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A B S T R A C T

It is important in water resource planning to accurately estimate the spatial distribution of evapotranspiration
(ET) as an input parameter for hydrological studies. Although, conventional pan evaporation, lysimetric and eddy
covariance techniques have been used, they only estimate point values. Hence, this study aimed at estimating the
spatial distribution of ET within the Pra River Basin (a forest ecological zone) of Ghana, using cloud-free Landsat 8
(OLI/TIRS) satellite images employing the SEBAL methodology. The study further estimates the spatial distri-
bution ET in relation to major climatic variables, Land Use Land Cover (LULC) types and energy balance com-
ponents. The overall spatial distribution of ET had a mean value of 5.63 mm/day. Spatial distribution of ET (mm/
day) for water body (5.51–7.81) and uncultivated forest (5.10–7.71) were high, while moderately average values
were observed for logged forest (4.80–7.51). Settlement and bare landscapes observed low rates ((2.05–5.10)
mm/day). Spatially, ET was higher in the upper western, central and the eastern parts of the basin, but lower in
the northern part and pockets of areas at the southern part of the basin where settlement/bare landscape and
logged forest dominate. Areas with high temperature and high solar radiation experiences high ET, while low
wind speed, low to average temperature and solar radiation areas experience low ET. Also, areas with both high
net radiation and ground heat flux but low to average sensible heat flux experiences high ET and vice versa. Linear
regression analysis showed good fit with slope of 0.76 and R2 of 0.93 indicating that 93 % of the variations in
observed field measurement of ET fitted perfectly well with ET distributions generated by the SEBAL model.
1. Introduction

