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Abstract 

Background:  With the recent emergence of immune checkpoint inhibitors, microsatellite instability (MSI) status has 
become an important biomarker for immune checkpoint blockade therapy. There are growing technical demands 
for the integration of different genomic alterations profiling including MSI analysis in a single assay for full use of the 
limited tissues.

Methods:  Tumor and paired control samples from 64 patients with primary colorectal cancer were enrolled in this 
study, including 14 MSI-high (MSI-H) cases and 50 microsatellite stable (MSS) cases determined by MSI-PCR. All the 
samples were sequenced by a customized NGS panel covering 2.2 MB. A training dataset of 28 samples was used for 
selection of microsatellite loci and a novel NGS-based MSI status classifier, USCI-msi, was developed. NGS-based MSI 
status, single nucleotide variant (SNV) and tumor mutation burden (TMB) were detected for all patients. Most of the 
patients were also independently detected by immunohistochemistry (IHC) staining.

Results:  A 9-loci model for detecting microsatellite instability was able to correctly predict MSI status with 100% 
sensitivity and specificity compared with MSI-PCR, and 84.3% overall concordance with IHC staining. Mutations in 
cancer driver genes (APC, TP53, and KRAS) were dispersed in MSI-H and MSS cases, while BRAF p.V600E and frameshifts 
in TCF7L2 gene occurred only in MSI-H cases. Mismatch repair (MMR)-related genes are highly mutated in MSI-H 
samples.

Conclusion:  We established a new NGS-based MSI classifier, USCI-msi, with as few as 9 microsatellite loci for detect-
ing MSI status in CRC cases. This approach possesses 100% sensitivity and specificity, and performed robustly in 
samples with low tumor purity.
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Background
Microsatellites, also called short tandem repeats (STRs), 
are short repeated nucleotide sequences with unit length 
between 1 and 6 base pairs (bps), which are widely pre-
sented in the genome of eukaryotes [1]. Microsatellite 
instability (MSI) represents the nucleotide insertions or 
deletions in the microsatellite loci. Alterations in micro-
satellite regions usually arise during DNA replication. 
The DNA mismatch repair (MMR) proteins, e.g. MLH1, 
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MSH2, MSH6 and PMS2, are responsible for the repair 
of MSI. The germline or somatic inactivation of MMR 
genes could in turn result in MSI. MSI has been observed 
in a large number of cancer types, with the highest inci-
dence in colon and endometrial cancers [2, 3]. Germline 
mutations in MMR proteins are associated with the 
pathogenesis of Lynch syndrome, which accounts for 
approximately 20% MMR-deficient (dMMR) colorectal 
cancer (CRC) [4]. For sporadic CRC, somatic mutations 
in microsatellite loci were found in 10% to 15% of cases 
[5].

MSI-H/dMMR cancers are expected to harbor a large 
number of mutations that might be recognized as neoan-
tigens [6, 7] and could enable the patient to be sensitive 
to immune checkpoint blockade therapies. Thus, MSI 
status has become an important biomarker for immuno-
therapy, along with PD-L1 and tumor mutational burden 
(TMB) [8–11]. Clinical trials have shown that patients 
with MSI had improved responses to anti-PD-1/PD-L1 
drugs, so accurate and efficient determination of MSI sta-
tus could help to guide clinicians in choosing immune-
oncology therapy.

Conventional MSI detection methods include MSI-
PCR or indirectly by immunohistochemistry (IHC) stain-
ing of MMR protein expression. MSI-PCR is performed 
by amplifying five or more microsatellite loci in tumor 
and paired normal tissues, and determines MSI status 
by comparing the repeat number between the paired 
samples, classified into high (MSI-H), low (MSI-L), and 
stable (MSS) types. Low tumor purity and serious degra-
dation of DNA may influence the MSI-PCR test. MMR 
IHC is a test of evaluating the expression levels of four 
clinically relevant MMR proteins (MLH1, MSH2, MSH6, 
and PMS2). dMMR is defined as any of these MMR pro-
teins being totally absent in the nuclear staining of tumor 
tissue while present in adjacent benign tissue. If all four 
proteins are present in the tumor tissue, it is considered 
MMR proficient (pMMR). However, the MMR-related 
markers included in clinical IHC staining did not cover 
all MMR relevant genes, which may result in the rela-
tively low correlation between IHC and MSI-PCR.

