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Heart failure with preserved ejection fraction (HFpEF) is a major unmet medical need 
that is characterized by the presence of multiple cardiovascular and non-cardiovascular 
comorbidities. Foremost among these comorbidities are obesity and diabetes, which 
are not only risk factors for the development of HFpEF, but worsen symptoms and out-
come. Coronary microvascular inflammation with endothelial dysfunction is a common 
denominator among HFpEF, obesity, and diabetes that likely explains at least in part 
the etiology of HFpEF and its synergistic relationship with obesity and diabetes. Thus, 
pharmacological strategies to supplement nitric oxide and subsequent cyclic guanosine 
monophosphate (cGMP)—protein kinase G (PKG) signaling may have therapeutic prom-
ise. Other potential approaches include exercise and lifestyle modifications, as well as 
targeting endothelial cell mineralocorticoid receptors, non-coding RNAs, sodium glucose 
transporter 2 inhibitors, and enhancers of natriuretic peptide protective NO-independent 
cGMP-initiated and alternative signaling, such as LCZ696 and phosphodiesterase-9 
inhibitors. Additionally, understanding the role of adipokines in HFpEF may lead to new 
treatments. Identifying novel drug targets based on the shared underlying microvascular 
disease process may improve the quality of life and lifespan of those afflicted with both 
HFpEF and obesity or diabetes, or even prevent its occurrence.

Keywords: metabolic disease, heart function, diastolic dysfunction, endothelial and microvascular dysfunction, 
inflammation, hypertension

iNTRODUCTiON

Heart failure (HF) is a major public health problem on a global scale. Historically, HF was 
believed to originate from long standing systolic dysfunction, as assessed by reduced ejection 
fraction (HFrEF), and much progress has been made in the last several decades in slowing the 
inevitably fatal progression of this condition with drugs and in some cases implantable devices 
(1–5). However, nearly as many individuals are now recognized to exhibit signs of HF, namely 
dyspnea, fatigue, fluid retention, and exercise intolerance, but yet have a normal or near normal 
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FiGURe 1 | Major comorbidities that negatively affect prognosis in patients 
with HFpEF. The graph shows the prevalence of comorbidities (in percent) in 
HFpEF patients enrolled in different clinical studies as summarized by 
Triposkiadis et al. (35): hypertension (HTN), atrial fibrillation (AF), anemia, 
diabetes mellitus or type II diabetes (DM), chronic kidney disease (CKD), 
obesity.
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ejection fraction (6–11). This condition of HF with preserved 
ejection fraction (HFpEF) is thought to be more common in 
women and more prevalent in the elderly, with similar mortality 
rates as HFrEF (12–15). HFpEF is documented as the leading 
cause of hospital admission in patients over 65 years of age and is 
predicted to be the leading cause of HF within a decade (16, 17). 
Notably, HFpEF is a leading cause of pulmonary hypertension 
(HTN) (18).

Diastolic dysfunction or impaired relaxation of the left 
ventricle (LV) is the common clinical condition of HFpEF and 
is attributable to both cardiac fibrosis and myofilament stiffness 
(19, 20). Contrary to expectations, recent clinical studies have 
failed to demonstrate the benefits offered by drugs effective in 
HFrEF to HFpEF patients (16, 21–23). Thus, HFpEF is one of 
the largest unmet needs in cardiovascular medicine, and there 
is a substantial requirement for new therapeutic approaches 
and strategies that target mechanisms specific for HFpEF (16). 
A general feature in HFpEF patients is the presence of several 
comorbidities (Figure  1) including HTN, anemia, atrial fibril-
lation (AF), obesity, and diabetes (7, 14, 16, 24–30). Moreover, 
comorbidities negatively affect prognosis to a greater extent in 
individuals with HFpEF than with HFrEF and have a greater 
impact on physical impairment as well (31). These observations 
support the proposition that aggressively targeting comorbidities 
may prove a more efficacious approach in the clinical manage-
ment of HFpEF (32–34).

Approximately 50% of patients with HFpEF are obese (35), 
and HFpEF patients with an increased body mass index (BMI) 
≥35 kg/m2 are at an increased risk of an adverse outcome (death 
or cardiovascular hospitalization), independent of other key 
prognostic variables (36). Obesity is an identified risk factor for 
HFpEF (28, 37, 38). In a recent study on patients with HFpEF, 
Dalos et al. (39) found that one-third of patients over a 2-year 
follow-up reached the combined endpoint of HF hospitaliza-
tion or cardiac death, which confirms the adverse prognosis 

