent in many organic transformations under molten conditions. In this review,
we have summarized the recent developments on TBAB-catalyzed protocols for the efficient synthesis
of various biologically promising heterocyclic scaffolds.

Keywords: tetrabutylammonium bromide; TBAB; phase-transfer catalyst; metal-free synthesis;
bioactive heterocycles

1. Introduction

Heterocyclic skeletons are very common in commercially available drug molecules (Figure 1) [1].
Heterocycles are the main building blocks of many naturally occurring compounds [2]. Various synthetic
heterocyclic scaffolds have been found to possess a wide range of biological efficacies, including
anti-inflammatory [3], anti-malarial [4], anti-tubercular [5], anti-cancer [6], anti-asthmatic [7],
anti-histaminic [8], anti-hypertensive [9], anti-depressant [10], anti-microbial [11], anti-rheumatic [12],
anti-diabetic [13], anti-Alzheimer’s, anti-Parkinson’s, anti-Huntington’s disease [14], and many more
activities [15,16].

For the synthesis of diverse heterocyclic entities, the screening of suitable catalysts plays an
important role [17]. At present, scientists prefer metal-free organocatalysts in order to avoid metal
contamination in the synthesized products. As a result, during the last decade, various organocatalysts
have gained a great deal of attention in carrying out organic transformations under environmentally
benign conditions [18–20]. Among many others, metal-free phase-transfer catalysts are being widely
used in various organic reactions due to their ecofriendly, mild, and biocompatible nature [21].
Various phase-transfer catalysts showed immense activity in reactions where a reactant soluble in the
organic phase needs to react with an anionic reactant soluble in the aqueous phase.
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Figure 1. Glimpse of marketed drugs containing heterocycles. 
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Recently, tetrabutylammonium bromide (TBAB) has gained tremendous attention as an 
efficient homogeneous phase-transfer catalyst. TBAB is an environmentally benign, non-volatile, 
non-flammable, non-corrosive, low-cost, commercially available ammonium salt with high thermal 
and chemical stability [22]. In TBAB, tetrabutylammonium salt can dissolve in both aqueous as well 
as in organic solvents, which helps to transport the water-soluble anionic reactants into the organic 
phase. Moreover, molten TBAB was also employed as an efficient ionic liquid to carry out organic 
transformations under solvent-free conditions [23–25]. In some reactions, it was observed that the 
addition of a catalytic amount of TBAB as co-catalyst enhanced the reaction rate as well as product 
yields [26–30]. The abovementioned unique capabilities of TBAB make this catalyst very attractive. 
In many occasions, normal monophasic catalysts either failed to carry out such reactions or 
afforded poor yields. As a result, the catalytic activity of TBAB has been continuously explored for 
various reactions. It showed excellent catalytic efficacies for the synthesis of N-aryl amines [31] and 
1-alkyl/aryl-2-(1-arylsulfonyl alkyl) benzimidazoles [32]. It was also employed for the 
carbonylation-peroxidation of styrene derivatives [33], the alkylation of aldehydes or ketones [34], 
the S-alkylation of 4-mercapto-6-methyl-2-pyrone [35], the N-alkylation of acridones [36], the 
sulfonylation of para-quinone methides [37], Suzuki cross-coupling reaction [38], Heck reaction [39], 
and Suzuki–Miyaura reaction [40]. 