It is crucial and important in water resource planning to accurately
estimate the spatial distribution of evapotranspiration (ET) as an input
parameter to simulate and predict both present and future hydrological
processes of major river basins (Kundu et al, 2017, 2018; Long and Singh,
2012; Oguntunde, 2004; Bastiaanssen et al., 2005). ET is the gaseous
component of the water cycle that returns about 60 % of global precip-
itation to the atmosphere (Andreini et al., 2000; Oki and Kanae, 2006).
Considering major river basins in West Africa such as the Volta, ET is
reported to account for approximately 90% of total catchment rainfall
(Andreini et al., 2000). Thus, ET is the most influential component of the
water cycle with immense research potential in hydrological studies
(Andam-Akorful et al., 2015; Bonemberger et al., 2018; Opoku-Duah,
iah).
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2007 and Sett et al., 2018). In view of this, accurate estimation of ET at
both local and regional scales remains a fundamental tool for water re-
sources planning and management (Allen et al., 2007; Kundu et al., 2018;
Li et al., 2018). Intriguingly, ET is the most complex hydrologic param-
eter to estimate (Bastiaanssen et al., 1998; Sett et al., 2018) as it depends
on factors such land use land cover (LULC) and climate change (Li et al.,
2017) whose dominance is influenced by anthropogenic activities
(Awotwi et al., 2019). ET is highly affected by LULC properties such as
Normalized Difference Vegetation Index (NDVI) and Leaf Area Index
(LAI) which collectively express the percentage of leaf area covering the
land to the total area of cultivated land. NDVI and LAI can be derived
from satellite spectral reflectance and radiance (Jafaar and Ahmad, 2018;
Gao and Zhang, 2006). Also, the effects of climate change on the spatial
distribution of ET has been studied (Burn and Hesch, 2007; Dinpashoh
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et al., 2011; Gao and Zhang, 2006; and Zhang et al., 2011) with diverse
conclusive remarks. For example, Gao and Zhang (2006) and Zhang et al.
(2011) concluded that ET has decreased in most countries, and that the
decrease might be caused by a reduction in solar radiation and a decrease
in wind speed. While other researchers (Burn and Hesch, 2007; Dinpa-
shoh et al., 2011) have opined that ET increases in some areas were
mainly related to increase in wind speed. In areas where higher net solar
radiation is recorded, air surface temperature tends to increase leading to
higher ET. Thus, accurate estimation of the spatial distribution of ET has
to consider the involvement of major climatic factors and the land cover
features controlling the hydrologic processes within the basin. Methods
of estimating ET include empirical methods, conventional field mea-
surement and in recent times, satellite derived remote sensing methods.
Empirical mathematical models such as FAOmodified PenmanMonteith,
Makkink, Blaney Criddle, Hargreaves and Priestly-Taylor methods are
normally employed to compare field estimates of ET. Conventional field
methods such as pan evaporation, lysimetric and eddy covariance tech-
niques only estimate point source values and so fail to estimate the spatial
distribution of this important hydrologic parameter (Bastiaanssen et al.,
1998, 2005; Mkhwanazi et al., 2015; Rahimsadegan and Janani, 2019;
Snyder et al., 2005 and Zhang et al., 2011). For water resources planning
on a large scale, point source measurement of ET will be impracticable
due to constrains of time, human and financial resources. To overcome
this challenge, the application of Geographic Information Systems (GIS)
and Remote Sensing (RS) techniques in deriving the spatial distribution
of continuous data for ET using surface energy balance techniques has
been explored (Allen et al., 2007; Bastiaanssen et al., 2005; Liou and Kar,
2014; Li and Zhao, 2010a, b; Mkhwanazi et al., 2015; and Nouri et al.,
2017). These GIS and RS techniques employ multi-spectral bands from
satellite images to provide spatial information on ET over many regions
(Ayad et al., 2016). The various methods that have evolved from this
technique include the Surface Energy Balance Algorithm for Land
(SEBAL) (Bastiaanssen et al., 1998), Mapping ET at High Resolution with
Internalised Calibration (METRIC) (Allen et al., 2007), and the Simplified
Surface Energy Balance (Su, 2002) etc. Amongst these methods, SEBAL is
the most widely used model as it provides a robust and efficient tool for
estimating the spatial distribution of ET (Bastiaanssen, 2000; Bas-
tiaanssen et al., 2005; Jaber et al., 2016; Li et al., 2018; and Yonggwan
and Seongjoon, 2016). The most unique and innovative component of
this model lies in its use of near-surface temperature gradient, dT,
indexed to the radiometric surface temperature, Ts, to eliminate the need
for absolute surface aerodynamic temperature calibration (Allen et al.,
2007). This in-built calibration reduces the impact of aerodynamic
resistance to vapour transport on the spatial distribution of ET. The
overall accuracy of ET from SEBAL is around þ/�15% (Ayad et al.,
2016). The accuracy of the model can be estimated using simple linear
regression model to identify and characterize the relationship between
observed field measurement of spatial distribution of ET and that of the
model. While a correlation coefficient can be calculated as a measure of
the strength of the monotonic relationship between the observed and
modelled ET distributions. Luckily, the model has been used and
implemented successfully in numerous studies in different countries
(Hendrickx et al., 2006; Sun et al., 2011). In Ghana, only a few studies
have tested the use of the SEBAL model in estimating ET with majority of
these works focusing on the Volta Basin. Compaor�e et al. (2008) mapped
ET in the White Volta sub-basin during dry season using Landsat and
MODIS images, and deduced that SEBAL had potential for mapping ET
over tropical areas. In another study, Opoku-Duah et al. (2008) identified
that ET estimates from MODIS driven by SEBAL under-performed by up
to 2mm/day when compared with that obtained from the
Penman-Monteith and eddy covariance methods and attributed the
inconsistency to spatial mismatch. All these previous studies undeniably
prove that SEBAL algorithm is capable of estimating the spatial and
temporal distribution of ET especially, in areas with poor and/or inad-
equate data such as Ghana and other African countries. However, this
SEBAL model has not been studied in the different covers and scales
2

within the tropical forest zone of southern Ghana. Moreover, studies
using RS in estimation of ET have not considered the effect of major
climatic factors and LULC on spatial distribution of ET. Therefore, this
study aimed at estimating the spatial distribution of ET using SEBAL al-
gorithm and cloud-free Landsat 8 (OLI/TIRS) satellite imagery within the
Pra River Basin (PRB) of Ghana. It also seeks to assess the distribution of
ET in relation to major climatic variables (temperature, solar radiation
and wind speed), LULC types and energy balance components. This
research will present relevant information on ET for the estimation of
both present and future water use for irrigation agriculture, water bal-
ance components and drivers of climate change and variability within the
PRB.