of HFpEF. NYHA class III or IV was a strong  independent 
predictor of outcome, along with N-terminal pro-brain 
natriuretic peptide (NT-proBNP). Correlates of worse NYHA 
class included NT-proBNP, age, increased values for diastolic 
dysfunction, and diastolic pulmonary artery pressure. The 
most novel finding was that BMI was strongly associated with 
worse NYHA class. The investigators also concluded that a 
critical contributor to symptoms of breathlessness in patients 
with HFpEF is increased BMI. Obesity is likely more than a 
prominent comorbidity for HFpEF and critically involved in 
its pathogenesis. Increased adiposity promotes HTN, systemic 
inflammation, insulin resistance, and dyslipidemia, all of which 
are commonly observed in patients with HFpEF (40). Obesity 
also impairs cardiac, vascular, and skeletal muscle function (41, 
42). Adipose tissue is metabolically active and produces inflam-
matory cytokines or adipokines, and a number of cardiovascular 
active substances. Growing evidence reveals that obesity-related 
microvascular dysfunction, which affects all organs, contributes 
to exercise-intolerance, and predisposes to the development 
of microvascular dementia, coronary microvascular angina, 
chronic obstructive pulmonary disease, pulmonary HTN, and 
chronic kidney disease (43).

Obesity and diabetes are present in HFpEF patients with a 
similar proportion (35, 44). In the absence of coronary artery 
disease and HTN, maladaptive cardiac remodeling associated 
with diabetes is properly referred to as diabetic cardiomyopathy 
(35, 45, 46). Accumulating evidence supports the notion that 
there are two distinct HF phenotypes associated with diabetic 
cardiomyopathy. Type 1 diabetes leads to HFrEF with a dilated 
left ventricular phenotype. In contrast, type 2 diabetes, which 
is a common outcome of obesity, is associated with HFpEF 
and concentric remodeling of the LV. Seferović and Paulus 
recently presented evidence attributing the etiology of the two 
phenotypes to the differential principal involvement of either 
microvascular endothelial cells (HFpEF) or cardiac myocytes 
(HFrEF) in the remodeling process (45). An ancillary study 
of the RELAX (Phosphodiesterase-5 Inhibition to Improve 
Clinical Status and Exercise Capacity in Diastolic Heart 
Failure) trial indicated that compared to non-diabetic HFpEF 
patients, those with diabetes were younger, more obese and 
more often male, with a higher prevalence of renal dysfunction, 
HTN, pulmonary disease, and vascular disease (47). Analysis 
of the I-Preserve [Irbesartan in heart failure with preserved 
ejection fraction (HFpEF)] trial showed that HFpEF patients 
with diabetes had more signs of congestion, worse quality of 
life, and a poorer prognosis with a higher risk of cardiovascular 
mortality and hospitalization (48). On the basis of 11 clinical 
features, HFpEF patients who were enrolled in the I-Preserve 
or CHARM-Preserved (effects of candesartan in patients with 
chronic HF and preserved left-ventricular ejection fraction) 
trials were found to fall into one of six subgroups; patients with 
obesity and or diabetes constituted a distinctive subgroup with 
(along with another subgroup characterized by advanced age) 
the worst event-free survival (49).

The goal of our review is to highlight developments in our 
understanding of obesity- and diabetes-related HFpEF achieved 
in the last five years. Given the broad magnitude, multifaceted, and 
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syndrome-like nature of the problem, this review is not intended 
to provide a comprehensive overview of obesity or diabetes and 
HFpEF. For instance, we do not discuss molecular signaling 
pathways in cardiac myocytes that are linked to hypertrophy, 
likely downstream of the initiating stress event (50), or that cause 
stiffness of myofilaments (51). We do not discuss signaling events 
in cardiac fibroblasts involved in collagen synthesis or turnover 
and fibrosis (52); nor do we deal with the importance of skeletal 
muscle abnormalities in HFpEF (53). Rather, we have chosen to 
focus on microvascular endothelial dysfunction, based on the 
compelling evidence that HFpEF is a manifestation of systemic 
vascular inflammation (54), before discussing potential pharma-
cological approaches (Table 1).

ROLe OF CORONARY MiCROvASCULAR 
iNFLAMMATiON

Microvascular disease appears to be a common feature of 
obesity, type 2 diabetes, and HFpEF. It is now recognized that 
obesity is associated with chronic, low-grade systemic vascular 
inflammation that encompasses the coronary microvasculature 
and entails impaired angiogenesis, microvascular rarefaction, as 
well as endothelial dysfunction and impaired vasodilation due 
to reduced endothelial nitric oxide synthase (eNOS) activity 
(55–60). Increased circulating levels of adipokines and cytokines 
contribute to the inflammatory state (57, 59–61). Similarly, 
both macro- and microvascular derangements are prominent 
in patients with type 2 diabetes (62, 63), encompassing as well 
inflammation, endothelial dysfunction, hypercoagubility, func-
tional disruption of the endothelium, rarefaction, and impaired 
angiogenesis. Also, individuals with type 2 diabetes mellitus suf-
fer from a higher incidence of coronary heart disease as observed 
in obese patients (64–66).