In the following sections, we will discuss various TBAB-catalyzed synthetic approaches which 
have been reported for the preparation of diverse biologically relevant heterocycles reported. 
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Recently, tetrabutylammonium bromide (TBAB) has gained tremendous attention as an efficient
homogeneous phase-transfer catalyst. TBAB is an environmentally benign, non-volatile, non-flammable,
non-corrosive, low-cost, commercially available ammonium salt with high thermal and chemical
stability [22]. In TBAB, tetrabutylammonium salt can dissolve in both aqueous as well as in organic
solvents, which helps to transport the water-soluble anionic reactants into the organic phase. Moreover,
molten TBAB was also employed as an efficient ionic liquid to carry out organic transformations under
solvent-free conditions [23–25]. In some reactions, it was observed that the addition of a catalytic amount
of TBAB as co-catalyst enhanced the reaction rate as well as product yields [26–30]. The abovementioned
unique capabilities of TBAB make this catalyst very attractive. In many occasions, normal monophasic
catalysts either failed to carry out such reactions or afforded poor yields. As a result, the catalytic activity
of TBAB has been continuously explored for various reactions. It showed excellent catalytic efficacies
for the synthesis of N-aryl amines [31] and 1-alkyl/aryl-2-(1-arylsulfonyl alkyl) benzimidazoles [32].
It was also employed for the carbonylation-peroxidation of styrene derivatives [33], the alkylation of
aldehydes or ketones [34], the S-alkylation of 4-mercapto-6-methyl-2-pyrone [35], the N-alkylation of
acridones [36], the sulfonylation of para-quinone methides [37], Suzuki cross-coupling reaction [38],
Heck reaction [39], and Suzuki–Miyaura reaction [40].

In the following sections, we will discuss various TBAB-catalyzed synthetic approaches which
have been reported for the preparation of diverse biologically relevant heterocycles reported.

2. Applications of TBAB for the Synthesis of Bioactive N-Heterocycles

2.1. Synthesis of 1,4-Dihydropyridines

1,4-Dihydropyridine and related derivatives are found to possess a wide range of biological efficacies,
including anti-bacterial [41], anti-diabetic [42], anti-cancer [43], anti-HIV [44], anti-convulsant [45],
and anti-tubercular [46] activities. A number of methods were reported for the synthesis of these
biologically significant scaffolds using various homogeneous as well as heterogeneous catalysts [47–50],
ionic liquids [51], and fluorinated solvents [52]. The use of metal-containing catalysts and toxic solvents
are some of the major drawbacks of these reported protocols. In 2014, Kumar et al. [53] developed
a facile method for the synthesis of a series of 1,4-dihydropyridine derivatives via one-pot pseudo
four-component Hantzsch reaction between one equivalent of various aryl or heteroaryl aldehydes
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(1), two equivalents of ethyl acetoacetate (2), and one equivalent of ammonium acetate (3) using 10 mol%
of TBAB as an efficient phase-transfer catalyst in aqueous medium at 60 ◦C (Scheme 1). Structurally
diverse aromatic aldehydes produced the desired products with excellent yields. Heteroaryl aldehydes
also smoothly underwent the reaction and yielded the desired products. Under the same optimized
condition, the reactions afforded comparable yields by using benzyltriethyl ammonium chloride as
catalyst whereas lower yields were obtained with cetyltrimethylammonium bromide as catalyst.

2.2. Synthesis of 2-Substituted Imidazolines

Liu et al. [54] reported a facile and eco-friendly method for the efficient synthesis of 2-substituted
imidazolines (6) starting from aromatic aldehydes (1) and ethylenediamine (5) in the presence of
a catalytic amount of both tungstophosphoric acid as well as tetrabutylammonium bromide as
an efficient phase-transfer catalytic system using hydrogen peroxide as oxidant in water at 80 ◦C
(Scheme 2). During optimization, a lower yield was recorded in the absence of TBABI (i.e., using only
tungstophosphoric acid as catalyst). A probable role of the dual catalysts is shown in Scheme 3. In the
organic phase, the rapid condensation of benzaldehyde and ethylenediamine produced intermediate I-1,
which after cyclization produced the second intermediate I-2. In the aqueous phase, the combination
of a catalytic amount of TBAB and tungstophosphoric acid generated a novel complex C-1 which in
the presence of H2O2 yielded peroxo complex C-2. This in-situ generated complex can catalyze the
formation of the desired 2-phenylimidazoline 5 from the intermediate I-2 by entering the organic phase.