As Next-Generation Sequencing (NGS) has become 
a mainstream technology in oncology, NGS-based MSI 
detection methods are emerging. The selection of micro-
satellite loci may greatly influence the performance of the 
MSI detecting tools. According to previous studies, mon-
onucleotide repeats are more sensitive than dinucleotide 
ones [12, 13]. Additionally, microsatellites with 10-20 bp 
repeat unit are too long to induce the slippage of DNA 
polymerase [14]. The bioinformatics tools evaluating 
MSI include tools directly assessing microsatellite loci in 
DNA, such as MANTIS [15], mSINGS [16], and MSIsen-
sor [17], while others indirectly assess MSI status by 

analyzing single nucleotide variants and microindel (e.g., 
MSIseq and MSIpred) [18, 19]. Here we used MANTIS, 
which set the tumor and matched normal tissues data as 
two vectors. An L1 norm was defined to characterize the 
degree of stability of every site in the case, and the aver-
age of the L1 norm of all sites was used for evaluating the 
MSI status of the sample. In this study, we developed a 
novel MSI classifier named USCI-msi based on NGS data 
with 9 microsatellite loci. The classifier shows 100% sen-
sitivity and specificity in CRC samples. We also analyzed 
genomic alterations in MSI-H cases and the correlation 
between MSI and TMB.

Materials and methods
Patient and sample preparation
Sixty-four colorectal tumor and matched normal sam-
ples were collected from August 2018 to August 2019 
and analyzed following approved by the Institutional 
Review Board at Tianjin Union Medical Center. Written 
informed consent forms were obtained from each partici-
pant. All methods used in this study were performed in 
accordance with the relevant guidelines and regulations 
of the NCCN Clinical Practice Guidelines in Oncology: 
Colon Cancer (2019.V4).

Tumor samples were fresh or formalin-fixed and par-
affin-embedded, while the paired control samples were 
either tumor-adjacent tissues or peripheral bloods. 
Genomic DNA of tissue and peripheral blood sam-
ples were isolated using QIAamp DNA FFPE Tissue 
Kit (Qiagen, German) and TIANamp Blood DNA Maxi 
Kit (TIANGEN, China) according to manufacturer’ s 
instructions, respectively.

MSI‑PCR testing
MSI-PCR testing was performed using the MSI detection 
kit (Microread Genetics, China) according to the manu-
facturer’s instructions. The length of PCR fragments were 
detected on the ABI 3730xl Genetic Analyzer (Applied 
Biosystems, USA), and analyzed with the GeneMapper 
software version 4.0 (Applied Biosystems, USA). Samples 
were considered as MSI-H when instability was observed 
in two or more of the six mononucleotide repeat loci 
(NR-21, BAT-26, NR-27, BAT-25, NR-24, and MONO-
27), and as MSS when instability in less than two loci was 
observed.

IHC staining
IHC staining was assayed with IHC kits (OriGene, USA) 
for MLH1, MSH2, MSH6 and PMS2 separately, accord-
ing to the manufacturer’s instructions. dMMR was 
defined when any of these MMR proteins were totally 
absent in the tumor tissue while presented in adjacent 
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benign tissue. Tumor tissues presenting all MMR pro-
teins were defined as pMMR.

Next‑generation sequencing
A custom-designed 2.2  Mb panel, covering exons and 
partial introns of cancer driver genes, hereditary can-
cer related genes and therapy-related genes, was used 
in this study. 50-100 ng of sheared genomic DNAs were 
subjected to library construction with an MGIEasy uni-
versal DNA library kit (MGI, China), then followed by 
hybrid capture using an xGen Hybridization and Wash 
Kit (IDT, USA). Libraries’ quality and concentration were 
determined using a LabChip® GX Touch™ nucleic acid 
analyzer (PerkinElmer, USA) and a Qubit fluorometer 3.0 
(Life Technologies, USA), respectively. Tumor-matched 
normal samples were also sequenced as controls. The 
qualified libraries were sequenced with 2 × 100  bp 
paired-end reads on a MGISEQ-2000 (MGI, China) plat-
form. The paired-end reads were aligned to human refer-
ence genome GRCh37/hg19 using BWA-MEM (v0.7.17) 
[20] and single nucleotide variants (SNVs) were deter-
mined by VarScan (v2.4.3) [21]. TMB was assessed as 
described by Chalmers and colleagues [14].