2. Study area

The PRB (Figure 1) with a drainage area of 22,106 km2, located
within the forest ecological zone of Ghana lies between latitudes
4049’2300 N - 7013’100 N and longitudes 0011’5600 W - 2058’4800 W. The
elevation of the basin ranges between 0 and 848 m with an average of
200 m. The climate is considered to be tropical monsoon climate (Am),
according to the updated K€oppen-Geiger climate classification by Kottek
et al. (2006). It has two rainy seasons spanning from April–June and
September–November with mean annual rainfall of about 1,600 mm. Air
temperature increases toward the northern part of the basin with average
minimum and maximum rates of 21 �C and 32 �C respectively. The PRB
constitutes a major source of water supply with about 48% being used for
irrigation agriculture. The basin also hosts the largest cocoa plantations
in Ghana. Other economic activities include oil palm plantation and the
cultivation of varieties of food crops.

3. Data and methods

Three (3) cloud-free Landsat 8 (OLI/TIRS) images (row 193 path 56,
row 194 path 56 and row 194 path 55) with DOY/YEAR 31/2018 and
ASTER DEM were downloaded from the United States Geological Survey
website (https://earthexplorer.usgs.gov/). The images were atmospher-
ically corrected, geometrically rectified and radiometrically calibrated
prior to being mosaicked and masked to obtain an accurately referenced
and well-defined image covering the spatial extent of the PRB. The image
pre-processing was done using ArcGIS 10.4.1 and ERDAS IMAGINE
software. In classifying the images, ground truth points were collected
from field for accuracy assessment by employing the random forest al-
gorithm. The error matrix was used to assess the accuracy of the classi-
fication. While the probability of classification and the overall accuracy
(OA) in the error matrix computed and the kappa coefficient determined.
Meteorological data (temperature, solar radiation, wind speed, relative
humidity, precipitation and pan evaporation data) from fifteen weather
stations (Figure 1) acquired from the Ghana Meteorological Agency was
used.

3.1. The SEBAL model

The SEBAL model is an image processing model that estimates the ET
flux for each pixel of the image by solving the terms of the surface energy
balance equation derived from the visible, NIR and thermal-IR bands of
the electromagnetic spectrum (Allen et al, 2002, 2007; Bastiaanssen
et al., 2005; Sun et al., 2011). SEBAL computes net radiation (Rn), sen-
sible heat flux (H) and soil heat flux (G) for every pixel and the latent heat
flux (LE) deduced as a residual of the surface energy budget Eq. (1)
expressed as:

λET ¼Rn � G� H (1)

where; λET is the latent heat (W/m2), Rn is the net radiation flux at the
surface (W/m2), G is the soil heat flux (W/m2), and H is the sensible heat
flux to the air (W/m2). The net radiation (Rn) was computed by
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Figure 1. Location, DEM, weather stations and river flow patterns of the PRB.
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estimating the algebraic difference between all outgoing and incoming
radiant energy fluxes expressed by the surface radiation balance Eq. (2).

Rn ¼ð1�αÞ�RS↓ þRL↓ �RL↑ �ð1� ε0Þ � RL↓ (2)

where; RS↓ is incoming shortwave radiation (Wm�2), RL↓is incoming
longwave radiation (Wm�2), RL↑ is outgoing longwave radiation (Wm�2);
ε0 is surface thermal emissivity [-]; α is surface albedo [-]. The soil heat
flux (G) was deduced following an empirical Eq. (3) developed by Bas-
tiaanssen (2000) representing values near midday given as;

G=Rn
¼ Ts

�
α
�
0:0038αþ 0:0074α2

��
1� 0:98NDVI4

� (3)

where; TS is land surface temperature (OC), α is the albedo [-] and NDVI is
Normalized Difference Vegetation Index [-]. NDVI is a very sensitive
parameter indicating the ratio of the differences in reflectivity for the NIR
and RED bands to their sum expressed in Eq. (4) as:

NDVI¼ðρ5 � ρ4Þ
ðρ5 þ ρ4Þ

(4)

where; ρ4 and ρ5 are the reflectivities for bands 4 and 5 respectively.
Values for NDVI range between -1 and þ1. Green surfaces have a NDVI
between 0 - 1 and water and clouds are usually less than zero. NDVI is
thus, a measure of the amount and condition of green vegetation. The
sensible heat flux (H) which represents heat loss to the air by convection
and conduction owing to temperature difference was also computed from
Eq. (5).