2.3. Synthesis of 2,4,5-Triaryl Imidazoles

2,4,5-Trisubstituted imidazoles have been found to possess immense biological activities [55–59].
2,4,5-Triphenyl imidazole (8) was first synthesized in 1882 from the reaction of aryl aldehyde (1) and
benzyl (7) in alcoholic ammonia solution [60]. Later on, a number of methods were reported involving
ammonium acetate (3) as the source of ammonia in the presence of various Lewis acidic metal salts as
catalyst [61–67]. These reported methods suffered from many drawbacks, such as harsh conditions,
use of metal-containing catalysts, and lower yields. Starting from the same batch of reactants, in
2008, Chary et al. [68] developed a facile, efficient, and environmentally benign protocol for the
synthesis of 2,4,5-triaryl imidazoles (8) using a catalytic amount of TBAB isopropanol under reflux
conditions (Scheme 4). After completion of the reaction, TBAB-containing reaction medium was
reused for a further run. Aldehydes with both electron-donating as well as electron-withdrawing
substituents afforded the desired products with excellent yields. All the reactions were completed
within thirty minutes. A probable mechanistic approach is outlined in Scheme 5. TBAB activated the
carbonyl group of benzil, which facilitated the formation of intermediate I-3 by the attack of ammonium
generated from ammonium acetate. On the other hand, corresponding Schiff bases (I-4) were also
prepared from the reaction between aromatic aldehydes and in-situ-generated ammonia in the presence
of TBAB as catalyst. Now, the combination of I-3 and I-4 produced another intermediate I-5 which on
further dehydration followed by aromatization yielded the desired 2,4,5-triaryl imidazoles (8).
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Scheme 1. TBAB-catalyzed synthesis of 1,4-dihydropyridines in water at 60 °C. 
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2.4. Synthesis of 1,3-Dihydrobenzimidazol-2-Ones

Aghapoor et al. [69] developed a simple, rapid, microwave-assisted protocol for the efficient synthesis
of 1,3-dihydrobenzimidazol-2-ones (12) from the reactions of urea (9) and o-phenylenediamines (10) using
TBAB as a catalyst in ethanol. Under the optimized reaction conditions, pyridine-2,3-diamine (11) also
reacted with urea (9) and afforded the corresponding 1H-imidazo [4,5-b]pyridin-2(3H)-one (13) with 68%
yield (Scheme 6). All the reactions were completed within just fifteen minutes. o-Phenylenediamines with
both electron-donating as well as electron-withdrawing substituents produced the desired products with
good yields. Although the exact mechanism was not discussed in the mother literature, we can assume
that TBAB initiates the reaction by activating the carbonyl carbon of urea.

2.5. Synthesis of Pyrrolo[2,3-d]pyrimidine Derivatives

A straightforward one-pot three-component reaction protocol was reported utilizing TBAB as
the catalyst. Using this protocol, a series of densely functionalized pyrrolo[2,3-d]pyrimidine derivatives
(17) were successfully synthesized from the reactions of aryl glyoxals (14), 6-amino-1,3-dimethyluracil
(15), and barbituric acid (16) or thiobarbituric acid derivatives (16a) in ethanol at 50 ◦C (Scheme 7) [70].
Clean reaction profile, excellent yields, short reaction times, and easy work-up procedure are some of
the major advantages of this protocol. The plausible mechanism of this reaction is shown in Scheme 8.
TBAB initiated the reaction by activating the aldehydic carbon of aryl glyoxals. Reaction of aryl
glyoxals and 6-amino-1,3-dimethyluracil (15) yielded intermediates I-6, which then further reacted
with barbituric acid (16) or thiobarbituric acid derivatives (16a) to produce the desired products 17.
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2.6. Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones

Heterocycles with quinazolin-4-one skeleton have been found to possess a broad range of biological
activities [71–74]. Davoodnia et al. [75] achieved the synthesis of a series of 2-arylquinazolin-4(3H)-ones
(19) via the cyclocondensation reactions between 2-aminobenzamide (18) and aromatic aldehydes
(1) in the presence of a catalytic amount of tetrabutylammonium bromide under microwave-assisted
solvent-free conditions at 120 ◦C (Scheme 9). All the reactions were completed within just four minutes.
The desired products were isolated with excellent yields.
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2.7. Synthesis of 1,5-Benzodiazepine Derivatives