Coronary microvascular inflammation is now postulated to 
play the key role in HFpEF progression, encompassing endothe-
lial dysfunction and impaired nitric oxide (NO)-cyclic guanosine 
monophosphate (cGMP)—protein kinase G (PKG) signaling and 
increased collagen deposition (Figure 2) (54). Increased stiffness 
of both myofilaments and extracellular matrix is thought to impair 
diastolic function (15, 54, 67). The former is postulated to result 
from reduced PKG-mediated phosphorylation of titin (20, 54, 67), 
the protein that determines passive elasticity of cardiomyocytes, 
and the latter from increased collagen deposition and cross-
linking (fibrosis) due to inflammatory endothelium-mediated 
recruitment of immune cells that activate resident cardiac fibro-
blasts (15, 20, 67, 68). Diastolic dysfunction is likely an antecedent 
event that interacts synergistically with other remodeling events 
at the cellular level to foster development of HFpEF. Recently, 
levels of inflammatory cells in endomyocardial biopsy samples 
from HFpEF patients were found to positively correlate with 
diastolic dysfunction (69) and coronary microvascular dysfunc-
tion was detected by angiography in patients with HFpEF (70). 
Further support for the involvement of myocardial microvascular 
inflammatory endothelial activation in the etiology of HFpEF 
comes from a study by Franssen et al. (71). These investigators 
reported that the myocardium of both HFpEF patients and an 
obesity-diabetic rat model of HFpEF showed upregulation of 
endothelial adhesion molecules, elevated expression of the pro-
oxidant protein NOX2 in macrophages and endothelial cells but 
not cardiomyocytes, evidence of the uncoupling of eNOS, and 
reduced myocardial nitrite/nitrate concentration, cGMP content, 
and PKG activity.

Involvement of microvascular inflammation in HFpEF with 
the associated reduction in eNOS-mediated NO generation 
raises the possibility that enhancing cGMP-PKG signaling could 
be an efficacious therapeutic approach (46, 72). Potentially, this 
could be achieved with nitroxyl (HNO), the 1 electron-reduced 
congener of NO that has myocardial antihypertrophic and super-
oxide suppressing activity (73, 74), as well as anti-inflammatory 
actions on microvascular endothelial cell (75). Nitroxyl was 
also recently shown to inhibit TNF-induced endothelial cell 
and monocyte activation, as well as leukocyte adhesion to the 
endothelium, in isolated mouse aorta (76). Nitroxyl increases 
vasorelaxation and enhances cardiac contractility with positive 
inotropic and lusitropic effects due to a direct effect on cardiac 
myofilament proteins and enhancement of SERCA2a activity 
(77, 78). Nitroxyl may also substitute for NO in activating soluble 
guanylate cyclase (sGC) and increasing cGMP (79). Recently, 
chronic treatment with the nitroxyl donor 1-nitrosocyclohexyl 
acetate was found to attenuate left ventricular diastolic dysfunc-
tion in a mouse model of diabetes (80). Others have recently 
reported evidence indicating that inorganic nitrates and nitrites, 
which can be converted to NO in the body, are effective in 
alleviating some HFpEF symptoms (81–84). Lastly, both cardiac 
myocytes and endothelial cells express the third isotype of beta 
adrenergic receptors (β3 ARs), which couple to eNOS activation 
and anti-oxidant signaling (85, 86). Pre-clinical evidence sug-
gests that β3 AR agonists, such as mirabegron, confer protection 
against diabetes-induced vascular dysfunction and may prove 
beneficial in HFpEF (85–88).

TABLe 1 | Potential targets or approaches for HFpEF.

exercise and lifestyle modifications
Aerobic exercise training
Reduced calorie intake

Nitric oxide enhancement or replenishment
Nitroxyl donors
Inorganic nitrates/nitrites
β3 adrenergic receptor agonists
sGC stimulators