H¼ ρCp
dT
rah

(5)

where; H is sensible heat flux (Wm�2); ρ is density of air (kg/m3); Cp is
specific heat capacity of air (1004 J/kg/K); dT is near surface tempera-
ture difference (T1 – T2) (K) between two heights (Z1 and Z2) (m) and rah
is aerodynamic resistance to heat transport (s/m).
3.2. SEBAL toolbox development

With reference to the SEBAL manual described by Allen et al.
(2002), a spatial analyst toolbox consisting of 3 sub-models was
designed and built with the model builder in ArcGIS 10.4.1 to compute
3

the spatial distribution of ET. These sub-models compute (i) land surface
temperature, (ii) iterate to compute sensible heat flux (H) from near
surface temperature difference (dT) and the aerodynamic resistance to
vapour transport (rah) and (iii) latent heat of vaporisation (λET) as re-
sidual of the net radiation (Rn), soil heat flux (G) and sensible heat flux
(H).

3.2.1. Land surface temperature
The land surface temperature was computed by first converting

the digital numbers of the pixels of the thermal infra-red (TIR) bands
into Top of Atmosphere (TOA) spectral radiance using rescaling
factors given in the metadata of the satellite imagery according to
Eq. (6).

Lλ¼ML� Qcal þ AL (6)

where; Lλ is TOA spectral radiance (Watts/(m2/srad/μm)), ML is band-
specific multiplicative rescaling factor from the metadata given as:
RADIANCE_MULT_BAND_x, where x is the band number), AL is band-
specific additive rescaling factor from the metadata (RADI-
ANCE_ADD_BAND_x), and Qcal is Quantized and calibrated standard
product pixel values (DN). The top of planetary reflectance for each band
based on spectral radiance at the sensor aperture was computed by Eq.
(7) given by Allen et al. (2002).

ρλ ¼
π � Lλ

ESUNλ � cos θ � dr
(7)

where; ρλ is TOA planetary reflectance for each band, dr is the inverse
squared relative Earth-sun distance in astronomical terms [-], ESUNλ is
mean solar exo-atmospheric spectral irradiance on a surface perpendic-
ular to the sun's ray (W/m2/μm). Table 1 shows ESUNλ values used in the
study.

The solar zenith angle (cos θ) is computed using the header file data
on sun elevation angle (β) where θ ¼ (900 - β). θ in decimal degrees is
subsequently converted into radians. The inverse squared relative Earth-
Sun distance in astronomical terms given as dr was also computed using
Eq. (8).

dr ¼ 1þ 0:033� cos
�
Julian day� 2π

365

�
(8)



Table 1. Exo-atmospheric spectral solar irradiance (ESUN) of Landsat-8 OLI bands.

Band Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 9

ESUNλ 2011.3 1853.3 1562.8 956.4 245 237.8 399.7
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The Earth-Sun distance (dr) is then used in calculating the surface
albedo according to the SEBAL Manual (Allen et al., 2002), by first
calculating the top of the atmosphere albedo computed using Eq. (9).

αtoa ¼
X

ðωλ � ρλÞ (9)

Where ωλ is a weighing coefficient for each band expressed in Eq. (10) as:

ωλ ¼ ESUNλP
ESUNλ

(10)

The TOA albedo is then converted to surface albedo using Eq. (11) by
Allen et al. (2002).

α¼
�
αtoa � αpath radiance

�
τ2SW

(11)

where α is surface albedo; αpath radiance is the incoming shortwave radia-
tion flux reflected back to the sensor (ranged from 0.025 to 0.04), in
SEBAL the value of 0.03 is used. The atmospheric transmissivity (τSW ) is
defined as the fraction of incident radiation that is transmitted by the
atmosphere and it represents the effects of absorption and reflection
occurring within the atmosphere. This was computed by the expression
given Eq. (12).

τSW ¼ 0:75þ 2� 10�5 � z (12)

where z is the elevation above mean sea level of the study area obtained
from the DEM.

The next is to calculate the emissivity (εNВ) representing surface
behaviour for thermal emission in the relatively narrow band 6 of
Landsat (10.4–12.5 μm). This is also expressed by the following empirical
Eqs. (13), (14), and (15), where NDVI >0:

εNB ¼ 0:97þ 0:0033� LAI (13)

for LAI <3 and εNB ¼ 0.98, when LAI � 3
The corrected thermal radiance from the surface (Rc) is calculated

following Eq. (14) by Weng et al. (2004).