Benzodiazepine and related derivatives showed potent pharmaceutical activities [76]. Among many
others, 2,3-dihydro-1H-1,5-benzodiazepines (21) gained much attention. A number of methods were
reported for the synthesis of these biologically promising scaffolds utilizing numerous homogeneous as well
as heterogeneous catalysts, such as BF3OEt [77], Ag3PW12O40 [78], PPA-SiO2 [79], zinc montmorillonite [80],
Yb(OTf)3 [81], MgO-POCl3 [82], Amberlyst [83], and superacid sulphated zirconia [84]. The use of a toxic
and costly catalyst is the common drawback of these reported methods. In 2012, Baseer and Khan [85]
synthesized a series of structurally diverse 2,3-dihydro-1H-1,5-benzodiazepines (21) from the reactions
of one equivalent of o-phenylenediamine (10) and two equivalents of various acyclic ketones (20) using
TBAB as an efficient catalyst in ethanol at 60 ◦C (Scheme 10). Under the same optimized conditions, they
were also able to synthesize a series of spiro-benzodiazepine derivatives (23) using cyclic ketones (22)
instead of acyclic ketones (Scheme 11). In all cases, excellent yields of the desired products were obtained
through the formation of Schiff bases followed by a cyclization pathway.
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2.8. Synthesis of 5-Substituted 1H-Tetrazoles

Xie et al. [86] reported a simple and efficient protocol for the synthesis of a series of 5-substituted
1H-tetrazoles (26) with excellent yields from the reactions of aryl nitrile (24) and sodium azide (25) in
molten tetrabutylammonium bromide at 105 ◦C (Scheme 12). In this reaction, molten TBAB played
a dual role, both as a solvent as well as a catalyst. Under this condition, aliphatic nitrile failed to
produce the desired products. Here, TBAB polarized the cyano group, which facilitated the attack by
the azide ion.
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3. Applications of TBAB for the Synthesis of Bioactive O-Heterocycles

3.1. Synthesis of 3-Nitro-2H-Chromenes

Synthesis of 3-nitro-2H-chromenes (29) was achieved via the microwave-assisted reactions of
substituted salicylaldehydes (27) and 2-nitro ethanol (28) using anhydrous potassium carbonate as base
in the presence of a catalytic amount of TBAB as catalyst under solvent-free conditions (Scheme 13) [87].
The presence of a base facilitated the formation of carbanion on the carbon atom attached with a
nitro group. After being activated by TBAB, the aldehydic group underwent condensation with the
in-situ-generated carbanion and the resulting intermediate after cyclization yielded the corresponding
desired products 29.
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3.2. Synthesis of 3,4-Dihydropyrano[c]chromene

3,4-Dihydropyrano[c]chromenes and related derivatives have been found to possess a wide range
of biological activities [88–90]. In 2009, Khurana and Kumar [91] reported a facile protocol for the
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synthesis of 3,4-dihydropyrano[c]chromenes (32) via one-pot three-component reactions of various
aldehydes (1), malononitrile (30), and 4-hydroxycoumarin (31) in the presence of a catalytic amount of
TBAB as an efficient catalyst in water at 100 ◦C (Scheme 14). The same batches of reactions also afforded
excellent yields of the desired products under solvent-free conditions at 120 ◦C. Aldehydes (1) in the
presence of TBAB underwent Knoevenagel condensation with malononitrile (30) and generated the
corresponding intermediate I-7 which then further reacted with 4-hydroxycoumarin (31) to produce
the desired product 32 (Scheme 15).
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3.3. Synthesis of 4-Phenyl-1,3-Dioxolan-2-One

A combination of graphite carbon nitride and TBAB was used as an efficient catalytic system for
the synthesis of 4-phenyl-1,3-dioxolan-2-one (34) from 2-phenyloxirane (33) under carbon-dioxide-filled
reaction conditions at 105 ◦C (Scheme 16) [92]. Although the reaction took twenty hours to complete,
it produced 100% yield of the desired product.
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3.4. Synthesis of Isocoumarin-1-Imines and Isobenzofuran-1-Imines