endothelial cell mineralocorticoid receptor signal
Spironolactone

Non-coding RNAs
AngiomiRs

Glucose lowering drugs
Metformin
GLP-1 receptor agonists
SGLT-2 inhibitors

Novel approaches
• enhancing protective guanylyl cyclase systems

LCZ696
PDE9 inhibitors

• independent of cyclic GMP
ProANP31–67
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FiGURe 2 | Scheme for the proposed etiology of heart failure with preserved ejection fraction (HFpEF) relevant to obesity and type 2 diabetes. Left side: at the 
organ level, HFpEF is characterized by cardiac hypertrophy and a marked increase in the left ventricular mass/volume ratio (concentric remodeling), as well as 
increased stiffness and often enlargement of the left atrium. Right panel: coronary microvascular inflammation is postulated to play a key role in HFpEF progression, 
encompassing endothelial dysfunction and reduced nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)—protein kinase G (PKG) signaling. Increased 
stiffness of both myofilaments and the extracellular matrix is thought to impair diastolic function of the heart. The former is postulated to result in part from reduced 
PKG-mediated phosphorylation of titin, the protein that determines passive elasticity of cardiomyocytes. The later would result from increased collagen deposition 
and cross-linking (fibrosis), due to loss of cGMP/PKG anti-fibrotic signaling and increased inflammatory endothelium-mediated recruitment of immune cells that 
activate resident cardiac fibroblasts. Diastolic dysfunction is likely an antecedent event that interacts synergistically with other remodeling events at the cellular level 
to foster development of HFpEF (images adapted and reproduced with permission from the copyright holder http://servier.com/Powerpoint-image-bank).
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POTeNTiAL TARGeTS OR APPROACHeS

exercise and Lifestyle Modifications
Preclinical studies have demonstrated beneficial effects of exer-
cise training to protect the heart in obese or diabetic animals. For 
instance, exercise was reported to protect the hearts of obese dia-
betic mice from ischemia-reperfusion injury (89) and to reverse 
cardiac microvascular rarefaction and impaired endothelium-
dependent microvascular reactivity in obese diabetic rats (90). 
In patients with type 2 diabetes, exercise training was reported 
to improve brachial artery endothelial function (91), as well as 
to attenuate capillary rarefaction and improve microvascular 
vasodilator and insulin signaling (92). In contrast, Schreuder 
et al. (93) did not find any improvement in endothelial function 
after 8  weeks of training in type 2 diabetes patients. Although 
a reasonable supposition, there is insufficient data to assess 
whether dietary and lifestyle changes offer real promise to human 
sufferers of HFpEF. After all, exercise intolerance is a dominant 
symptom of HFpEF that contributes in a major way to reduced 

quality of life in these patients; plus, diabetes has the associated 
confounding factor of myocardial metabolic inflexibility (45). In 
a meta-analysis of randomized control trials, physical exercise 
was found to improve peak oxygen uptake and quality of life in 
HFpEF patients; however, no significant changes in LV systolic 
and diastolic function were noted (94). In older adults with type 
2 diabetes and chronic renal insufficiency, a moderate protein diet 
showed long-term effects on low-grade inflammation, and oxida-
tive stress (95), while in elderly HFpEF patients, exercise improved 
peak exercise oxygen consumption, although endothelial func-
tion or arterial stiffness were not altered (96). Among obese older 
patients with clinically stable HFpEF, caloric restriction or aerobic 
exercise training increased peak oxygen consumption, and the 
effects appeared to be additive (97); however, neither interven-
tion had a significant effect on quality of life as assessed by the 
Minnesota Living with Heart Failure Questionnaire, suggesting 
that the patients may still have exhibited exertional dyspnea. In 
any event, no improvements in cardiac function were noted and 
improvements in peak exercise oxygen consumption were likely 
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due to non-cardiac peripheral adaptations (97, 98). Indeed, sarco-
penic obesity may be a significant contributor to exercise intoler-
ance in elderly HFpEF patients (99). Sustained and substantial 
weight loss via bariatric surgery, which was shown effective in 
improving left ventricular relaxation and reversing concentric 
LV remodeling and hypertrophy, might be considered to treat 
obesity-associated HFpEF in younger individuals; however, the 
long-term cardiovascular effects of this surgery in obese HFpEF 
patients would need to be assessed (33, 100).

In any case, acute exercise may serve as an important tool for 
detecting coronary microvascular dysfunction, which becomes 
more apparent when the heart is challenged in this manner 
(101). Additionally, exercise would cause the release of a number 
of hormones or cytokines in HFpEF patients that might impact 
on cardiac or microvascular function, an area of research that 
requires further exploration. Recently, exercise training was 
reported to increase ghrelin levels in patients with HFpEF, espe-
cially in patients with higher baseline adiponectin (102). Ghrelin 
is a gastric hormone that simulates appetite and is associated 
with weight gain. However, ghrelin was also reported to decrease 
blood pressure and increase cardiac output in health men (103) 
and to inhibit apoptosis of cardiomyocytes and endothelial 
cells in vitro (104). Levels of ghrelin are reduced in both obesity 
and type 2 diabetes (105). Irisin is a novel hormone (myokine) 
secreted by cardiac and skeletal myocytes in response to exercise 
that may regulate metabolism and limit weight gain, although 
its precise role is controversial (106, 107). Circulating levels of 
irisin are reported to be reduced or increased in obese subjects, 
but reduced in type 2 diabetic patients (106, 108, 109). Lower 
levels of irisin are associated with endothelial dysfunction (109, 
110). Recently, irisin was found to improve endothelial function 
in obese mice via the activating 5′ adenosine monophosphate-
activated protein kinase (AMPK)-eNOS pathway (110); in the 
spontaneously hypertensive rat, irisin-induced improvement in 
endothelial function, reduced blood pressure (111).