Development of USCI‑msi
A novel MSI status classifier, USCI-msi, was developed 
using a training dataset of 28 samples which included 7 
MSI-H and 21 MSS samples determined by gold stand-
ard MSI-PCR. Microsatellite loci were first identified 
across the human reference genome (GRCh37/hg19) by 
RepeatFinder, and then limited to our panel region. The 
mononucleotide homopolymers, including the six mono-
nucleotide loci used in the MSI-PCR test, were selected 

and analyzed in the training dataset with MANTIS using 
the default setting [15]. Low-quality paired-end reads 
were filtered out by length < 35 bp and base quality < 25. 
Low-quality microsatellite loci were filtered out by aver-
age base quality < 30 and minimum coverage < 30×, 
repeat type for a microsatellite locus < 3. The average 
instability scores for each locus in MSI-H and MSS sam-
ples were sorted in descending order. The loci that over-
lapped among the top 50 loci in the MSI-H cases and the 
bottom 50 loci in the MSS cases were chosen as marker 
microsatellite loci and reanalyzed in the training dataset 
with MANTIS. The NGS-based MSI detection method 
with the marker microsatellite loci was named USCI-msi 
classifier, and its performance was then validated with 
another 36 CRC samples.

Statistical analysis
The difference between MSS and MSI-H cases were 
determined by Fisher’s exact test or non-parametric 
Mann–Whitney U test. Two-sided p < 0.05 was consid-
ered statistically significant.

Results
Evaluation of MSI status with USCI‑msi
There were 2,952,815 microsatellite loci identified over 
the genome with repeat region across 10  bp to 100  bp 
and repeat length across one to five (Fig. 1). 2,263 micro-
satellite loci were localized in the targeted region of our 
customized NGS panel. Since mononucleotide microsat-
ellites were shown to be more sensitive in traditional MSI 
detection scenarios [12, 13], 363 mononucleotide repeat 
loci were selected for the downstream analysis.

2,952,815 microsatellite loci with the 
repeat region at 10-100bp and the 
repeat length at 1-5nt  across whole 
genome 

2,263 microsatellite loci

363 momonucleotide loci

Intersection of the whole 
genome with our panel 
region 

Identification  of 
mononucleotide loci

Loci with higher 
instability score

Loci with lower 
instability score

MSI-H
cases

MSS
cases

9 
loci

Top 50 
loci in the 
MSI-H
cases

Bottom 50
loci in the 
MSS cases

Loci used in USCI-msi

a b c

Fig. 1  Schematic illustration of the selection pipeline (a–c) for microsatellite loci. 363 mononucleotide loci in our panel region were selected (a) 
and used for detecting MSI status. The 363 microsatellite loci were then sorted in descending order by the mean instability score calculated by 
MANTIS in MSI-H and MSS cases (b). The overlap of the top 50 loci in MSI-H cases and the bottom 50 loci in MSS cases was chosen for training 
USCI-msi (c)
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We first evaluated the performance of the 363-loci clas-
sifier. Among the 28 samples in the training set, which 
included 7 MSI-H and 21 MSS cases, only one MSI-H 
sample was misjudged and defined as MSS. Then we 
analyzed the average instability scores of microsatel-
lite loci in the MSI-H and MSS samples separately, and 
nine loci were the overlap between the top 50 loci in the 
MSI-H cases and the bottom 50 loci in the MSS, which 
may have the strongest discrimination power (Fig.  1). 
The training set samples were reanalyzed with the nine 
loci, which reached 100% accuracy, and then the nine loci 
MSI detection method was named USCI-msi classifier. 
The performance of USCI-msi was further evaluated in 
a CRC validation cohort (N = 36). The mean MSI score of 
MSI-H samples (0.78, range 0.47–0.97) was significantly 
higher than that of MSS samples (0.06, range 0.04–0.10) 
(Fig. 2a).

A comparison among USCI‑msi, MSI‑PCR and IHC
All MSI status recognized by USCI-msi was consistent 
with those by MSI-PCR. The overall percent agreement 
(OPA) relative to MSI-PCR was 100% (64/64) in the com-
bination of training and validation cohorts (Fig.  2b). As 
for MMR IHC staining, the results of MSI-NGS, MSI-
PCR and IHC were not fully concordant (85.2%, 46/54) 
(Fig.  2b). Two pMMR samples were considered to be 
MSI-H by NGS and PCR methods. Then a closing inspec-
tion of the panel sequencing data of these two samples 
was made, and alterations of POLE/POLD1 were found 
in both cases (Additional file 1: Table S2). Moreover, one 
also harbored alterations in three mismatch repair genes 
MLH1, MSH6, and PMS2 (Additional file  1: Table  S2). 
These indicated MMR deficiency may be caused by 

alterations in other related genes, or detrimental altera-
tions which may lead to functional loss in MMR proteins, 
though normal expression may be retained. Six dMMR 
cases were evaluated as MSS by USCI-msi, though they 
were all MSH2-deficient. There was no alteration in 
MLH1, MSH2, MSH6 and PMS2 genes in these six cases, 
indicating deficiency of MSH2 may be caused by epige-
netic inactivation of MSH2 or other unknown reasons 
[22]. It may also be an early event, which had no effect 
on MSI. However, cases which were free of one or more 
of MLH1, MSH6 and PMS2 proteins were detected as 
MSI-H.