A facile and regioselective TBAB-catalyzed efficient protocol was reported for the synthesis
of a series of isocoumarin-1-imines (36) through the 6-endo-dig oxy-cyclization 2-alkynylbenzamide
(35) (Scheme 17) [93]. The reactions were carried out using two equivalents of Oxone as oxidizing
agent in the presence of potassium carbonate as base in THF-water mixture as solvent at 80 ◦C.
The plausible mechanism of the transformation is shown in Scheme 18. Under the same optimized
conditions, when N-phenyl 2-trimethylsilylethynylbenzamides (37) were used as starting components,
the corresponding isobenzofuran-1-imines (38) were isolated with excellent yields (Scheme 19).
The probable mechanistic approach of this transformation is shown in Scheme 20.
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3.5. Synthesis of Tetrahydrobenzo[b]pyran

Many tetrahydrobenzo[b]pyrans are being used as anti-cancer, anti-coagulant, anti-anaphylactic,
diuretic, and spasmolytic agents [94–96]. In 2010, Mobinikhaledi and Fard [97] developed a mild,
efficient, and convenient protocol for the synthesis of a number of tetrahydrobenzo[b]pyran derivatives
(40) via one-pot three-component reactions of substituted benzaldehydes (1), malononitrile (30),
and dimedone (39) in the presence of a catalytic amount of TBAB as catalyst in aqueous medium under
reflux conditions (Scheme 21). Substituted benzaldehydes also proceeded smoothly and afforded
the desired products with excellent yields. Under the same optimized conditions, they were also
synthesized as a series of pyrano[2,3-d]pyrimidinone derivatives (41) using barbituric acid (16) instead
of dimedone (39) (Scheme 21). Excellent yields, mild reaction conditions, water as solvent, and easy
purification procedure are some of the major advantages of this protocol.
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oxidant in the presence of TBAB as catalyst at 120 °C (Scheme 22). The plausible mechanism of this 
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3.6. Synthesis of Xanthones

Rao et al. [98] developed a simple and straightforward aqueous-mediated protocol for the
intramolecular annulations of 2-aryloxybenzaldehydes (42) which afforded the corresponding
xanthones (43) with moderate to excellent yields using tert-butyl hydroperoxide (TBHP) as an
oxidant in the presence of TBAB as catalyst at 120 ◦C (Scheme 22). The plausible mechanism of this
transformation is shown in Scheme 23. The reaction proceeded through the direct oxidative coupling
reactions of C-H bonds of aldehydes and aromatic C-H bonds. Under the same optimized reaction
conditions, 2-aryloxybenzaldehydes with both electron-donating as well as electron-withdrawing
substituents showed good tolerance and yielded the corresponding desired products.
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conditions at 125 °C (Scheme 24). All the reactions were completed within eighty minutes and 
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pharmacological activities, such as anti-cancer, anti-bacterial, anti-microbial, and enzyme inhibitory 
properties [104]. Ezabadi et al. [105] synthesized a series of 1,8-dioxo-octahydroxanthene 
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3.7. Synthesis of Aryl-14H-Dibenzo[a.j]xanthenes

Benzoxanthene and its congeners have shown various biological activities [99–102]. In 2008,
Kantevari et al. [103] reported a facile method for the synthesis of a series of aryl-14H-dibenzo[a.j]xanthenes
(45) from the reactions of two equivalents of β-naphthol (44) and one equivalent of various aromatic
aldehydes (1) using 10 mol% TBAB as catalyst under solvent-free conditions at 125 ◦C (Scheme 24). All the
reactions were completed within eighty minutes and afforded 81–96% yields. Using TBAB as catalyst,
the same reactions when carried out under microwave-irradiated conditions produced 78–95% yields
within just six minutes. Products were isolated by simple crystallization in ethanol.
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3.8. Synthesis of 1,8-Dioxo-Octahydroxanthenes

Recently, 1,8-dioxo-octahydroxanthenes have gained considerable attention due to their potent
pharmacological activities, such as anti-cancer, anti-bacterial, anti-microbial, and enzyme inhibitory
properties [104]. Ezabadi et al. [105] synthesized a series of 1,8-dioxo-octahydroxanthene derivatives
(46) via one-pot pseudo three-component reactions between one equivalent of aromatic aldehydes
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(1) and two equivalents of dimedone (39) using TBAB as catalyst under solvent-free conditions at
120 ◦C (Scheme 25). Various substituted aldehydes afforded the desired products with excellent yields.
After being activated by TBAB, aldehydes (1) underwent condensation with one molecule of dimedone
(39) and produced the corresponding intermediate I-8 which on further attack by the second molecule
of dimedone (39) afforded the desired product 46 at 120 ◦C (Scheme 26).
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neat conditions.