RC ¼L6 � RP

λNB
� ð1� εNBÞRsky (14)

where; L6 is the spectral radiance of band 6 (W/m2/sr/μm), Rp is the path
radiance in the .4–12.5 μm band (W/m2/sr/μm), Rsky is the narrow band
downward thermal radiation for a clear sky (W/m2/sr/μm), and τNB is
the narrow band transmissivity of air (10.4–12.5 μm). Units for Rc is W/
m2/sr/μm. The corrected thermal radiance (Rc) is the actual radiance
emitted from the surface whereas L6 is the radiance that the satellite
“sees”. Thus, the land surface temperature (TS) is then computed from the
corrected thermal radiance (RC) as expressed in Eq. (15).

TS ¼ K2

ln
�

εNB�K1
RC

þ 1
� (15)

where; RC is the corrected thermal radiance from the surface, K1 is
774.89 W/m2/ster/μm, and K2 is 1321.08 in kelvin. Lλ is spectral radi-
ance in W/m2/ster/μm and is calculated using Eq. (16).

Lλ ¼ 0:0370588� DN þ 3:2 (16)
4

3.2.2. Sensible heat flux
The sensible heat flux (H) which represents heat loss to the air by

convection and conduction owing to temperature difference is computed
using Eq. (17).

H¼ ρCp
dT
rah

(17)

where; H is sensible heat flux (Wm�2); ρ is density of air (kg/m3); Cp is
specific heat capacity. of air (1004 J/kg/K); dT is near surface temper-
ature difference (T1 – T2) (K) between two heights (z1 and z2) (m) and rah
is aerodynamic resistance to heat transport (s/m). Since the above
equation is a function of three variables (temperature difference, surface
roughness and wind speed) with two unknowns (rah and dT), the two
anchor pixels named hot and cold pixels were used to facilitate the
computation. The cold pixel representing a well-watered and fully-
vegetated crop field with optimum ET was carefully selected from field
investigation. The hot pixel which represents a bare dry agriculture field
with an almost zero ET was similarly selected from careful field inspec-
tion (Allen et al., 2002). The aerodynamic resistance (rah) was computed
from Eq. (18) for neutral atmospheric stability conditions.

rah ¼
ln
�
z2
z1

�

u*� k
(18)

where; z1 and z2 are heights (m) above zero plane displacement of
vegetation, u* is the frictional velocity (m/s) quantifying turbulent ve-
locity fluctuations in the air, and k is Von Karman's constant (0.41). The
frictional velocity was estimated from field measurement of wind speed
data using the logarithmic wind law Eq. (19) at neutral atmospheric
conditions.

u * ¼ kux

ln
�
zx
zom

� (19)

Where; ux is the field wind speed (m/s) measurement at zx is 2m above
the surface and, zom is 0.12h. zom is the momentum roughness length (m)
which is a measure of the drag and skin friction for the air layer inter-
acting with the surface. According to Allen et al. (2002), h is 0.3m. The
frictional velocity at blending height (u200), where no effect from surface
roughness is felt was further calculated from Eq. (20) using a rearranged
form of Eq. (19).

u200 ¼ u*
ln
�
200
zom

�

k
(20)

The frictional velocity for each pixel was then calculated using Eq.
(21).

u*pi ¼
ku200

ln
�
200
zom

� (21)

where all parameters have their usual meaning. The zom for each pixel
was also obtained from the land-use map of the basin as proposed by
Allen et al. (2002). Here, the assigned momentum roughness length for
forest, logged forest, settlement and water are chosen from Table 2
below.



Table 2. Assign values of momentum roughness length to specific land use class.

No Land use class momentum roughness
length (zom) [m]

1 Water 0.0005

2 Settlement 0.2

3 Forests 0.5

4 Logged forest 0.02
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The model then establishes a linear relationship between dT and the
surface temperature Ts estimated from the field measurement of tem-
perature data using Eq. (22).

dT ¼ bþ aTs (22)

where; a and b are the correlation coefficients. Values of Ts, dTcold and
dThot are estimated from the choice of values for the cold and hot pixels
Hcold and Hhot. A linear plot of dTcold VS. Ts_cold and dThot VS. Ts_hot then
determines the coefficients a and b. The rah for each pixel are then
calculated using Eq. (18) with values of z1 ¼ 0.1m and z2 ¼ 2.0m to
estimate the initial value of H through an iterative process using the
Monin-Obukhov length formula by correcting for atmospheric instability
due to buoyancy effect of surface heating until H stabilizes.