endothelial Cell Mineralocorticoid 
Receptors Antagonism
Higher circulating aldosterone levels are observed in obesity (112) 
and type 2 diabetes (113). Moreover, aldosterone antagonism 
has proven effective in the clinical management of HFrEF (114, 
115) and in attenuating cardiac dysfunction and maladaptive 
remodeling in pre-clinical animal models of obesity-associated 
HFpEF (116, 117). Surprisingly, the Treatment of Preserved 
Cardiac Function Heart Failure with an Aldosterone Antagonist 
(TOPCAT) study, a large randomized, double-blind clinical trial 
of spironolactone versus placebo in patients with symptomatic 
HFpEF, did not achieve a significant reduction in the primary 
composite outcome of time to cardiovascular death from car-
diovascular causes, aborted cardiac arrest, or hospitalization for 
management of HF; however, TOPCAT did demonstrate that 
spironolactone decreases HF hospitalizations in HFpEF patients 
(118). Use of spironolactone for HFpEF was associated with an 
improvement in HF-specific health-related quality of life (119) 
and, in a separate study, improved exercise tolerance (120). 
Actually, the beneficial effects of spironolactone in HFpEF may 

be more significant. Subgroup analysis of TOPCAT by geographic 
region raised concerns about patient selection and dosing levels 
in the Russia/Georgia arm of the trial, whereas spironolactone 
was clearly superior to placebo in reducing cardiovascular events 
in the Americas (121). Also, spironolactone may have greater 
potential efficacy in HFpEF patients with lower ejection frac-
tion (122) and, somewhat at odds with this, with lower levels of 
circulating natriuretic peptides and overall risk (123).

An endothelial-cell targeted strategy may optimize the ben-
eficial actions of aldosterone antagonism in HFpEF. Based on 
accumulating evidence, Davel et  al. recently proposed that in 
normal physiology, the endothelial mineralocorticoid receptor is 
vasoprotective; however, in the presence of cardiovascular risk 
factors, such as obesity and diabetes, endothelial mineralocor-
ticoid receptor activation leads to endothelial dysfunction as a 
result of reduced eNOS activity and NO production, increased 
oxidative stress via eNOS uncoupling and NOX activation, as well 
as induced expression of adhesion molecules for inflammatory 
cells (124). Supporting this possibility is the observation that 
endothelial mineralocorticoid receptor deletion prevents obesity-
induced diastolic dysfunction in female mice (125).

Non-Coding RNAs
MicroRNAs (miRNAs) are small non-coding RNAs (~21–25 
nucleotides in length) that in animal cells generally bind to the 3′ 
UTR of mRNA to suppress gene expression by either transcript 
degradation or translational inhibition. The bloodstream con-
tains multiple types of miRNAs in various types of vesicles and 
complexes, secreted from both healthy and dying cells of likely 
all tissues throughout the body (126). Since miRNA expression is 
dynamically regulated, circulating miRNAs are increasingly rec-
ognized as having potential utility for diagnostic and prognostic 
purposes. Recent reports have supported the diagnostic value 
of using circulating miRNA profiles to distinguish HF patients 
from non-HF controls and differentiating between HFrEF and 
HFpEF (127, 128). To date, miRNA profiles have not been defined 
for HFpEF patients on the basis of dominate comorbidity such 
as obesity or diabetes. However, both metabolic syndrome and 
type 2 diabetes are associated with altered circulating miRNA 
profiles (126, 129). The endothelium is a rich source of circulating  
miRNAs in both the healthy and disease states and the plasma 
mRNA profile provides an assessment of endothelial health (126). 
For instance, circulating and cardiac levels of pro-angiogenic 
miR-126 and miR-132 were found to be downregulated in type 2 
diabetic individuals without any known history of cardiovascular 
disease (130). Decreased levels of these miRNAs were associated 
with cardiac microangiopathy as indicated by reduced capillaries 
and arterioles and increased endothelial cell apoptosis. Parallel 
findings in a mouse model of type 2 diabetes support the prognos-
tic value of these “angiomiRs”. Interestingly, swimming training in 
rats was reported to increase cardiac miRNA-126 expression and 
angiogenesis (131). Optimistically, the identification of particular 
miRNA signature in diabetes- or obesity-associated HFpEF could 
lead to miRNA-based therapies that use tissue-targeted exosomes 
to deliver anti-miRNA or miRNA mimics to treat microvascular 
dysfunction. Some of the challenges in making miRNA-based 
therapy a reality are discussed elsewhere (132–134).
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An emerging area in cardiovascular medicine is the study 
of long non-coding RNAs (lncRNAs), which are transcripts 
larger than 200 nucleotides that control gene expression at the 
epigenetic, transcriptional, and posttranscriptional levels (135). 
Single-nucleotide polymorphisms which alter the expression of 
the lncRNA ANRIL (antisense non-coding RNA in the INK4 
locus) are associated with coronary artery disease and type 2 
diabetes (126). Recently, circulating levels of three lncRNAs were 
identified as biomarkers of diastolic function and remodeling in 
patients with well-controlled type 2 diabetes (136): long inter-
genic non-coding RNA predicting cardiac remodeling (LIPCAR), 
myocardial infarction-associated transcript (MIAT), and 
endothelial cell-enriched migration/differentiation-associated 
long non-coding RNA (SENCR). Although the cellular source 
was not defined in this study, LIPCAR is thought to originate 
from cardiomyocyte mitochondria, whereas MIAT and SENCR 
have been implicated in endothelial cell function/dysfunction, 
including inflammation and angiogenesis (126, 136, 137). The 
role and diagnostic/prognostic value of lncRNAs in obesity or 
diabetes associated HFpEF awaits investigation.