4. Applications of TBAB for the Synthesis of Bioactive N- as well as O-Heterocycles

4.1. Synthesis of Oxazolo[4,5-c]pyridine

Tjosaas et al. [106] designed a microwave-assisted TBAB-catalyzed facile protocol for the
efficient synthesis of oxazolopyridine 2-tert-butyl-oxazolo[4,5-c]pyridine (48) via the cyclization
of 4-bromo-3-pivaloylaminopyridine (47) in the presence of cesium carbonate as base. The reaction
was completed within just ten minutes and afforded 78% yield (Scheme 27).
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In 2012, Mobinikhaledi et al. [107] prepared a series of structurally diverse pyran-fused 
spirooxindole derivatives using TBAB as catalyst in water under reflux conditions at 100 °C. They 
prepared spiro[(4H)-5,6,7,8-tetrahydrochromene-4,3′-(3′H)-indol]-(1′H)-2′-one derivatives (50) via 
one-pot three-component reactions of isatins (49), malononitrile (30) or ethyl 2-cyanoacetate (30a), 
and dimedone (39) (Scheme 28). Synthesis of spiro[(3′H)-indol-3′,4,4(H)-5,6,7,8-
tetrahydropyrano(2,3-d)pyrimidine]-(1′H)-2′-one derivatives (51) was achieved from the same 
reactions by using barbituric acid derivatives (16,16a) instead of dimedone (39) (Scheme 28). Under 
the same optimized reaction conditions, they also prepared a number of spiro[(3′H)-indol-3′,4,4(H)-
benzo(g)chromen]-(1′H)-2′-ones (53) and spiro[(3′H)-indol-3′,4,4(H)-pyrano(2,3-c)chromen]-(1′H)-2′-
one derivatives (54) from the reactions of isatins (49), malononitrile (30) or ethyl 2-cyanoacetate 
(30a), and 2-hydroxynaphthalene-1,4-dione (52) or 4-hydroxycoumarine (31), respectively (Scheme 
29). Almost all the reactions were completed within one hour and afforded excellent yields. Simple 
reaction profile, water as solvent, high atom economy, one-pot three-component synthesis, and 
environmentally benign nature are some of the major advantages of this developed protocol. 
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4.2. Synthesis of Pyran-Fused Spirooxindoles

In 2012, Mobinikhaledi et al. [107] prepared a series of structurally diverse pyran-fused spirooxindole
derivatives using TBAB as catalyst in water under reflux conditions at 100 ◦C. They prepared spiro[(4H)-5,6,7,
8-tetrahydrochromene-4,3′-(3′H)-indol]-(1′H)-2′-one derivatives (50) via one-pot three-component reactions
of isatins (49), malononitrile (30) or ethyl 2-cyanoacetate (30a), and dimedone (39) (Scheme 28). Synthesis of
spiro[(3′H)-indol-3′,4,4(H)-5,6,7,8-tetrahydropyrano(2,3-d)pyrimidine]-(1′H)-2′-one derivatives (51) was
achieved from the same reactions by using barbituric acid derivatives (16,16a) instead of dimedone (39)
(Scheme 28). Under the same optimized reaction conditions, they also prepared a number of
spiro[(3′H)-indol-3′,4,4(H)-benzo(g)chromen]-(1′H)-2′-ones (53) and spiro[(3′H)-indol-3′,4,4(H)-pyrano
(2,3-c)chromen]-(1′H)-2′-one derivatives (54) from the reactions of isatins (49), malononitrile (30) or ethyl
2-cyanoacetate (30a), and 2-hydroxynaphthalene-1,4-dione (52) or 4-hydroxycoumarine (31), respectively
(Scheme 29). Almost all the reactions were completed within one hour and afforded excellent yields.
Simple reaction profile, water as solvent, high atom economy, one-pot three-component synthesis,
and environmentally benign nature are some of the major advantages of this developed protocol.
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4.3. Synthesis of 1-Trifluoromethyl-3-Alkylidene-1,3-Dihydrofuro[3,4-b]quinolines