3.2.3. Latent heat flux
The rate of latent heat loss from the surface due to evapotranspiration

was finally computed for each pixel using the energy balance Eq. (6). The
instantaneous ET represented by the equivalent water depth lost to the
atmosphere in an hour is computed using Eq. (23).

ETinst ¼ 3600
λET
λ

(23)

where; ET inst is the instantaneous ET (mm/hr); 3600 is the time con-
version from seconds to hours, and λ is the latent heat of vaporization (J/
kg).The REF-ET (Reference Evapotranspiration) Calculation Software
(Allen, 2000) was used to calculate the hourly ETr values utilising wind
speed, air temperature and relative humidity data for the DOY of the
image. The evaporative fraction (ETrF) was computed from Eq. (24) as
the ratio of instantaneous ETinst to the reference ETr.

ETrF ¼ETinst

ETr
(24)

Where; ETinst is instantaneous ET (mm/hr) and ETr is the reference ET at
the time of the image from the REF-ET software (mm/hr). ETrF is similar
to the well-known crop coefficient, Kc. ETrF is used to extrapolate ET
from the image time to 24-hour period using Eq. (25).

ET24 ¼ETrF � ETr 24 (25)

where; ET24 is the estimated daily ET (mm/day); ETr_24 is the cumulative
24-hour ET for the day of the image. Due to the unavailability of direct ET
Table 3. Error matrix of the land cover classification.

Land class Forest Logged forest

Forest 469 10

Logged forest 9 429

Settlement 0 2

Water 0 0

Total 478 441

Producer Accuracy (%) 98 97

Kappa 0.942

Overall Accuracy (%) 97

5

flux measurement, recorded pan evaporation data from fifteen (15)
meteorological stations within the basin were used to validate the SEBAL
model for the day of satellite passage. The actual evapotranspiration was
computed from the pan evaporation data using the crop coefficient
approach expressed in Eq. (26).

ET ¼KCEpan (26)

where; ET is the estimated actual evapotranspiration evaporation (mm/
day), Epan is the measured pan evaporation data (mm/day), and KC is the
crop coefficient [-]. The crop coefficient was calculated according to Han
and Zhen, (2004a, b).

4. Results and discussions

4.1. Land use land cover classification

The error matrix derived from the accuracy assessment of the land
cover classification is presented in Table 3. The error matrix revealed a
producer accuracy of 98% for forest cover, 97% for logged forest, 85% for
settlement and 100% for water.

The Kappa coefficient was 0.942 and the overall accuracy was 97%
indicating that the classification process avoided about 97% of the errors
generated from the completely random classification compared to the
ground truth points.

Four (4) LULC classes were identified and classified in the PRB. The
classification results (Table 4) show that uncultivated forest has the
biggest land area, preceded by logged forest with settlement and water
bodies following in that order.

4.2. Spatial distribution of ET in relation to land cover classes

The spatial distribution of daily ET and their corresponding evapo-
rative fraction (ETrF) of the atmosphere in relation to land cover classes
are presented in Figure 2 and Table 5. The estimated ET ranged from 2.05
to 7.81 mm/day with an overall spatial mean value of 5.63 mm/day.
Water body and uncultivated forest(Figure 3) recorded high ET rates
((5.10–7.81) mm/day) compared to logged forest ((4.80–7.51) mm/day)
and settlement ((2.05–5.10) mm/day).