Glucose Lowering Drugs
The drug metformin has proven highly effective in the treatment 
of type 2 diabetes and is currently recommended as first line 
treatment. Metformin has beneficial actions by reducing hepatic 
glucose production and by activating AMPK, which enhances cel-
lular glucose uptake. AMPK activation in cardiac myocytes may 
also inhibit hypertrophy (138). Preclinical studies demonstrated 
that AMPK activation by metformin restores endothelial function 
and NO bioavailability by attenuating oxidative and endoplasmic 
reticulum stress and by directly increasing eNOS activity (139, 
140). However, metformin does not seem to improve LV stiffness 
in type 2 diabetic patients (141).

Concerns of increased adverse cardiovascular outcomes, 
including HF, are associated with the use of sulfonylureas and 
thiazolidinediones (TZDs) in diabetic patients (45, 142, 143). The 
situation with regard dipeptidyl peptidase-4 inhibitors is unset-
tled (144). Although glucagon-like peptide-1 (GLP-1) receptor 
agonists, liraglutide and semaglutide, showed a reduction in 
cardiovascular events, GLP-1 agonists do not seem to have a 
significant effect on natriuretic peptide levels in HF (45, 145). 
Much excitement has been generated by the recent approval of 
selective sodium glucose transporter 2 (SGLT-2) inhibitors, 
including empagliflozin, to treat type 2 diabetes. SGLT-2 inhibi-
tors lower blood glucose by blocking sodium-dependent reab-
sorption of glucose in the proximal tubule and causing glycosuria. 
However, the beneficial actions of SGLT-2 inhibitors in type 2 
diabetes seem to extend beyond glycemic control and are not 
completely understood (146). SGLT-2 inhibitors are associated 
with weight loss and reductions in blood pressure (without an 
increase in heart rate), visceral adiposity, plasma urate levels, and 
arterial stiffness/vascular resistance, as well as improvements in 
microvascular/macrovascular endothelial function and cardiac 
metabolism (146). The recently published results of the EMPA-
REG OUTCOME trial revealed a marked reduction in deaths 
from cardiovascular causes, HF hospitalizations, and deaths 
from any cause when empagliflozin was added to standard care 

of patients with type 2 diabetes (147). At present, insufficient 
evidence precludes reaching a definitive conclusion as to whether 
the beneficial effects of empagliflozin represent a class effect of 
SGLT-2 inhibitors (148).

Novel Approaches That enhance Guanylyl 
Cyclase Systems
Nitric oxide deficiency is postulated to be responsible for 
diastolic dysfunction in HFpEF patients due to impaired 
cGMP generation and PKG activation. Because of issues such 
as tolerance and preload reduction, organic nitrates seem not to 
be useful in treating HFpEF (149). Alternative ways of cGMP 
enhancement might hold more promise for future therapeutic 
benefit. sGC stimulators are a relatively new class of drugs that 
act via an allosteric site on sGC to synergize with NO in produc-
ing cGMP, thereby offsetting decreased NO due to diminished 
NO synthase activity (150). The recently completed phase II 
SOluble guanylate Cyclase stimulatoR in heArT failurE Study 
(SOCRATES) program consisted of two parallel studies to assess 
the potential utility of the sGC stimulator, vericiguat for treating 
HFrEF (SOCRATES-REDUCED) and HFpEF (SOCRATES-
PRESERVED). The respective primary endpoints were change 
in NT-proBNP at 12 weeks, and change in NT-proBNP and left 
atrial volume at 12  weeks (151). Vericiguat was well tolerated; 
however, likely because of inadequate dosage level, SOCRATES-
REDUCED yielded mixed, yet promising results (152). The 
outcome of SOCRATES-PRESERVED has not been reported 
but likely is complicated by the same shortfall in dosing as the 
SOCRATES-REDUCED study.