A simple, facile, and efficient method was designed for the synthesis of 1-trifluoromethyl-3-
alkylidene-1,3-dihydrofuro[3,4-b]quinolines (57) via nucleophilic addition followed by cyclization
reactions of o-arylalkynylquinoline aldehydes (55) with trimethyl trifluoromethyl silane (56) using TBAB as
catalyst and cesium fluoride as base in toluene at 0 ◦C to ambient temperature (Scheme 30) [108]. All the
products were obtained in excellent yields.
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TBAB was found to be an efficient catalyst for the synthesis of thiazine derivatives. In 2018,
Bankar and Dhankar [109] reported a facile and environmentally benign approach for the synthesis of
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5-(2-amino-6-aryl-5,6-dihydro-4H-1,3-thiazine-4-yl)-3,4-dihydropyrimidine-2(1H)-one derivatives (59)
from the reactions of 5-cinnamoyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-ones (58) and excess
thiourea (9a) in the presence of a catalytic amount of TBAB as catalyst in dichloromethane-water as
biphasic solvent at 50 ◦C (Scheme 31). All the reactions were completed within just thirty minutes and
afforded excellent yields. In the presence of TBAB, the ketonic carbon of 58 activated and formed the
corresponding Schiff bases (I-9) with the reaction of thiourea (9a). The in-situ-generated I-9 afforded
the desired product by following the cyclization pathway shown in Scheme 32.
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In the same year, Khurana and his group [110] reported another TBAB-catalyzed facile and
convenient protocol for the efficient synthesis of a series of novel benzo[e][1,3]thiazines (65) via one-pot
pseudo four-component reactions between one equivalent of substituted anilines (60), two equivalents
of formaldehyde (61), and one equivalent of thiophenols (62) under solvent-free conditions at
100 ◦C (Scheme 33). Under the same optimized conditions, a number of naphtho[1,2-e][1,3]thiazine
derivatives (66) were also synthesized from the reactions between anilines (60), formaldehyde (61), and
2-thionaphthol (63), whereas reactions between anilines (60), formaldehyde (61), and 1-thionaphthol
(64) afforded the corresponding naphtho[2,1-e][1,3]thiazine derivatives (67) with excellent yields
(Scheme 33). Use of a metal-free catalyst, excellent yields, broad substrate scope, and solvent-free
conditions are some of the major advantages of this protocol. TBAB facilitated the formation of
Schiff bases from the reactions of anilines (60) and formaldehyde (61), which on further reaction
with thiophenol yielded the intermediate I-10. The formation of another intermediate I-11 was
accomplished via the reaction of I-10 with the second molecule of formaldehyde. Cyclization followed
by aromatization of I-11 yielded the desired products 65 (Scheme 34).
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6. Conclusions

Recently, TBAB has been regarded as an efficient, environmentally benign, and versatile phase-transfer
catalyst. As a result, a huge number of TBAB-promoted protocols are available in the literature. In this review,
we have highlighted the catalytic efficiency of this fascinating catalyst for the synthesis of various biologically
promising heterocycles. It was evident the synthesis of 1,4-dihydropyridines, 2-substituted imidazolines,
2,4,5-triaryl imidazoles, 1,5-benzodiazepine derivatives, 4-phenyl-1,3-dioxolan-2-one, 5-substituted
1H-tetrazoles, 1,3-dihydrobenzimidazol-2-ones, 3,4-dihydropyrano[c]chromene, 3-nitro-2H-chromenes,
1,3-thiazines, and many other heterocyclic scaffolds can be achieved under mild reaction conditions by
using TBAB as catalyst.
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