ET rate observed in relation to the LULC indicates that it varies with
Land cover types. Uncultivated forest and water bodies record high ET
while settlement and bare landscapes record low ET. These variation
points to the fact that LULC types influence the magnitude and spatial
distribution in ET. These rates are in line with studies by Ayad et al.
(2016) at Tatra mountains in southern Poland; Sun et al. (2011) in
Shandong and Jiangsu provinces, China and Opoku-Duah et al. (2008) in
the savannah region of West Africa. The high ET rates observed in un-
cultivated forest and water bodies are attributed to the large volumes of
water stored in these LULC types to enhance both evaporation and
transpiration (Sett et al., 2018). In contrast, settlement and bare land-
scapes observed low ET rates ranging from 2 - 5 mm/day. This is
attributed to the lack of moisture over these land cover types to facilitate
the phase change of latent heat of vaporisation. Similar patterns were
Settlement Water Total Accuracy (%)

0 0 479 98

12 0 450 95

67 0 69 97

0 10 10 100

79 10 1008

85 100



Table 4. Percentage area of various land cover classes in the PRB.

Raster Count Cover Class Area (km2) Percentage

12316709 Forest 11,085.04 47.87

11586735 Logged Forest 10,428.06 45.03

1769407 Settlement 1,592.47 6.88

56219 Water 50.60 0.22

Table 5. Evaporative fraction and daily ET ranges for various land cover classes
within PRB.

No Land cover classes ET (mm/day) ETrF [-]

1 Water body 5.51–7.81 0.29–1.05

2 Forest patches 5.10–7.71 0.29–1.05

3 Logged forest 4.80–7.51 0.26–0.96

4 Settlement 2.05–5.10 0.00–0.50
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found by Bonemberger et al. (2018) and Ayad et al. (2016), who used
Landsat 8 images and SEBAL model to estimate radiative fluxes and daily
ET distribution. Thus, it is evident that ET rates show a wide range of
variation due to the heterogeneous nature of the various land cover
classes. This outcome match with other research findings by Dinpashoh
et al. (2011); Zhang et al. (2011); and Gao and Zhang (2006).

Linear regression model was applied to quantify the strength of the
relationship between the ET distributions of the SEBAL model and that of
Figure 2. Spatial distributions of ET in relation to land cover classes. a: Land cover c
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observed field measurement. The linear regression analysis (Figure 3)
showed good fit with slope of 0.76 and R2 of 0.93. The outcome revealed
that 93 % of the variations in observed field measurement of ET fitted
perfectly well with ET distributions generated by the SEBALmodel. Thus,
indicating that the SEBAL model has a very high potential of estimating
the spatial distribution of ET within the study area with high level of
accuracy.
lassification (2018), b: Daily ET distributions (mm/day), c: Evaporative fraction.



Figure 3. Linear regression model between modelled ET and field measured
pan data.

Figure 4. Spatial distribution of major climatic factors and their relation with ET dis
(W/m2), d: Land surface temperature (K).
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4.3. Spatial distribution of ET in relation to climatic factors

The effect of temperature, wind speed and solar radiation on spatial
distribution of ET within the PRB is also presented in Figure 4. According
to Li et al. (2018) and Ayad et al. (2016), high temperature with corre-
sponding high solar radiation is associated with high ET as this was
observed at the upper western part of the basin (314–320 K). Average
temperature (310–314 K) and averagely high solar radiation (500–550
W/m2) observed around water bodies together with average wind speed
also resulted in average to high ET rates (5.50–6.75 mm/day). At the
central to the eastern part of the basin (where both uncultivated and
logged forest exist), ET rates were equally high (5.10–7.71 mm/day).
This can be explained by the high solar radiation (550–635 W/m2),
moderately average to high temperature (314–316 K) and mild wind
speed (0.80–1.60 m/s) in these areas. On the other hand, low wind speed
(0.80–1.20 m/s), low to averagely high temperature (300–316 K) and
widely varying solar radiation existing within the central part of the
tribution. a: Daily ET estimates (mm/day), b: Wind speed (m/s), c: Net radiation



Figure 5. Spatial distribution of the energy balance components. a: Daily ET estimates (mm/day), b: Soil heat flux (W/m2), c: Sensible heat flux (W/m2), d: Net
radiation flux (W/m2).
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basin (where logged forest is prevalent) also resulted in moderately
average to high ET rates (5.10–7.81 mm/day).