The correlation of MSI status with patients’ clinical 
characteristics
The clinical characteristics of all the patients in this study 
are summarized in Table 1. The mean age of patients with 
clear information was 60.11 ± 11.67, ranging from 32-87. 
Two (2/57, 3.5%) patients were younger than 40 years, 27 
(27/57, 47.37%) patients were between 40 and 60  years, 
and 28 (28/57, 49.12%) patients were older than 60 years. 
Patients with tumor stage I, II, III, and IV accounted for 
9.43% (5/53), 39.62% (21/53), 49.06% (26/53) and 1.89% 
(1/53), respectively. The incidences of right hemicolon 
cancer, left hemicolon cancer and rectum cancer were 
16% (8/50), 46% (23/50) and 38% (19/50), respectively. 
Clinical characteristics associated with MSI status were 
then examined: Patients aged between 40 and 60 years or 
with a tumor located at the right hemicolon were more 
likely to be MSI-H (p = 0.0174 and p = 0.0001, respec-
tively). There was no statistically significant difference 
between the results for gender and tumor stage in MSI-H 
and MSS samples.

PCR IHC 

MSI-H MSS dMMR pMMR

USCI-
msi

MSI-H 14 0 7 2

MSS 0 50 6 39

a b

MSI-H MSS

0.0

0.5

1.0

1.5

M
SI

 S
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p<0.0001

Fig. 2  The performance of USCI-msi classifier. a USCI-msi was evaluated in the validation cohort (N = 36). MSI-H and MSS cases were grouped by 
MSI-PCR. The MSI status recognized by USCI-msi was consistent with those by MSI-PCR at the cutoff of 0.4. The mean MSI score of MSI-H samples 
(0.78, range 0.47–0.97) was significantly higher than that of MSS samples (0.06, range 0.04–0.10) (p < 0.0001). b A comparison among USCI-msi, 
MSI-PCR and IHC in the combination of training and validation cohorts. All MSI status recognized by USCI-msi were consistent with those by 
MSI-PCR, though only 85.2% (46/54) with IHC
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The performance of USCI‑msi classifier on low tumor 
content samples
To estimate the performance of the USCI-msi classifier 
at low sample purity, two MSI-H samples with tumor 
contents of 32% and 67% were selected for gradient dilu-
tion experiments. As shown in Table  2, the MSI score 

correlated with the tumor content along with the dilution 
with the matched normal tissue DNA. When diluted to 
50%, all mixtures were classified as MSI-H, and the sam-
ple with the higher score was still confirmed as MSI-H at 
33% dilution. Based on the dilution factor, the MSI classi-
fier is robust to the tumor content as low as 16%.

Genomic alterations across MSI‑H tumors
There were total 2249 alterations across 468 genes in 64 
CRC cases. Alterations were significantly enriched in 
MSI-H samples, with 78% (1756 alterations in 447 genes) 
found in 14 MSI-H samples, while 22% (493 alterations 
in 186 genes) were found in 50 MSS samples (Fig.  3). 
The mean number of alterations was 125 (range 63-302) 
for MSI-H cases, and 10 (range 1-26) for MSS. 60.2% 
(282/468) of the genes were only affected in MSI-H cases, 
while only 4.5% (21/468) in MSS (Fig.  3). At gene level, 
the top mutated genes only in MSI-H cases included 
ANKRD11 (78.6%, 11/14), ARID1A (71.4%, 10/14), 
KMT2B (71.4%, 10/14), BCORL1 (64.3%, 9/14), IGF1R 
(50%, 7/14), KDM5 (50%, 7/14), POLD1 (50%, 7/14) 
and TSC1 (50%, 7/14) (Additional file  1: Table  S2 and 
Fig. 4). Alterations in the hot genes of CRC, APC, TP53 
and KRAS, were common in both MSI-H and MSS cases 
(Additional file 1: Table S2 and Fig. 4).