Alternative NO-independent ways to increase cGMP for-
mation, which is linked to anti-hypertrophy and anti-fibrosis 
signaling in the heart (153, 154), may prove beneficial in treating 
HFpEF. Specifically, receptors for natriuretic peptides activate 
membrane-bound particulate GC. Indeed, several studies have 
shown favorable cardiorenal effects, including improvement of 
diastolic function, of exogenous supplementation of the natriu-
retic peptides, which are known to stimulate cGMP production 
in the heart, kidney, and vasculature (155, 156). In contrast, 
deletion of the BNP gene is characterized by diastolic dysfunc-
tion, cardiac remodeling, and rising of elevated blood pressure 
(157). A recently approved drug for the treatment of chronic HF, 
LCZ696 (brand name entresto), combines an angiotensin II type 
1 receptor blocker (valsartan) with a neprilysin inhibitor (sacubi-
tril). Sacubitril suppresses proteolysis of natriuretic peptides that 
enhance cGMP signaling independent of NO (158). The phase III 
study Efficacy and Safety of LCZ696 Compared to Valsartan, on 
Morbidity and Mortality in Heart Failure Patients With Preserved 
Ejection Fraction (PARAGON-HF) (NCT01920711) is currently 
underway, while preliminary data from the PARAMOUNT study 
have shown a significant reduction of the circulating levels of 
NT-proBNP (a major prognostic biomarker in HF) after 12 weeks 
of treatment, and an improvement of both cardiac size and New 
York Heart Association (NYHA) class at 36 weeks as compared 
to valsartan (159). Selective inhibitors of phosphodiesterase-9 
(PDE9), which hydrolyzes natriuretic peptide-coupled cGMP 
and is upregulated in HFpEF, are another potential way to increase 
cardiac cGMP levels (160).
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Inadequate processing and activation of natriuretic peptides 
appears to be a signature of HTN, resulting in an impaired 
counter-regulatory response of the natriuretic homeostatic con-
trol system (161, 162). Notably, although natriuretic peptides are 
useful to stratify HFpEF patients in conjunction with the NYHA 
classification system, circulating levels of BNP are not elevated as 
much in HFpEF patients as in HFrEF (163, 164). It is now estab-
lished that elevated circulating natriuretic peptides in patients 
with overt cardiovascular diseases, although having a significant 
adverse prognostic value, are constituted mainly of biologically 
non-active forms, while mature active forms are virtually absent 
in severe congestive HF patients (165). In addition, obesity has 
a negative impact on the elevation of circulating levels of BNP 
as fatty tissue expresses the clearance receptor for the natriuretic 
peptide (NPRC) (163, 166). Therefore, supplementation of these 
cardioprotective natriuretic peptides may prove to be of thera-
peutic importance in obesity- or diabetes-associated HFpEF. 
Studies report that circulating atrial natriuretic peptide (ANP) 
can break down into multiple peptides, each of which has distinc-
tive actions. One of these peptides, namely proANP31–67, does not 
activate the cGMP pathway, but exerts a unique cardiac and renal 
protective response by increasing renal, as well as circulating 
levels of prostaglandin E2 (PGE2) (167–169). ProANP31–67 also 
has vasodilatory actions and induces diuresis via inhibition of 
the basolateral Na+–K+ ATPase of the inner medullary collecting 
ducts resulting in increased Na+ and renal water excretion (170, 
171). Whether the potential benefits of proANP31–67 extend to 
HFpEF is not established, although PGE2 has protective effects 
on the heart via enhancement of VEGF and eNOS expression 
levels and anti-inflammatory actions (172, 173). Future studies 
are warranted to determine whether the cardiorenal protective 
effects and the cardiac function enhancing properties of these 
hormones can be explained by mechanisms different from 
cGMP activation.