While at the southern part of the basin (where forest patches, logged
forest, traces of water bodies and clusters of settlement and bare land-
scape exist), ET rates ranged between 4.80 mm/day to 7.70 mm/day
representing average to high ET rates. The estimated high temperature in
settlements and bare landscapes, coupled with widely varying solar ra-
diation and wind speed resulting in low ET are in-line with studies by Li
et al. (2018); Ayad et al. (2016). Thus spatially, areas with high tem-
perature and high solar radiation experiences high ET (especially, when
forest and water bodies occur), while low wind speed, low to average
temperature and solar radiation areas experience low ET. Thus, the dis-
tribution of ET was found to vary depending on the land use type and
climatic variables as established by Yonggwan and Seongjoon (2016).
4.4. Spatial distribution of ET in relation to energy balance components

Investigations into the influence of the energy balance components
on spatial distribution of ET (Figure 5) revealed that, net radiation is
very high (780–835) W/m2)) in uncultivated and logged forest
(720–812) W/m2)) than settlement and bare landscape (324–365) W/
m2)). This outcome is in line with the findings of Li and Zhao (2010a,
b), who used the SEBAL model to compute the ET rate for the middle
reach of the Heihe River Basin in China. This difference in net
8

radiation is mainly influenced by difference in reflective properties of
the various LULC surfaces. Thus, the uncultivated forest with low
reflective properties absorbs more heat energy than bare lands which
has high reflective properties (Sett et al., 2018). Similarly, soil heat
flux is also high in uncultivated and logged forest than settlement and
bare landscape. The greater the soil heat flux the greater the con-
duction of heat in the soil. Uncultivated and logged forest which have
wet soil have high thermal conductivity than settlement and dry bare
landscapes.

Thus, the soil heat flux which is dependent on the amount of moisture
present in the soil varies spatially in relation to the heterogeneous nature
of the land cover types. There was high evaporation rate in uncultivated
and logged forest (as stated earlier) which also led to high latent heat
loss. But for settlement, the latent heat flux was lower with a corre-
spondingly lower sensible heat flux which agrees with the findings of Sett
et al. (2018). Although, in contrast, significant increases in ET were
sporadically distributed within the southern part of the basin. It was also
observed that high latent heat is driven by cooling of land surface while
low latent heat is driven by heating of land surface. The computed soil
heat flux registered its peak value of 167.1 W/m2 in uncultivated and
logged forest while a low value of 64.8 W/m2 was recorded over settle-
ment and bare landscape as shown in Figure 5 b. It is clear that the spatial
distribution of ET has direct relation with soil heat, sensible heat and the
net radiation flux of the surface energy budget equation.
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5. Conclusions and recommendations

In this study, 3 cloud-free Landsat 8 (OLI/TIR) images from different
path and rows were mosaicked and used to model the spatial distribution
in ET patterns based on SEBAL model within the PRB. Results show a
distinct pixel-wise variation in the pattern of ET with an overall spatial
mean value of 5.63 mm/day. Daily ET (mm/day) for water body
(5.51–7.81) and uncultivated forest (5.10–7.71) were high while
moderately average values were estimated for logged forest (4.80–7.51).
In contrast, settlement and bare landscapes observed low (2.05–5.10)
daily rates owing to the lack of moisture over these land cover types to
facilitate the phase change of latent heat of vaporisation. The low daily
ET rates (2.05–5.05 mm/day) observed at the northern part of the basin
where settlement and bare landscapes dominate, were attributed to mild
wind speed and traces of low solar radiation. Also, high temperature and
high solar radiation coupled with mild wind speed observed around
water bodies resulted in high ET ranges (5.51–7.81) mm/day. At the
upper western, central and eastern parts of the basin where uncultivated
and logged forest exist, ET ranges were very high (4.80–7.71) mm/day.
This can be explained by the presence of high net solar radiation, average
to high temperature and mild wind speed in these areas. On the other
hand, low wind speed, low to average temperature and average to high
solar radiation existing within the central part of the basin where logged
forest dominates also resulted in averagely high ET rates (5.05–7.68 mm/
day). At the southern part of the basin where forest patches, logged
forest, traces of water bodies and clusters of settlement and bare land-
scape exist, ET rates were spatially distributed ranging between 2.05
mm/day and 7.69 mm/day. Linear regression analysis showed good fit
with slope and r2 of 0.76 and 0.93 respectively. This shows that 93 % of
the variations in the observed field measurement of ET were well fitted
and explained by ET distributions generated by the SEBAL model. This
proves that the SEBAL model has a very high potential of estimating the
ET distribution within the study area with high level of accuracy and thus
will serve as an important tool for planning and management of river
basin studies.
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