There were 90 recurrent mutations in 85 genes, of 
which the most frequent ones were p.E384fs in TCF7L2 
(NM_001198530), p.G659fs in RNF43 (NM_017763) and 
p.E125fs in TGFBR2 (NM_003242) (Table 3). All of these 
three mutations were located at mononucleotide repeat 
regions and were detected in 10, 7 and 6 MSI-H cases, 
respectively, which indicated that microsatellite loci were 
commonly unstable in MSI-H cases [23–25]. Hot muta-
tions, p.G12V/S/D/A, p.G13D and p.A146T of KRAS, 
were found in both MSI-H and MSS cases, while BRAF 

Table 1  Characteristics of patients in this study

MSI-H and MSS were grouped by USCI-msi. Fisher’s exact test was used and 
patients with missing information were removed

MSI-H microsatellite instability-high, MSS microsatellite stability

Total (N = 64) MSI-H 
(N = 14)

MSS (N = 50) p value

Age 0.0174

 < 40 2 0 2

 40–60 27 11 16

 > 60 28 3 25

 Missing 7 0 7

Gender 0.2241

 Female 24 8 16

 Male 33 6 27

 Missing 7 0 7

Clinical stage 0.2248

 I 5 0 5

 II 21 6 15

 III 26 2 24

 IV 1 0 1

 Missing 11 6 5

Cancer location 0.0005

 Right hemi-
colon

8 5 3

 Left hemico-
lon

23 1 22

 Rectum 19 1 18

 Missing 14 7 7

Table 2  Dilution assay

Two MSI-H samples with tumor contents of 32% and 67% were selected for 
gradient dilution experiments by diluting tumor DNAs with their matched 
normal DNAs. The mixtures were tested for MSI status by USCI-msi

MSI-H microsatellite instability-high, MSS microsatellite stability

Dilution, % Tumor purity, % MSI score MSI status

100 32 0.87 MSI-H

50 16 0.46 MSI-H

33 10.6 0.26 MSS

20 6.4 0.20 MSS

100 67 1.26 MSI-H

50 33.5 0.67 MSI-H

33 22.3 0.42 MSI-H

20 13.4 0.28 MSS
493

21

165

1756

282

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

alterations alter genes
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both
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Fig. 3  Schematic illustration of altered sites and genes in 64 
colorectal cancer cases
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p.V600E were only found in 4 MSI-H cases (Table  3), 
which indicated that BRAF p.V600E may be correlated 
with MSI [26].

Eleven of MSI-H (78.6%, 11/14) and one of MSS (2%, 
1/50) cases carried mutations in the four MMR genes, 
MLH1, MSH6, MSH2 and PMS2 (Fig.  4). Mutations in 
these four genes were found in five, five, four and four 
MSI-H samples, respectively. Four cases were detected 
with mutations in two or more of these genes. All of 
above indicated that MMR-related genes were highly 
mutated in MSI-H samples.

In all the CRC samples, MSI-H tumors had a signifi-
cantly increased mean TMB (59.65 mutations/Mb) com-
pared to MSS samples (6.15 mutations/Mb) (Fig. 5). The 
minimal TMB score of MSI-H samples (37.8 mutations/
Mb) far outstripped the top TMB score of MSS samples 
(16 mutations/Mb). Thus, MSI status was also highly cor-
related with TMB (p < 0.0001, Fig. 5).

Discussion
With the increasingly routine adoption of clinical NGS 
panels to oncology, it is crucial to profile different 
genomic variations by the integration of multiple com-
ponents in a single assay, which could make full use of 
the limited tissues and simplify procedures. The panel 
used in this study covered more than 600 genes, includ-
ing most cancer-related genes, which was sufficient for 
genomic profiling across diverse tumor types, including 
CRC. In this study, we present a novel NGS-based tool, 