UNReSOLveD iSSUeS

Adipose tissue is an endocrine organ that secretes multiple 
“adipokines” that have broad physiological and pathological 
impact throughout the body (174, 175). In obesity, the altered 
circulating adipokine profile contributes to systemic low-grade 
inflammation and the cardiovascular or obesity-related comor-
bidities defining the metabolic syndrome. Understanding the 
contribution of a particular adipokine to the disease process is a 
challenging task as the inflammatory milieu is a dynamic and fluid 
environment of multiple players with redundant or conflicting 
roles. A good case in point is the role of adiponectin in HFpEF. 
Adiponectin is the major adipokine produced by adipose tissue 
with anti-inflammatory, antidiabetic, anti-apoptotic, and anti-
atherogenic properties (174, 176). Circulating adiponectin levels 
are decreased in obesity and type 2 diabetes and downregulation 
of adiponectin and its receptors is associated with insulin resist-
ance and diabetes, as well as increased risk of HTN and coronary 
artery disease (174, 176). Animal studies have shown that 
adiponectin can inhibit cardiac hypertrophy and fibrosis, and 
reduce infarct size (174). Together these findings support the 
supposition that adiponectin might have therapeutic potential in 

HFpEF patients (176). However, circulating adiponectin levels 
are increased in both HFrEF and HFpEF (177). Furthermore, 
multiple studies have shown an association between higher 
adiponectin levels and increased mortality and cardiovascular 
disease mortality/morbidity in diverse populations (178). One 
confounding factor is that natriuretic peptides, which are ele-
vated in HF due to hemodynamic stress and/or neurohormonal 
activation, may directly enhance adiponectin expression (178). 
Certainly, the question of which-time-point in the develop-
ment and progression of HFpEF is an important consideration. 
Sex differences may play a role as well. Low adiponectin was 
associated with higher odds of indices of diastolic dysfunction 
in women, but lower odds in men, and lower adiponectin was 
associated with increased left ventricular mass only in women 
(179). Other variables that may come into play are adiponectin 
receptor desensitization, receptor subtypes, and the different-
size molecular weight complexes of circulating adiponectin 
(“isoforms”) (176).

PeRSPeCTiveS AND FUTURe 
DiReCTiONS

The role of sex as well as race in HFpEF, especially their interac-
tion with comorbidities, is an evolving area of investigation. Early 
studies reported that HFpEF was more common among women 
than men (180, 181). Recently, the largest sex- and race-based 
subgroup analysis of HFpEF was published, involving data gath-
ered from 1,889,608 hospitalizations (182). The study reported 
several noteworthy findings, including the following: (a) men 
with HFpEF were slightly younger than women with HFpEF and 
had a higher burden of comorbidities; (b) blacks with HFpEF 
were younger than whites with HFpEF, with lower rates of most 
comorbidities; (c) HTN, anemia, chronic renal failure, and diabe-
tes, were more common among blacks; (d) AF was an important 
correlate of mortality only among women and blacks; and (e) 
with women, chronic pulmonary disease, and diabetes were more 
common among younger patients, but more common among 
older patients in men. Obviously, the influence of sex and race 
in the context of comorbidities to the heterogeneity of HFpEF is 
complicated and further study is needed. Another emerging area 
of interest is the additional classification according to the 2016 
EC guidelines of HFmrEF, for HF patients exhibiting mid-range 
ejection fractions (183). The clinical profile, including comorbidi-
ties, and prognosis of patients diagnosed with HFmrEF, and the 
etiological and prognostic relationship of this HF phenotype to 
HFrEF and HFpEF needs to be addressed. The application of 
novel measures for assessing LV function such as strain imaging 
may be useful in this regard.

Obesity and diabetes are not only risk factors for the devel-
opment of HFpEF but have significant impact on its symptoms 
and outcome. Therefore, focusing on these comorbid condi-
tions in HFpEF might provide a novel therapeutic strategy. 
Coronary microvascular endothelial dysfunction with impaired 
NO-cGMP-PKG signaling is a shared condition that is thought 
to be the basis for diastolic stiffness, inflammation, oxidative 
stress, and maladaptive cardiac remodeling. Pharmacological 
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approaches that target this signaling axis offer promise in treating 
or preventing HFpEF. This would include: (a) NO replenishment 
(inorganic nitrates/nitrites), replacement (nitroxyl donors), or 
enhanced generation (β3 AR agonists and AMPK agonist); and 
(b) enhancers of NO-independent cGMP generation (LCZ696/
entresto) or prevention of its breakdown (PDE9 inhibitors). A 
reappraisal of clinical results supports the utility of inhibiting 
the mineralocorticoid receptor in treating HFpEF, but additional 
study is warranted. In addition, given the pronounced side effects 
of spironolactone at higher doses, an endothelial cell-targeted 
approach might be judicious. miRNA and lncRNA profiling 
of HFpEF patients offers the promise of not only prognostic 
assessment and therapeutic monitoring, but personalized treat-
ment strategies as well. A better understanding of the role of 
adipokines in obesity- and diabetes-associated HFpEF may open 
up new pharmacological avenues. Finally, SGLT-2 inhibitors 
offer great promise for treating or preventing HFpEF in obese 
and diabetic patients. A better understanding of the physiological 

and molecular basis for the cardiovascular protective actions of 
this new drug class should foster the development of even more 
effective compounds.
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