USCI-msi, to detect MSI status. This method achieved 
100% sensitivity and 100% specificity in CRC samples, 
which is comparable to or better than the recent reports 
[27–30]. Pang et  al. developed a decision tree classifier 
model and was able to correctly predict the MSI status 
of 112 clinical cases with 100% sensitivity and specificity 
using 8682 mononucleotide and dinucleotide repeat loci 
[27]. A PCA method was used to generate an MSI score 
for stratification of MSI-H and MSS patients from a NGS 
comprehensive genomic profiling assay (FoundationOne 
and FoundationOneHeme panel). The sensitivity of this 
method was 97.0% when compared to corresponding 
MSI-PCR and IHC [28]. In a cohort with 2189 matched 
cases, the MSI-NGS method with 7317 target microsat-
ellite loci had a sensitivity of 95.8%, specificity of 99.4%, 
positive predictive value of 94.5%, and negative predic-
tive value of 99.2% as compared to MSI-PCR [29]. These 
methods based on target capture sequencing included 
most of the microsatellite loci in the target region. Gal-
lon et  al. presented a single molecule molecular inver-
sion probe and sequencing-based MSI assay with six loci 
and achieved 100% concordance with the MSI-PCR in 
220 CRCs [30]. However microsatellite loci selection of 
this modified amplicon sequencing method was limited 
to a small amount of candidate loci. USCI-msi with nine 
microsatellite loci, accompanied genomic profiling assay, 
showed a better performance than the unselected 363-
loci set. Some of the genes covering the 9 loci have been 
previously reported frequently mutated in MSI-H tumors 
(e.g., microsatellites in POLD1, EP300) [27, 31]. The six 
mononucleotide repeat sequences used in MSI-PCR 
were also included in the 363-loci classifier, but were 

Table 3  Hotspot mutations in colorectal cancer cases

p.G12V/S/D/A, p.G13D and p.A146T of KRAS were found in both MSI-H and MSS 
cases, while BRAF p.V600E was only found in 4 MSI-H cases. p.E384fs of TCF7L2 
were highly mutated in MSI-H samples

fs fragment shift

Gene Hotspot Number of variant cases

Total MSI-H MSS

KRAS p.G12V/S/D/A 16 3 13

p.G13D 7 5 2

p.Q61H 2 0 2

p.A146T 4 3 1

NRAS p.Q61R/H/L 3 0 3

BRAF p.V600E 4 4 0

TCF7L2 p.E384fs 10 10 0

RNF43 p.G659fs 7 7 0

TGFBR2 p.E125fs 6 6 0

QKI p.K132fs 4 4 0

CARD11 p.R555fs 3 3 0

BCORL1 p.S1679fs 3 3 0

JAK3 p.Q39fs 2 2 0

BCOR p.Q1156fs 2 2 0

MSI-H MSS
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Fig. 5  MSI-H correlated with high TMB in colorectal cancer patients. 
MSI-H tumors had a significantly increased mean TMB (59.65 
mutations/Mb) compared to MSS samples (6.15 mutations/Mb) 
(p < 0.0001)
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absent in the final classifier. Our data also proved that 
fewer than 10 loci were sufficient to classify MSI status in 
CRC cases, but the selection of the loci should adjust to 
the NGS panel used.

We also analyzed alterations in our Chinese cohort. 
There were many more alterations in MSI-H cases than 
in MSS cases, though cancer driver genes such as APC, 
TP53, and KRAS are commonly mutated in CRC sam-
ples, regardless the MSI status. The most frequent muta-
tion in MSI-H cases was TCF7L2 p.E384fs. Frameshift 
mutations in TCF7L2 gene had been found in colorectal 
and gastric carcinomas with high MSI [23, 24]. TCF7L2 
is an important member in the Wnt signaling pathway 
and mutations in Wnt-related genes were also found to 
be enriched in MSI-H cases in a cohort of 67,000 pan-
tumor cases [28]. The mismatch repair genes were highly 
mutated in MSI-H samples, which indicated MSI was a 
result of MMR gene dysfunction. However, the relatively 
low concordance between USCI-msi and IHC confirmed 
that loss of MSH2 protein didn’t always result in MSI.

MSI has become a promising biomarker for predicting 
therapeutic response to immune checkpoint inhibitors. 
Recently, pembrolizumab was approved for all types of 
solid tumors exhibiting MSI-H. Consistent with previ-
ous studies, MSI-H cases had higher TMBs than the MSS 
cases in our study. Metastatic colorectal cancer with high 
MSI has a good response to immunological checkpoint 
inhibitor therapies [8–11]. Tumors with high MSI may 
contain abundant new antigens that can elicit an immune 
response; thus, determining MSI status offers an oppor-
tunity to identify patients who may benefit from immu-
notherapy. In this study, USCI-msi classifier was only 
tested in CRC cases. In the future, it will be evaluated on 
more cancer types.

Conclusion
We described a new NGS-based MSI classifier, USCI-
msi, with as few as 9 microsatellite loci for detecting MSI 
status in CRC cases. This approach possesses 100% sensi-
tivity and specificity, and performed robustly in samples 
with low tumor purity.
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